Hash Tables

» hash functions

» separate chaining
» linear probing

» applications

Algorithms, 4'h Edition - Robert Sedgewick and Kevin Wayne - Copyright © 2002-2011 - August2,2011 12:18:41 PM

Optimize judiciously

“ More computing sins are committed in the name of efficiency
(without necessarily achieving it) than for any other single reason—
including blind stupidity. ~ — William A. Wulf

“ We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil. ” — Donald E. Knuth

“ We follow two rules in the matter of optimization.
Rule 1: Don't do it.

Rule 2 (for experts only). Don't do it yet - that is, not until
you have a perfectly clear and unoptimized solution. ” — M. A. Jackson

Reference: Effective Java by Joshua Bloch

ST implementations: summary

guarantee average case
. . ordered operations
implementation

iteration? on keys
search insert delete search hit insert delete

sequential search

(inked list) N » N N/2 N N/2 no equals ()
binary search lg N N N lg N N/2 N/2 es compareTo ()
(ordered array) 9 9 y p

BST N N N 1.38IgN 1.38IgN ? yes compareTo ()

red-black tree 21gN 21gN 21gN 1.00lgN 1.00IgN 1.00IgN yes compareTo ()

Q. Can we do better?
A. Yes, but with different access to the data.

Hashing: basic plan
Save items in a key-indexed table (index is a function of the key).

Hash function. Method for computing array index from key. 0

hash("it") = 3
\ 3 nign

4
Issues.

5

e Computing the hash function.
e Equality test: Method for checking whether two keys are equal.

Hashing: basic plan
Save items in a key-indexed table (index is a function of the key).

Hash function. Method for computing array index from key. 0

hash("it") = 3

\ 3 ny g

7

4
Issues. haSh("timeS") = 3 /

e Computing the hash function. 5
e Equality test: Method for checking whether two keys are equal.
* Collision resolution: Algorithm and data structure

to handle two keys that hash to the same array index.

Classic space-time tradeoff.

* No space limitation: trivial hash function with key as index.

* No time limitation: ftrivial collision resolution with sequential search.
e Space and time limitations: hashing (the real world).

» hash functions

Computing the hash function

Idealistic goal. Scramble the keys uniformly to produce a table index.

key

!

« Efficiently computable.
* Each table index equally likely for each key.
N\ ey e Gl
still problematic in practical applications
Ex 1. Phone numbers.
e Bad: first three digits. table

index

e Better: last three digits.
Ex 2. Social Security numbers. «—— >73 = California, 574 = Alaska

(assigned in chronological order within geographic region)
e Bad: first three digits.

* Better: last three digits.

Practical challenge. Need different approach for each key type.

Java's hash code conventions

All Java classes inherit a method hashcode (), which returns a 32-bit int.

Requiremen’r. If x.equals(y), ‘rhen (x.hashCode () == y.hashCode()).

Highly desirable. If 'x.equals(y), then (x.hashCode() !'= y.hashCode()).

X Y
i -
v v
x.hashCode () y .hashCode ()

Default implementation. Memory address of x.

Trivial (but poor) implementation. Always return 17.

Customized implemen‘ra’rions. Integer, Double, String, File, URL, Date, ...
User-defined types. Users are on their own.

Implementing hash code: integers, booleans, and doubles

public final class Integer
{

private final int value;

public int hashCode ()
{ return value; }

public final class Boolean
{

private final boolean value;

public int hashCode ()

{
if (value) return 1231;
else return 1237;

public final class Double
{

private final double value;

public int hashCode ()
{
long bits = doubleToLongBits (value) ;
return (int) (bits * (bits >>> 32));
} A

convert to |IEEE 64-bit representation;
xor most significant 32-bits
with least significant 32-bits

Implementing hash code: strings

public final class String
{

private final char|[] s;

public int hashCode ()
{
int hash = 0;
for (int 1 = 0; i < length(); i++)
hash = s[i] + (31 * hash);

return hash;
}

ith character of s

'a' 97
'b' 98
'c' 99

* Horner's method to hash string of length L: L multiplies/adds.

e Equivalent to A=3151-50 + .. +31%2- 03 + 311- 502 + 310 g0°1,

"call";
s.hashCode () ;

String s =

Ex.

int code = <«—— 3045982

=99-3134+97-312+ 108-311 + 108-31°0
=108 +31- (108 +31-(97+ 31 -(99))

War story: String hashing in Java

String hashcode () in Java 1.1,

* For long strings: only examine 8-9 evenly spaced characters.

