4.3 MINIMUM SPANNING TREES

Algorithms, 4" Edition

Robert Sedgewick and Kevin Wayne

» edge-weighted graph API
» greedy algorithm

» Kruskal's algorithm

» Prim's algorithm

» advanced topics

Copyright © 2002-2011 - November 10, 2011 6:23:47 AM



Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).

Def. A spanning tree of G is a subgraph T that is connected and acyclic.
Goal. Find a min weight spanning tree.

et 20
4
6 23 9
16
8
7
\C// N -
21 w

graph G




Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).

Def. A spanning tree of G is a subgraph T that is connected and acyclic.
Goal. Find a min weight spanning tree.

4 K\f 24
6 23 9
< 11
16
8
10 14
21 \})

not connected




Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).

Def. A spanning tree of G is a subgraph T that is connected and acyclic.
Goal. Find a min weight spanning tree.

N
Kg—(
Y\

not acyclic




Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).

Def. A spanning tree of G is a subgraph T that is connected and acyclic.
Goal. Find a min weight spanning tree.

4 K\f 24
6 23 9
> > E E 11 = <
16
8
7
10 14
21 \})

spanning tree T: cost=50=4+6+8+5+11+9+ 7

Brute force. Try all spanning trees?



Network design

MST of bicycle routes in North Seattle

%ﬁhﬁ I " =

=

1|111r‘t.L§

!

e —

s [ —

L
|
& 7

=m AmlR Y

. |
| J']
551—1:jll__JHﬁJ )

= )
= J =
|

http://www.flickr.com/photos/ewedistrict/21980840



Medical image processing

MST describes arrangement of nuclei in the epithelium for cancer research

http://www.bccrc.ca/ci/tal0l_archlevel.html



Genetic research

MST of tissue relationships measured by gene expression correlation

coefficient

b |

SR

%, 111
H.‘ -

a8iinap

http://riodb.ibase.aist.go.jp/CELLPEDIA



Applications

MST is fundamental problem with diverse applications.

Cluster analysis.

Max bottleneck paths.

Real-time face verification.

LDPC codes for error correction.

Image registration with Renyi entropy.

Find road networks in satellite and aerial imagery.

Reducing data storage in sequencing amino acids in a protein.

Model locality of particle interactions in turbulent fluid flows.
Autoconfig protocol for Ethernet bridging to avoid cycles in a network.
Approximation algorithms for NP-hard problems (e.g., TSP, Steiner tree).
Network design (communication, electrical, hydraulic, cable, computer, road).

http://www.ics.uci.edu/~eppstein/gina/mst.html



» edge-weighted graph API



Weighted edge APT
Edge abstraction needed for weighted edges.

public class Edge implements Comparable<Edge>

Edge (int v, int w, double weight) create a weighted edge v-w
int either() either endpoint
int other(int v) the endpoint that's not v
int compareTo (Edge that) compare this edge to that edge

weight

O )

Idiom for processing an edge e: int v = e.either(), w = e.other(v);



Weighted edge: Java implementation

public class Edge implements Comparable<Edge>
{

private final int v, w;

private final double weight;

public Edge(int v, int w, double weight)
{

this.v = v;

this.w = w;

this.weight = weight;

public int either ()
{ return v; }

public int other (int vertex)
{
if (vertex == v) return w;
else return v;

public int compareTo (Edge that)

{
if (this.weight < that.weight) return -1;
else if (this.weight > that.weight) return +1;
else return O;

constructor

either endpoint

other endpoint

compare edges by weight



Edge-weighted graph API

public class

EdgeWeightedGraph

void

Iterable<Edge>

Iterable<Edge>

int

int

String

Conventions. Allow self-loops and parallel edges.

EdgeWeightedGraph (int V)

EdgeWeightedGraph (In in)

addEdge (Edge e)

adj (int v)

edges ()

V()

E ()

toString()

create an empty graph with V vertices
create a graph from input stream
add weighted edge e to this graph
edges incident to v
all edges in this graph
number of vertices
number of edges

String representation



Edge-weighted graph: adjacency-lists representation

Maintain vertex-indexed array of Edge lists (use Bag abstraction).

tinyEWG. txt ™ 6]0|.58—0|2|.26—{0|4]|.38—|0]|7]|.16 Bag
V\)‘S . objects
16 < 2di[] ~|1]3].29 1]121.36 1(71.19 1(51.32
45 0.35 . J/(
47 0.37 -~
570_281/6240 2171.34 1(21.36 0]2].26 2131.17
07 0.16 5
15 0.32 ~
040.383/3652 1131.29 2131.17
. 4
T3 ol | >[6]4].93}~{0]4].38}—[4] 7].37}~{4]5].35
. 5
02 0.206
12 0.36 6 \ ~[1]5].32 517128 415135 references to the
13 0 29 7 \ same Edge object
27 0.34
6 2 0.40 ~6|4/.93 6/0|.58 3/6/.52 6|2|.40
36 0.52
60 0.58 ~[2]70.3a=|1]7].19]o]7].16 5] 7].28 5171.28
64 0.93




