3.3 BALANCED SEARCH TREES

» 2-3 search trees
» red-black BSTs
» B-trees

Algorithms, 4'h Edition - Robert Sedgewick and Kevin Wayne - Copyright © 2002-2011 - October 18, 2011 6:58:42 AM

Symbol table review

guarantee average case :
, , ordered operations
implementation : :
: : _ iteration? on keys
search | insert | delete | search hit insert delete
N /2

sequential search

N N N N N/2 1
(linked list) / no equals()
binary search N N Ig N N/2 N/2 es compareTo ()
(ordered array) g g Y =
BST N N N 1.391gN 1.391IgN ? yes compareTo ()
goal log N log N log N log N log N log N yes compareTo ()

Challenge. Guarantee performance.
This lecture. 2-3 trees, left-leaning red-black BSTs, B-trees.

\ introduced to the world
in COS 226, Fall 2007

» 2-3 search trees

2-3 tree

Allow 1 or 2 keys per node.
e 2-node: one key, two children.
e 3-node: two keys, three children.

Symmetric order. Inorder traversal yields keys in ascending order.
Perfect balance. Every path from root to null link has same length.

between E and J \null ll}”lk

Search ina 2-3 tree

» Compare search key against keys in node.
* Find interval containing search key.
* Follow associated link (recursively).

successful search for H unsuccessful search for B

H is less than M so B is less than M so

look to the left ™\ m look to the left AW m

H is between E and L so B is less than E

look in the middle so look to the left
N>
CHOROSO (0 1D

?
1

found H so return value (search hit) B is between A and C so look in the middle
link is null so B is not in the tree (search miss)

Insertion ina 2-3 tree

Case 1. Insert into a 2-node at bottom.
e Search for key, as usual.
* Replace 2-node with 3-node.

inserting K
(W)

(L)
™

search for K ends here

N replace 2-node with
new 3-node containing K

Insertion ina 2-3 tree

Case 2. Insert into a 3-node at bottom.
* Add new key to 3-node to create temporary 4-node.
* Move middle key in 4-node into parent.

/

why middle key?))
inserting Z

(M)

search for Z ends

Q / at this 3-node

replace 3-node with
temporary 4-node
/containing VA

replace 2-node
with new 3-node

o~ containing

dle key
S @

N/

split 4-node into two 2-nodes
pass middle key to parent

Insertion ina 2-3 tree

Case 2. Insert into a 3-node at bottom.

* Add new key to 3-node to create temporary 4-node.

* Move middle key in 4-node into parent.
* Repeat up the tree, as necessary.

inserting D

search for D ends

at this 3-node \

>
@

add new key D to 3-node
to make temporary 4-node

ACD

1/

add middle key C to 3-node
to make temporary 4-node

N\

Ay ()
N2

split 4-node into two 2-nodes
pass middle key to parent

add middle key E to 2-node
to make new 3-node ~

o Q

5/

split 4-node into two 2-nodes
pass middle key to parent

Insertion ina 2-3 tree

Case 2. Insert into a 3-node at bottom.

* Add new key to 3-node to create temporary 4-node.
* Move middle key in 4-node into parent.
* Repeat up the tree, as necessary.

* If you reach the root and it's a 4-node, split it into three 2-nodes.

inserting D

search for D ends

at this 3-node \

add new key D to 3-node
to make temporary 4-node

ACD

Remark. Splitting the root increases height by 1.

add middle key C to 3-node
to make temporary 4-node

CEJ

ON0O
N2

split 4-node into two 2-nodes
pass middle key to parent

split 4-node into

three 2-nodes .
increasing tree
height by 1

2-3 tree construction trace

Standard indexing client.

insert S @
E
(E)

A

2-3 tree construction trace

The same keys inserted in ascending order.

insert A

C

E

Local transformations in a 2-3 tree

Splitting a 4-node is a local transformation: constant number of operations.

b cd
less between\ /between\ /between\ /between greater
than a aandb b and c candd d and e than e
a C e

(b) (d)

less between\ /between\ /between\ /between greater
than a aandb b and c candd d and e than e

Global properties ina 2-3 tree

Invariants. Maintains symmetric order and perfect balance.

Pf. Each transformation maintains symmetric order and perfect balance.

root Q parentis a 3-node
— ef
ofe f (d O (b d e)
(a) (<)
parentis a 2-node
middle (&)

!

b c d (b) (d)

_’

(b d)

()
right . right fa b) (a b d)
- (b) (d) (c)

l

(e)

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.
e Worst case: IgN. [all 2-nodes]
e Best case: logs N = .6311g N. [all 3-nodes]

e Between 12 and 20 for a million nodes.
 Between 18 and 30 for a billion nodes.