» Benefit: saves time in performing arithmetic.

public int hashCode ()

{

int hash =
= Math.max (1, length() / 8);

= 0; i < length(); i += skip)
hash = s[i] + (37 * hash);

int skip
for (int

i

0,

return hash;

* Downside: great potential for bad collision patterns.

http://www.
http://www.
http://www.
http://www.

t t

cs
Ccs
Ccs

cCs

t

.princeton.
.princeton.
.princeton.

.princeton.

t

edu/introcs/13loop/Hello
edu/introcs/13loop/Hello

edu/introcs/13loop/Hello.
edu/introcs/12type/index.

t t t t

.java
.class
html
html

Implementing hash code: user-defined types

public final class Transaction implements Comparable<Transaction>

{

private final String who;
private final Date when;
private final double amount;

public Transaction (String who, Date when, double amount)
{ /* as before */ }

public boolean equals (Object y)
{ /* as before */ }

public int hashCode ()

{ /
int hash = 17;
hash 31l*hash + who.hashCode() ;

nonzero constant

&
Y

hash 31l*hash + when.hashCode() ;

A

hash = 31*hash + ((Double) amount) .hashCode() ;
return hash;

typically a small prime

for reference types,
use hashCode ()

for primitive types,
use hashCode ()
of wrapper type

Hash code design

"Standard" recipe for user-defined types.

« Combine each significant field using the 31x +y rule.

o If field is a primitive type, use wrapper type hashcCode ().

« If field is an array, apply to each element. «—— orusearrays.deephashCode ()

o If field is a reference type, use hashCode (). <«—— applies rule recursively

In practice. Recipe works reasonably well; used in Java libraries.
In theory. Need a theorem for each type to ensure reliability.

Basic rule. Need to use the whole key to compute hash code;
consult an expert for state-of-the-art hash codes.

Modular hashing

Hash code. An int between -231 and 231-1.

Hash function. An int between o and M-1 (for use as array index).

AN

typically a prime or power of 2

private int hash (Key key)
{ return key.hashCode() % M; }

bug

private int hash (Key key)
{ return Math.abs (key.hashCode()) %$ M; }

1-in-a-billion bug

\ hashCode() of "polygenelubricants" is -231

private int hash (Key key)
{ return (key.hashCode() & Ox7fffffff) $ M; }

correct

Uniform hashing assumption

Uniform hashing assumption. Each key is equally likely to hash to an integer
between 0 and M - 1.

Bins and balls. Throw balls uniformly at random into M bins.

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Birthday problem. Expect two balls in the same bin after ~+/x M/ 2 tosses.
Coupon collector. Expect every bin has = 1 ball after ~ M In M tosses.

Load balancing. After M tosses, expect most loaded bin has
® (log M /log log M) balls.

Uniform hashing assumption

Uniform hashing assumption. Each key is equally likely to hash to an integer
between 0 and M - 1.

Bins and balls. Throw balls uniformly at random into M bins.

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Hash value frequencies for words in Tale of Two Cities (M = 97)

Java's string data uniformly distribute the keys of Tale of Two Cities

» separate chaining

17

Collisions

Collision. Two distinct keys hashing to same index.
 Birthday problem = can't avoid collisions unless you have
a ridiculous (quadratic) amount of memory.

 Coupon collector + load balancing = collisions will be evenly distributed.

Challenge. Deal with collisions efficiently.

hash("it") = 3

\ 3 i g

7

4
hash("times") = 3 /////W

Separate chaining ST

Use an array of M < N linked lists. [H. P. Luhn, IBM 1953]
* Hash: map key to integer i between 0 and M - 1.

e Insert: put at front of i chain (if not already there).
» Search: only need to search i chain.