Edge-weighted graph: adjacency-lists implementation

public class EdgeWeightedGraph
{
private final int V;
private final Bag<Edge>[] adj;

public EdgeWeightedGraph (int V)
{
this.V = V;
adj = (Bag<kEdge>[]) new Bag[V];
for (int v = 0; v < V; v++)
adj[v] = new Bag<Edge> () ;

public void addEdge (Edge e)

{
int v = e.either(), w = e.other(v);
adj[v] .add(e) ;
adj[w] .add(e) ;

public Iterable<Edge> adj(int v)
{ return adj[v]; 1}

same as Graph, but adjacency

lists of Edges instead of integers

——— constructor

add edge to both
adjacency lists




Minimum spanning tree APT

Q. How to represent the MST?

public class MST

MST (EdgeWeightedGraph G) constructor
Iterable<Edge> edges|() edges in MST
double weight() weight of MST

tinyEWG. txt
Vo
ieA/E % java MST tinyEWG. txt
ac _
S7 0284 ; Z g;z
07 0.16 - .
) OSRO 2-3 0.17
23 0.17 9 (2) 5-7 0.28
17 0.19 O 4-5 0.35
02 0.26 o @ 6-2 0.40
1.81
6 2 0.40 non-MST edge
/(g?’ﬁl)/)




Minimum spanning tree API

Q. How to represent the MST?

public class MST

MST (EdgeWeightedGraph G) constructor

Iterable<Edge> edges|() edges in MST

public static void main(String[] args) % java MST tinyEWG. txt
{ 0-7 0.16
In in = new In(args[0]); 1-7 0.19
EdgeWeightedGraph G = new EdgeWeightedGraph (in) ; 0-2 0.26
MST mst = new MST (G) ; 2-3 0.17
for (Edge e : mst.edges()) 5-7 0.28
StdOut.println(e) ; 4-5 0.35
StdOut.printf ("%$.2f\n", mst.weight()); 6-2 0.40
} 1.81




» greedy algorithm



Cut property
Simplifying assumptions. Edge weights are distinct; graph is connected.

Def. A cut inagraph is a partition of its vertices into two (nonempty) sets.
A crossing edge connects a vertex in one set with a vertex in the other.

Cut property. Given any cut, the crossing edge of min weight is in the MST.

crossing edges separating
gray from white vertices
are drawn in red

minimum-weight crossing edge
must be in the MST




Cut property: correctness proof
Simplifying assumptions. Edge weights are distinct; graph is connected.

Def. A cut inagraph is a partition of its vertices into two (nonempty) sets.
A crossing edge connects a vertex in one set with a vertex in the other.

Cut property. Given any cut, the crossing edge of min weight is in the MST.

Pf. Let e be the min-weight crossing edge in cut.

e Suppose ¢ is hot in the MST. the MST does

not contain e

* Adding e o the MST creates a cycle.
* Some other edge fin cycle must be a crossing edge.
e Removing fand adding e is also a spanning tree.
 Since weight of ¢ is less than the weight of f,

that spanning tree is lower weight.

e Contradiction. adding e to MST

creates a cycle

20



Greedy MST algorithm demo

Proposition. The following algorithm computes the MST:
e Start with all edges colored gray.

* Find a cut with no black crossing edges, and color its min-weight edge black.
« Continue until ¥ - 1 edges are colored black.

21



Greedy MST algorithm: correctness proof

Proposition. The following algorithm computes the MST:
e Start with all edges colored gray.

* Find a cut with no black crossing edges, and color its min-weight edge black.
« Continue until ¥ - 1 edges are colored black.

Pf.

* Any edge colored black is in the MST (via cut property).
o If fewer than V-1 black edges, there exists a cut with no black crossing edges.
(consider cut whose vertices are one connected component)

=N

fewer than V-1 edges colored black a cut with no black crossing edges

22



Greedy MST algorithm: efficient implementations

Proposition. The following algorithm computes the MST:
e Start with all edges colored gray.

* Find a cut with no black crossing edges, and color its min-weight edge black.
« Continue until ¥ - 1 edges are colored black.

Efficient implementations. How to choose cut? How to find min-weight edge?
Ex 1. Kruskal's algorithm. [stay tuned]

Ex 2. Prim's algorithm. [stay tuned]
Ex 3. Boriivka's algorithm.