Guaranteed logarithmic performance for search and insert.

ST implementations: summary

guarantee average case :
ordered operations

implementation : :
: iteration? on keys
search insert delete @ search hit insert delete

ial h
sequ.entla éearc N N N N/2 N N/2 no equals ()
(linked list)
binary search N N Ig N N/2 N/2 5 | cemmemsTad)
(ordered array) g g y =
BST N N N 1.391gN 1.391gN ? yes compareTo ()
2-3 tree clgN «clgN clgN clgN clgN clgN yes compareTo ()

T

constants depend upon
implementation

2-3 tree: implementation?

Direct implementation is complicated, because:

Maintaining multiple node types is cumbersome.
Need multiple compares to move down tree.

Large number of cases for splitting.

Bottom line. Could do it, but there's a better way.

Need to move back up the tree to split 4-nodes.

» red-black BSTs

Left-leaning red-black BSTs (Guibas-Sedgewick 1979 and Sedgewick 2007)

1. Represent 2-3 tree as a BST.

2. Use "internal" left-leaning links as "glue" for 3-nodes.

3-node

less between greater
than a aandb than b

larger key is root
greater
less between than b
than a aandb

2-3 tree

black links connect

red links "glue 2-nodes and 3-nodes

nodes within a 3-node

corresponding red-black BST

An equivalent definition

A BST such that:

* No node has two red links connected to it.

» Every path from root to null link has the same number of black links.
 Red links lean left. AN

"perfect black balance"

20

Left-leaning red-black BSTs: 1-1 correspondence with 2-3 trees

Key property. 1-1 correspondence between 2-3 and LLRB.

red-black tree

2-3 tree

21

Search implementation for red-black BSTs

Observation. Search is the same as for elementary BST (ignore color).

I

but runs faster because of better balance

public Val get (Key key)
{
Node x = root;
while (x '= null)

{

int cmp = key.compareTo (x.key) ;

if (cmp < 0) x = x.left;
else if (cmp > 0) x = x.right;
else ¢ (cmp == 0) return x.val;

}

return null;

Remark. Most other ops (e.g., ceiling, selection, iteration) are also identical.

22

Red-black BST representation

Each node is pointed to by precisely one link (from its parent) =

can encode color of links in nodes.

= true;
false;

private static final boolean RED
private static final boolean BLACK

private class Node
{
Key key;
Value val;
Node left, right;

boolean color; // color of parent link

private boolean isRed (Node x)

{

if (x == null) return false;

return x.color == RED;
}

null links are black

h
h.right.color

h.left.color Ve
(B - is BLACK

is RED

(Q
(A D) (C]

23

Elementary red-black BST operations

Left rotation. Orient a (femporarily) right-leaning red link to lean left.

rotate E left

(before)

private Node rotateLeft (Node h)

assert isRed(h.right) ;
Node x = h.right;
h.right = x.left;
x.left = h;

x.color = h.color;
h.color = RED;

return x;

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Left rotation. Orient a (femporarily) right-leaning red link to lean left.

rotate E left
(after)

greater
than S

less between
than E Eand S

private Node rotateLeft (Node h)
{

assert isRed(h.right) ;

Node x = h.right;

h.right = x.left;

x.left = h;

x.color = h.color;

h.color = RED;

return x;

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

rotate S right

(before)) .
private Node rotateRight (Node h)
« {
assert isRed(h.left);
Node x = h.left;
h h.left = x.right;
greater x.right = h;
than S x.color = h.color;
h.color = RED;
less between s 37
than E EandS }

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

rotate S right

(after)) .
private Node rotateRight (Node h)

{
assert isRed(h.left);
Node x = h.left;

X h.left = x.right;
less x.right = h;
than E x.color = h.color;
h.color = RED;
between greater a8
Eand S than S }

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

flip colors
(before)

private void flipColors (Node h)
{
assert 'isRed (h) ;
assert isRed(h.left);
asset isRed (h.right) ;
h.color = RED;
h.left.color = BLACK;
h.right.color = BLACK;

less between between greater
than A A and E Eand S than S

Invariants. Maintains symmetric order and perfect black balance.

28

Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

flip colors
(after)

private void flipColors (Node h)
{
assert 'isRed (h) ;
assert isRed(h.left);
asset isRed (h.right) ;
h.color = RED;
h.left.color = BLACK;
h.right.color = BLACK;

less between between greater
than A A and E Eand S than S

Invariants. Maintains symmetric order and perfect black balance.