key hash
S 2
E 0 fi rst\ X :
A 0O \
R 4 first
St Sl D independent

C 4 0 / SequentialSearchST

1 objects
H 4 first /
- 2 ~[x S

3
X 2 1 \ first
A O ST P
M 4 —

irs

P 3 [y C R
L 3
E O

Hashing with separate chaining for standard indexing client

Separate chaining ST: Java implementation

public class SeparateChainingHashST<Key, Value>
{

private int N; // number of key-value pairs
private int M; // hash table size
private SequentialSearchST<Key, Value> [] st; // array of STs

public SeparateChainingHashST() <«—— array doubling and halving code omitted
{ this(997); }

public SeparateChainingHashST (int M)
{
this.M = M;
st = (SequentialSearchST<Key, Value>[]) new SequentialSearchST[M];
for (int i = 0; i < M; i++)
st[i] = new SequentialSearchST<Key, Value>() ;
}
private int hash (Key key)
{ return (key.hashCode() & Ox7fffffff) $ M; }

public Value get (Key key)
{ return st[hash(key)].get(key); }

public void put (Key key, Value val)
{ st[hash(key)].put(key, val); }

Analysis of separate chaining

Proposition. Under uniform hashing assumption, probability that the number
of keys in a list is within a constant factor of N/ M is extremely close to 1.

Pf sketch. Distribution of list size obeys a binomial distribution.

_—(10,.12511...)

A —.125

| | | | -0
0 10 20 30

Binomial distribution (N = 104, M = 103, a = 10)

equals () and hashCode ()

Consequence. Number of probes for search/insert is proportional to N/ M.
* M too large = too many empty chains. T

. M times faster than
* M too small = chains too long. sequential search

e Typical choice: M~ N/5 = constant-time ops.

21

ST implementations: summary

guarantee average case
. . ordered operations
implementation . ,
iteration? on keys
search insert delete search hit insert delete
sequential search
(linked list N N N N/2 N N/2 no equals ()
SHIRELR7 SEEELD lg N N N lg N N/2 N/2 es compareTo ()
(ordered array) 9 9 Y =
BST N N N 1.38IgN 1.38IgN ? yes compareTo ()
red-black tree 21gN 21gN 21gN 1.00lgN 1.00IlgN 1.00IgN yes compareTo ()
separate chaining IgN* Ilg N * Ig N * 3-5* 3-5* 3-5* no equals ()

* under uniform hashing assumption

22

» linear probing

23

Collision resolution: open addressing

Open addressing. [Amdahl-Boehme-Rocherster-Samuel, IBM 1953]
When a new key collides, find next empty slot, and put it there.

st[0] jocularly
st[1] null
st[2] listen
st[3] suburban
. null
st[30000] browsing

linear probing (M = 30001, N =15000)

Linear probing

Use an array of size M > N.

* Hash: map key to integer i between 0 and M - 1.

e Insert: put at table index i if free; if not try i+ 1,i+2, etc.

e Search: search table index i; if occupied but no match, try i+ 1,i+2, etc.

- - - S H - - A C E R - -
0 1 2 3 4 5 6 7 8 9 10 11 12
. H A . g R insert |
- - - - - . hash(l) = 11
0 1 2 3 4 5 6 7 8 9 10 11 12

insert N
= = = S H - - A C E R I hash(N) =8

Linear probing: trace of standard indexing client

key hash value O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S 6 0O 8
E 10 1 entries in red (S)]E_ —
are ne eniries in groll/
A 4 \é (S) :FI/ — are untouchled
RO O S
C 5 4 keysin black é g (S)]E_ I;
are probe. < ATCTSH - .
H 4 . 21 5/01[5 1 3
A{C|S|H E R
e 10 215105 (6) 3
Al C|S|H E R X
X 15 / 21 5/01[5 6 3.7
Al C|S|H E R| X
ALd o (8 5 05 6 37
M 1 9 l\él g‘ g 8 I; E I; >7(probe sequence
L wraps to 0
P 14 10 P M A|lC|S|H E R X
10/ 9 81 5/0[5 6 317
P| M AC S H L E Rl X
L6 10[9 8510 51l |6 317
Pl M AlC|[S|H|L E R X =~— keys[]
E 10 12 10[9 8 5 0 511 @ 37 <~ vals[]

Linear probing ST implementation

public class LinearProbingHashST<Key, Value>

{
private int M = 30001;

private Value[] wvals = (Value[]) new Object[M];

A

private Key[] keys = (Key[]) new Object[M];
private int hash(Key key) { /* as before */ '}

public void put (Key key, Value val)
{

int i;
for (i = hash(key); keys[i] !'= null; i = (i+l) % M)
if (keys[i] .equals (key))
break;
keys[i] = key;
vals[i] = val;

public Value get (Key key)
{
for (int i = hash(key); keys[i] !'= null; i = (i+l) % M)
if (key.equals (keys[i]))
return vals[i];
return null;

array doubling
and halving
code omitted

27

Clustering

Cluster. A contiguous block of items.
Observation. New keys likely to hash into middle of big clusters.