23



Removing two simplifying assumptions

Q. What if edge weights are not all distinct?
A. Greedy MST algorithm still correct if equal weights are present!
(our correctness proof fails, but that can be fixed)

(2) (2) 12 1.00

(1) 13 0.50 (V) 13 0.50
2 4 1.00

(3)m(4) 34 0.50 (3)=(4) 34 0.50

Q. What if graph is not connected?
A. Compute minimum spanning forest = MST of each component.

45 0.61
OlNe
e @ 15 0.11
e 2 3 0.35
(®)
e 16 0.10
02 0.22

can independently compute
MSTs of components

24



Greed is good

Gordon Gecko (Michael Douglas) address to Teldar Paper Stockholders in Wall Street (1986)




» Kruskal's algorithm

26



Kruskal's algorithm demo

Kruskal's algorithm. [Kruskal 1956] Consider edges in ascending order of weight.
Add the next edge to the tree T unless doing so would create a cycle.

27



Kruskal's algorithm: visualization

28



Kruskal's algorithm: correctness proof
Proposition. Kruskal's algorithm computes the MST.

Pf. Kruskal's algorithm is a special case of the greedy MST algorithm.
* Suppose Kruskal's algorithm colors the edge e = v—w black.

e Cut = set of vertices connected to v in tree T.

* No crossing edge is black.

* No crossing edge has lower weight. Why?

add edge to tree

29



Kruskal's algorithm: implementation challenge

Challenge. Would adding edge v—-w to tree T create a cycle? If not, add it.

How difficult?

e EF+V

% run DFS from v, check if w is reachable
(T has at most V — 1 edges)

e logV

log* J/ ~«—— use the union-find data structure !

e 1

add edge to tree adding edge to tree
would create a cycle

30



Kruskal's algorithm: implementation challenge

Challenge. Would adding edge v—w to tree T create a cycle? If not, add it.
Efficient solution. Use the union-find data structure.

* Maintain a set for each connected component in T.

* If vand ware in same set, then adding v—w would create a cycle.
* To add v—w to T, merge sets containing v and w.

7

Case 1: adding v-w creates a cycle Case 2: add v-w to T and merge sets containing v and w

31



Kruskal's algorithm: Java implementation

public class KruskalMST

{
private Queue<Edge> mst = new Queue<Edge>() ;

public KruskalMST (EdgeWeightedGraph G)

{
MinPQ<Edge> pq = new MinPQ<Edge> () ;
for (Edge e : G.edges()) pg.insert(e);

UnionFind uf = new UnionFind(G.V())
while ('pg.isEmpty () && mst.size() < G.V()-1)
{
Edge e = pg.delMin() ;
int v = e.either(), w = e.other(v);
if ('uf.connected(v, w))
{
uf.union(v, w);
mst.enqueue (e) ;

public Iterable<Edge> edges()
{ return mst; }

A\

A

A

A

A

build priority queue

greedily add edges to MST

edge v—w does not create cycle

merge sets

add edge to MST

32



Kruskal's algorithm: running time

Proposition. Kruskal's algorithm computes MST in time proportional to

Elog E (in the worst case).

build pq 1 E

delete-min E log E
union \Y log* V 1

connected E log* V t

1t amortized bound using weighted quick union with path compression

recall: log*V < 5 in this universe

l

Remark. If edges are already sorted, order of growth is E log* V.

33



» Prim's algorithm

34



Prim's algorithm demo

Prim's algorithm. [Jarnik 1930, Dijkstra 1957, Prim 1959]
Start with vertex 0 and greedily grow tree T. At each step,
add fo T the min weight edge with exactly one endpoint in T.

35



Prim's algorithm: visualization

36



Prim's algorithm: implementation challenge
Challenge. Find the min weight edge with exactly one endpoint in T.

How difficult?

* O(E) time. «—— tyall edges

O (V) time.

O(logE) time.  «—— use a priority queue !
O (log* E) time.

Constant time.

1-7 is min weight edge with
exactly one endpoint in T

priority queue
\of crossing edges
0.19

1-7

0-2 0.26
5-7 0.28
2-7 0.34
4-7 0.37
0-4 0.38
6-0 0.58



Prim's algorithm: proof of correctness
Proposition. Prim's algorithm computes the MST.

Pf. Prim's algorithm is a special case of the greedy MST algorithm.
» Suppose edge ¢ = min weight edge connecting a vertex on the tree
to a vertex not on the tree.

* Cut = set of vertices connected on tree.
* No crossing edge is black.
* No crossing edge has lower weight.

edge e = 7-5 added to tree

©®

38



Prim's algorithm: lazy implementation
Challenge. Find the min weight edge with exactly one endpoint in T.