29

Insertion in a LLRB tree: overview

Basic strategy. Maintain 1-1 correspondence with 2-3 trees by
applying elementary red-black BST operations.

insert C

(E)
(A) 39
(R)

add new
node here

right link red
so rotate left

P>oe

Insertion in a LLRB tree

Warmup 1. Insert into a tree with exactly 1 node.

right

- - root
search ends
“~at this null link
™ search ends hed A
at this null link () Aa/mxit; r:;vltl{nnko ‘
t
@ L roo
red link to root
6 O new node o
containing a rotated left
converts 2-node e ™\ to make 6]1[

to 3-node legal 3-node

31

Insertion in a LLRB tree

Case 1. Insert into a 2-node at the bottom.
e Do standard BST insert; color new link red.
* If new red link is a right link, rotate left.

insert C

(E)
(A) 39
(R)

add new
node here

right link red

so rotate left

I LB

Insertion in a LLRB tree

Warmup 2. Insert into a tree with exactly 2 nodes.

larger

@ search ends
at this

GY N nulllink

attached new

@ e node with

d link
e G re

colors flipped
@ «— to black

smaller

N search ends
at this null link

(c)
(b)
ttached
e ™~ niileewileiw

red link

tated
(b . Vight
(@) (o)

colors flipped
‘D «— to black

(a) (g

between

search ends
at this null link

e

attached new

node with
Q red link

rotated left

@ rotated
right

@ colors flipped

«— to black

33

Insertion in a LLRB tree

Case 2. Insert into a 3-node at the bottom.
e Do standard BST insert; color new link red.
e Rotate to balance the 4-node (if needed).

* Flip colors to pass red link up one level.

e Rotate to make lean left (if needed).

inserting H two lefts in a row
e S0 rotalte right
OENG e

add new

node here /
right link red

so rotate left

i

both children red
G so flip colors

o [R)
(A) (H) (S

34

Insertion in a LLRB tree: passing red links up the tree

Case 2. Insert into a 3-node at the bottom.

e Do standard BST insert; color new link red.
Rotate to balance the 4-node (if needed).

Flip colors to pass red link up one level.

Rotate to make lean left (if needed).

Repeat case 1 or case 2 up the tree (if needed).

inserting P
(AS (1} » (M~ both children
\ Q red so
add new flip colors
node here
/ two lefts in a row
right link red so rotate right \{

so rotate left

both children red
so flip colors

both children red
so flip colors

35

LLRB tree insertion demo

36

LLRB tree insertion trace

Standard indexing client.

insert S @
S-e s

Q)

R (S) (E)
(R) S
(E)
C (C) ®
(A)
(S)

(R)
(E]
(H)

red-black BST corresponding 2-3 tree .

LLRB tree insertion trace

Standard indexing client (continued).

red-black BST

corresponding 2-3 tree

38

Insertion in a LLRB tree: Java implementation

Same code for both cases.

 Right child red, left child black: rotate left.
 Left child, left-left grandchild red: rotate right.
* Both children red: flip colors.

{

<
g

left n
otate

\right
rotate ﬂlp
QCB\Q colors
private Node put (Node h, Key key, Value val)

: insert at bottom
if (h == null) return new Node (key, val, RED); <« (and color red)
int cmp = key.compareTo (h.key) ;
if (cmp < 0) h.left = put(h.left, key, val);
else if (cmp > 0) h.right = put(h.right, key, val);
else if (cmp == 0) h.val = val;
if (isRed(h.right) && !'isRed(h.left)) h = rotateLeft(h); <— lean left
if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h); <— balance 4-node
if (isRed(h.left) && isRed(h.right)) flipColors (h) ; « split 4-node

return h;

only a few extra lines of code
to provide near-perfect balance

39

OO D O O

255 insertions in descending order

Insertion in a LLRB tree: visualization

N = 255

max = 10
avg = 7.3
opt=7.0

" L b4 24 ’ i

I l
A“Hl VT TN LI ‘ ‘ Hl

255 random insertions

Balance in LLRB trees

Proposition. Height of tree is <2 1g N in the worst case.
Pf.

» Every path from root to null link has same number of black links.

e Never two red links in-a-row.

Al
A o aﬁ

Property. Height of tree is ~ 1.00 Ig N in typical applications.