A

OO0 O | DooOEn 0 | /&

28

Knuth's parking problem

Model. Cars arrive at one-way street with M parking spaces.

Each desires a random space i : if space i is taken, try i+ 1,i + 2, etc.

Q. What is mean displacement of a car?

displacement = 3

et 1
D) ()))) &) L))

Half-full. With M /2 cars, mean displacement is ~ 3 /2.
Full. With M cars, mean displacement is ~ \/mt M/ 8

29

Analysis of linear probing

Proposition. Under uniform hashing assumption, the average number of

probes in a hash table of size M that contains N = o M keys is:

() (e

search hit search miss / insert

Pf. [Knuth 1962] A landmark in analysis of algorithms.

Parameters.

* M too large = too many empty array entries.
* M too small = search time blows up.
e Typical choice: o = N/ M ~ Y.

probes for search hit is about 3/2
probes for search miss is about 5/2

30

ST implementations: summary

guarantee average case
. . ordered operations
implementation . :
iteration? on keys
search insert delete search hit insert delete
sequential search
(linked list N N N N/2 N N/2 no equals ()
binary search Ig N N N Ig N N/2 N/2 es mpareTo ()
(ordered array) 9 9 Y compareto
BST N N N 1.381g N 1.381g N ? yes compareTo ()
red-black tree 21gN 21gN 21gN 1.00lgN 1.00IgN 1.00IgN yes compareTo ()
separate chaining IgN* Ilg N~ Ig N~ 3-5* 3-5* 3-5* no equals ()
linear probing Ig N * Ig N * Ig N * 3-5* 3-5* 3-5* no equals ()

* under uniform hashing assumption

War story: algorithmic complexity attacks

Q. Is the uniform hashing assumption important in practice?
A. Obvious situations: aircraft control, nuclear reactor, pacemaker.
A. Surprising situations: denial-of-service attacks.

Buc ker
o
e malicious adversary learns your hash function
2] (e.g., by reading Java API) and causes a big pile-up
3| in single slot that grinds performance to a halt
s |l P BB P B
[

Real-world exploits. [Crosby-Wallach 2003]

* Bro server: send carefully chosen packets to DOS the server,
using less bandwidth than a dial-up modem.

» Per| 5.8.0: insert carefully chosen strings into associative array.

e Linux 2.4.20 kernel: save files with carefully chosen names.

32

Algorithmic complexity attack on Java

Goal. Find family of strings with the same hash code.

Solution. The base-31 hash code is part of Java's string APL.

key

"Aa "

" BB "

hashCode ()

2112

2112

"AaAaAaBB"

"AaRaBBAa"

"AaAaBBBB"

"AaBBAaAa"

"AaBBAaBB"

"AaBBBBAa"

"AaBBBBBB"

-540425984

-540425984

-540425984

-540425984

-540425984

-540425984

-540425984

-540425984

"BBAaAaAa"

"BBAaAaBB"

"BBAaBBAa"

"BBAaBBBB"

"BBBBAaAa"

"BBBBAaBB"

"BBBBBBAa"

"BBBBBBBB"

-540425984

-540425984

-540425984

-540425984

-540425984

-540425984

-540425984

-540425984

2N strings of length 2N that hash to same value!

33

Diversion: one-way hash functions

One-way hash function. "Hard" to find a key that will hash to a desired value

(or two keys that hash to same value).

Ex. MD4, MD5, SHA-O, SHA-1, SHA-2, WHIRLPOOL, RIPEMD-160,

N _
\/

known to be insecure

String password = args[0];
MessageDigest shal = MessageDigest.getInstance ("SHAl") ;

byte[] bytes = shal.digest (password) ;

/* prints bytes as hex string */

Applications. Digital fingerprint, message digest, storing passwords.
Caveat. Too expensive for use in ST implementations.

34

Separate chaining vs. linear probing

Separate chaining.

* Easier to implement delete.

* Performance degrades gracefully.

e Clustering less sensitive to poorly-designed hash function.

