
CAS CS 112 A1– Spring 2011, Assignment 3
Problems due at 10:00 pm on Tuesday, March 8

Problem 1: Comparing Sorting Algorithms (40 points)

Compare the performance of insertion sort, merge sort and quicksort by doing the following.

1. Write a program capable of repeatedly generating a sequence of N random integers,
sorting them in decreasing order using each of the three algorithms, and printing the
average running time for each of the algorithms. You may use code provided in the
textbook or in class, but if you do, please cite your references via comments in your
code. We will give guidance on how to implement random number generation in class.

2. For each power of 10, e.g. N = 10, 100, 1000, . . ., run your program until sorting takes
longer than 2 minutes elapsed time for one of the algorithms. Tabulate the results
(and plot them, if you have familiarity with a graphing program).

3. Add a routine to your program in (1) to generate a strictly increasing sequence of
integers (instead of a random sequence). Then repeat (2) for a strictly increasing
sequence of N integers.

Submit your code in a file called threesorts.java, and your tables in another appropriately
named file such as threesorts.txt or threesorts.pdf.

Problem 2: Linked-list Mergesort (30 points)

Mergesort is not just for arrays. In fact, to sort a linked list, mergesort turns out to be
a natural candidate. Implement a Merge class that implements a sorting routine to sort a
linked list of integers in ascending order: void sort (List l) . Follow the design pattern
for the Merge class on arrays in our textbook on p. 180. Your routine can (and should)
destructively modify the list that is passed in as the parameter l, i.e., that list’s pointers
can be rearranged. A List should be defined as a class storing a head Node and an integer
length. A Node should be defined as a class storing a next Node and an integer item. Adding
methods (constructors, print methods) to your List class is welcomed. Note that your code
should handle the case when the original list contains duplicates. You may implement either
top-down recursive mergesort, or bottom-up iterative mergesort. Submit your Node, List,
and Merge classes, as well as a client that tests your Merge class. We will write our own
client to test your class.

1



Problem 3: Quicksort (30 points)

1. Assume that the pivot element in quicksort is always chosen to be the middle element
in the array. What is the worst case asymptotic running time of quicksort with this
pivot choice? Give an example with 15 elements that results in worst case behavior.

2. A deterministic improvement to quicksort (which the book’s implements on p. 205) is
as follows: to choose the pivot we pick three possible candidates. The first one, the
last one and the middle one in the array, then we set the pivot to the median of these
three elements and then partition. What is the worst case asymptotic running time
of quicksort with this pivot choice? Give an example with 15 elements that results in
worst case behavior.

3. Because of the overhead of recursive calls, insertion sort is faster than quicksort for
sufficiently small array sizes. Thus, to speed up quicksort, it makes sense to stop re-
cursing when the array gets small enough and to use insertion sort instead. In such an
implementation, the base case of quicksort is some value base > 1. Experiment with
various settings of base to see, roughly, what the optimal setting is. In your experi-
ments, use a large array filled with random integers (likely on the order of 1,000,000
elements, but you will have to see what value of N produces meaningful information
not obscured by noise and system clock measurement resolution). In the comments
of your code, provide a table that shows the array size you used, present the running
times it took with different values of base, describe your experiments, and the ultimate
value of base that you determined to be optimal.

Submit a single file quicksort.java that includes the quicksort with insertion sort base-case
code, as well as the code you used to time and find your optimal value of base. Provide the
answers to the first two short parts of this question as comments within your quicksort.java
file.

2