43

ST implementations: summary

implementation

guarantee

average case

ordered
iteration?

operations
on keys

sequential search
N N N N/2 N N/2 1
(linked list) / / no equals ()

SHEE ST Ig N N N Ig N N/2 N/2 es compareTo ()

(ordered array) g 9 Y P
BST N N N 1.391g N 1.391Ig N ? yes compareTo ()
2-3 tree clgN clgN clgN clgN clgN clgN yes compareTo ()
red-black BST 2IgN 2IgN 2IgN 1.00IgN " 1.00IgN™ 1.00IgN " yes compareTo ()

* exact value of coefficient unknown but extremely close to 1

War story: why red-black?

Xerox PARC innovations. [1970s] - AR
o Alto.
e GUL
e Ethernet.
e Smalltalk.

e InterPress.

 Laser printing.

e Bitmapped display.
e WYSIWYG text editor. Xerox Alto

A DICHROMATIC FRAMEWORK FOR BALANCED TREES

Leo J. Guibas Robert Sedgewick*

Xerox Palo Alto Research Center, Program in Computer Science
Palo Alto, California, and and Brown University
Carnegie-Mellon University Providence, R. 1.

the way down towards a lcaf. As we will sce, this has a number of

ABSTRACT significant advantages over the older methods. We shall examine a
number of variations on a common theme and exhibit full
In this paper we present a uniform framework for the implementation implementations which are notable for their brevity. One

and study of balanced tree algovithms. We show how to imbed in this implementation is cxamined carcfully, and some propertics about its

47

File system model

Page. Contiguous block of data (e.g., a file or 4,096-byte chunk).
Probe. First access to a page (e.g., from disk to memory).

fast

Property. Time required for a probe is much larger than time to access
data within a page.

Cost model. Number of probes.

Goal. Access data using minimum number of probes.

48

B-trees (Bayer-McCreight, 1972)

B-free. Generalize 2-3 trees by allowing up to M - 1 key-link pairs per node.
» At least 2 key-link pairs at root. N\

))) choose M as large as possible so
e At least M /2 key—lmk pairs in other nodes. that M links fit in a page, e.g., M = 1024
» External nodes contain client keys.

» Internal nodes contain copies of keys to guide search.

2" node

sentinel ke)/ / N’nal 3-node
each red key is a copy

of min key in subtree > KiQ|U

external
3- node / \\ external 5- node (fV leél node

T8 ||DEF 1 [RTT 3] IIKMNOP |[Q[R]T | [UlW /XY

client keys (black) all nodes except the root are 3-, 4- or 5-nodes
are in external nodes

Anatomy of a B-tree set (M = 6)

Searching in a B-tree

e Start at root.
* Find interval for search key and take corresponding link.
» Search terminates in external node.

searching for E
follow this link because

E is between * any

*D[H

follow this link because
_—E isbetween D and H
ID EF |
search for E in v

this external node

Searching in a B-tree set (M = 6)

50

Insertion in a B-tree

* Search for new key.
e Insert at bottom.
 Split nodes with M key-link pairs on the way up the tree.

inserting A *THIKIQU
[*/B.CEF_|[HI [[KIMNOP_|[QR!T [[UlW X
[*/A/BICE F|
new key (A) causes *C|H|K|QU new key (C) causes
overflow and split / overflow and split
[* AB |[C EF |

/ \\

root split causes _ ,lKIQlu
T anewroot to be created

/\\ N\ T—

Inserting a new key into a B-tree set

Balance in B-tree

Proposition. A search or an insertion in a B-tree of order M with N keys
requires between log -1 N and log iz N probes.

Pf. All internal nodes (besides root) have between M /2 and M - 1 links.
M=1024; N =62 billion

In practice. Number of probes is at most 4. < log w2 N < 4

Optimization. Always keep root page in memory.

52

P
g
e
s e __

T e
DN L
et
o
O i
g i
g i

g i
At
i

M

il

external nodes
(line segment of length proportional

to number of keys in that node)

full page, about to split

Building a large B tree

53

Balanced trees in the wild

Red-black trees are widely used as system symbol tables.
e Java: java.util.TreeMap, java.util.TreeSet.
e C++ STL: map, multimap, multiset.

* Linux kernel: completely fair scheduler, 1inux/rbtree.n.
B-tree variants. B+ tree, B*tree, B# tree, ...

B-trees (and variants) are widely used for file systems and databases.
e Windows: HPFS.

e Mac: HFS, HFS+.

e Linux: ReiserFS, XFS, Ext3FS, JFS.

e Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL.

54

Red-black BSTs in the wild

ey ux'l m

Common sense. Sixth sense.
Together they're the
FBI's newest team.

55