Linear probing.
* Less wasted space.
e Better cache performance.

35

Hashing: variations on the theme
Many improved versions have been studied.

Two-probe hashing. (separate-chaining variant)
* Hash fo two positions, put key in shorter of the two chains.
» Reduces expected length of the longest chain to log log M.

Double hashing. (linear-probing variant)

 Use linear probing, but skip a variable amount, not just 1 each time.
» Effectively eliminates clustering.

* Can allow table to become nearly full.

 Difficult to implement delete.

36

Hashing vs. balanced search trees

Hashing.

Simpler to code.

No effective alternative for unordered keys.

Faster for simple keys (a few arithmetic ops versus log N compares).
Better system support in Java for strings (e.g., cached hash code).

Balanced search trees.
» Stronger performance guarantee.
e Support for ordered ST operations.

e Easier to implemen‘r compareTo () COI"PZCTIY than equals () and hashCode ().

Java system includes both.
* Red-black trees: java.util.TreeMap, java.util.TreeSet.

* Hashing: java.util.HashMap, java.util.IdentityHashMap.

37

» applications

38

Set API

Mathematical set. A collection of distinct keys.

public

class SET<Key extends Comparable<Key>>

void
boolean
void
int

Iterator<Key>

SET () create an empty set

add (Key key) add the key to the set

contains (Key key) is the key in the set?

remove (Key key) remove the key from the set
size() return the number of keys in the set
iterator() iterator through keys in the set

Q. How to implement?

39

Exception filter

e Read in a list of words from one file.

 Print out all words from standard input that are { in, not in } the list.

% more
was it

% java
it was
it was
it was
it was
it was

% Jjava BlackList list.txt < tinyTale.txt

list.txt

the

of

Whitelist
the of it

the
the
the
the

of
of
of
of

it
it
it
it

list.txt < tinyTale.txt

was
was
was
was
was

the
the
the
the
the

best times worst times

of
of
of
of
of

age wisdom age foolishness

epoch belief epoch incredulity
season light season darkness

spring hope winter despair

list of exceptional words

40

Exception filter applications

 Read in a list of words from one file.
 Print out all words from standard input that are { in, not in } the list.

spell checker identify misspelled words word dictionary words
browser mark visited pages URL visited pages
parental controls block sites URL bad sites
chess detect draw board positions
spam filter eliminate spam IP address spam addresses
credit cards check for stolen cards number stolen cards

Exception filter: Java implementation

e Read in a list of words from one file.

 Print out all words from standard input that are { in, not in } the list.

public class Whitelist
{

public static void main(String[] args)

{

SET<String> set = new SET<String>();

In in = new In(args[0]);
while ('in.isEmpty())
set.add (in.readString()) ;

while (!StdIn.isEmpty())
{

String word = StdIn.readString() ;

if (set.contains (word))
StdOut.println (word) ;

L create empty set of strings

- read in whitelist

. print words in list

42

Exception filter: Java implementation

e Read in a list of words from one file.

 Print out all words from standard input that are { in, not in } the list.

public class BlackList
{

public static void main(String[] args)

{

SET<String> set = new SET<String>();

In in = new In(args[0]);
while ('in.isEmpty())
set.add (in.readString()) ;

while (!StdIn.isEmpty())
{

String word = StdIn.readString() ;

if ('set.contains(word))
StdOut.println (word) ;

L create empty set of strings

- read in blacklist

—— print words not in list

43

File indexing

Goal. Index a PC (or the web).

Spotlight searching challenge

Top Hit

Documents

Mail Messages

PDF Documents

Presentations

1 Show All (200)
Ei 10Hashing

mobydick.txt
movies.txt
Papers/Abstracts
score.card.txt

= Requests

[inigh [[nigd [inic

|_*| Re: Draft of lecture on symb...

" SODA 07 Final Accepts
| " SODA 07 Summary

|_*| Got-it

|| No Subject

== 08BinarySearchTrees.pdf
v 07SymbolTables.pdf
. 07SymbolTables.pdf
v 06PriorityQueues.pdf
" 06PriorityQueues.pdf

' 10Hashing
& 07SymbolTables
‘& 06PriorityQueues

44

File indexing

Goal. Given a list of files specified as command-line arguments, create an
index so that can efficiently find all files containing a given query string.

o)

% 1ls *.txt % 1ls *.java
aesop. txt magna.txt moby. txt
sawyer. txt tale.txt % java FileIndex *.java

BlackList.java Concordance. java

% java FileIndex *.txt DeDup. java FileIndex.java ST.java
freedom SET.java Whitelist. java
magna. txt moby. txt tale.txt

import
whale FileIndex.java SET.java ST.java
moby . txt

Comparator
lamb null

sawyer. txt aesop.txt

Solution. Key = query string; value = set of files containing that string.

File indexing

public class FileIndex
{
public static void main(String[] args)

{
ST<String, SET<File>> st = new ST<String,

for (String filename : args) {

File file = new File(filename) ;

In in = new In(file);

while ! (in.isEmpty())

{
String word = in.readString() ;
if ('st.contains(word))

st.put(s, new SET<File>());

SET<File> set = st.get(key)
set.add (file) ;

while (!'StdIn.isEmpty())
{

String query = StdIn.readString();
StdOut.println(st.get (query)) ;

SET<File>>() ; «——F— Symboltable

A

list of file names

from command line

for each word in file,

<«——F— add file to

corresponding set

L process queries

46

Book index

Goal. Index for an e-book.

Index

Abstract data type (ADT), 127-

195

abstract classes, 163

classes, 129-136

collections of items, 137-139

creating, 157-164

defined, 128

duplicate items, 173-176

equivalence-relations, 159-162

FIFO queucs, 165-171

first-class, 177-186

generic operations, 273

index items, 177

insertfremove operations, 138-
139

modular programming, 135

polynomial, 188-192

priority queues, 375-376

pushdown stack, 138-156

stubs, 135

symbol table, 497-506

ADT interfaces

array (myArray), 274

complex number (Complex), 181

existence table (ET), 663

full priority quene (PQfull),
397

indirect priority queune (PQi),
403

item (myItem), 273, 498

key (myKey}, 498

polynomial (Poly), 189

point (Point), 134

priority queuc (PQ), 375

queue of int (intQueue), 166

stack of int (intStack), 140
symbol table (ST}, 503
text index (TI), 525
union=find (UF), 159
Abstract in-place merging, 351-
353
Abstract operation, 10
Access control state, 131
Actual data, 31
Adapter class, 155-157
Adaptive sort, 268
Address, 84-85
Adjacency list, 120-123
depth-first search, 251-256
Adjacency matrix, 120-122
Ajtai, M., 464
Algorithm, 4-6, 27-64
abstract operations, 10, 31, 34-
35
analysis of, 6
average-hworst-case perfor-
mance, 35, 60-62
big-Oh notation, 44-47
binary scarch, 56-59
computational complexity, 62-
64
cfficieney, 6, 30, 32
empirical analysis, 30-32, 58
exponential-time, 219
implementation, 28-30
logarithm function, 40-43
mathematical analysis, 33-36,
58
primary parameter, 36
probabilistic, 331
recurrences, 49-52, 57
recursive, 198
running time, 34-40
search, 53-56, 498
steps in, 2223
See also Randomized algorithm
Amortization approach, 557, 627
Arithmetic operator, 177-179,
188, 191
Array, 12, 83
binary search, 57
dynamic allocation, 87

and linked lists, 92, 94-95
merging, 349-350
multidimensional, 117-118
references, 86-87, 89
sorting, 263-267, 273-276
and strings, 119
two-dimensional, 117-118, 120-
124
vectors, 87
visualizations, 295
See also Index, array
Array representation
binary tree, 381
FIFO queue, 168-169
linked lists, 110
polynomial ADT, 191-192
priority queue, 377-378, 403,
406
pushdown stack, 148-150
random queue, 170
symbol table, 508, 511-512,
521
Asymptotic expression, 45-46
Average deviation, 80-81
Average-case performance, 35, 60-
61
AVL tree, 583

B tree, 584, 692-704
externalfinternal pages, 695
4-5-6-7-8 tree, 693-704
Markov chain, 701
remove, 701-703
searchfinsert, 697-701
selectfsort, 701

Balanced tree, 238, 555-598
B tree, 584
bottom-up, 576, 584-585
height-balanced, 583
indexed sequential access, 690-

692

performance, 575-576, 581-582,

595-598
randomized, 559-564
red-black, 577-585
skip lists, $87-594
splay, 566-571

47