Lazy solution. Maintain a PQ of edges with (at least) one endpoint in T.
* Delete min to determine next edge ¢ = v—w to add to T.
 Disregard if both endpoints v and w are in T.
e Otherwise, let v be vertex not in T:
- add to PQ any edge incident to v (assuming other endpoint not in 7)
-addvtoT

1-7 is min weight edge with
exactly one endpoint in T

priority queue
\of crossing edges
0.19

1-7

0-2 0.26
5-7 0.28
2-7 0.34
4-7 0.37
0-4 0.38
6-0 0.58



Prim's algorithm demo: lazy implementation

Use mMinpQ: key = edge, prioritized by weight.
(lazy version leaves some obsolete edges on the PQ)

40



Prim's algorithm: lazy implementation

public class LazyPrimMST
{

private boolean[] marked; // MST vertices
private Queue<Edge> mst; // MST edges
private MinPQ<Edge> pqg; // PQ of edges

public LazyPrimMST (WeightedGraph G)
{
P9 = new MinPQ<Edge>() ;
mst = new Queue<Edge> () ;
marked = new boolean[G.V()];
visit (G, O0);

while ('pg.isEmpty())

{
Edge e = pg.delMin() ;
int v = e.either(), w = e.other(v);
if (marked[v] && marked[w]) continue;
mst.enqueue (e) ;
if ('marked[v]) visit (G, v);
if ('marked[w]) visit (G, w);

A

assume G is connected

repeatedly delete the

min weight edge e = v—w from PQ

ignore if both endpoints in T
add edge e to tree

add v or w to tree

41



Prim's algorithm: lazy implementation

private void visit (WeightedGraph G, int v)
{
marked[v] = true;
for (Edge e : G.adj(v))
if ('marked[e.other(v)])
pPg.insert (e) ;

public Iterable<Edge> mst ()
{ return mst; }

addvtoT

for each edge e = v—w, add to
PQ if w not already in T

42



Lazy Prim's algorithm: running time

Proposition. Lazy Prim's algorithm computes the MST in time proportional
to E log E and extra space proportional to E (in the worst case).

delete min E log E

insert E

43



Prim's algorithm: eager implementation
Challenge. Find min weight edge with exactly one endpoint in T.

Eager solution. Maintain a PQ of vertices connected by an edge to 7,
where priority of vertex v = weight of shortest edge connecting v to T.
e Delete min vertex v and add its associated edge e = v—w to T.
» Update PQ by considering all edges e = v—x incident to v

- ignore if x is already in T

- add x to PQ if not already on it

- decrease priority of x if v—x becomes shortest edge connecting x to T

1
~N

|
O OO OO oo

.19
.26 <«—— red: on PQ
.29
.38
.28
.58
.16

oOpRroRr
I

NO v WiN RO

?
|
N O N

T

black: on MST

44



Prim's algorithm: eager implementation demo

Use indexMinPQ: key = edge weight, index = vertex.
(eager version has at most one PQ entry per vertex)

45



Indexed priority queue

Associate an index between 0 and N - 1 with each key in a priority queue.

* Client can insert and delete-the-minimum.
e Client can change the key by specifying the index.

public class IndexMinPQ<Key extends Comparable<Key>>

create indexed priority queue

IndexMinPQ (int N) with indices 0, 1 N-1

void insert(int k, Key key) associate key with index k
void decreaseKey(int k, Key key) decrease the key associated with index k
boolean contains() is k an index on the priority queue?

int delMin() remove a minimal key and return its
associated index

boolean isEmpty () is the priority queue empty?

int size() number of entries in the priority queue

46



Indexed priority queue implementation

Implementation.

e Start with same code as MinPpQ.

* Maintain parallel arrays keys[1, pqll, and gp[] so that:
- keys[i] iS The priority of i
- pq[i] iS the index of the key in heap position i
- gpli] is the heap position of the key with index i

e Use swim(qp[k]) implemenT decreaseKey (k, key).

i 0 1 2 3 4 5 6 7
keys[il] A S 0 R T I (N)G
palil - 0(6) 7 2 1 5 4
gplil 1 5 4 8 7 6 (2) 3

I W 1 0o

47



Prim's algorithm: running time

Depends on PQ implementation: V insert, V delete-min, E decrease-key.

1 \Y 1 V2

array
binary heap log V log V log V ElogV
d-way heap d logd V d loga V loga V E logen V
(Johnson 1975)
Fibonacci heap
T i i
(Fredman-Tarjan 1984) ] log V ] E+Viog V
+ amortized

Bottom line.

* Array implementation optimal for dense graphs.

* Binary heap much faster for sparse graphs.

* 4-way heap worth the trouble in performance-critical situations.
 Fibonacci heap best in theory, but not worth implementing.

48



» advanced topics

49



Does a linear-time MST algorithm exist?

deterministic compare-based MST algorithms

year worst case

discovered by

1975 Elog logV Yao

1976 E log log Vv Cheriton-Tarjan

1984 Elog*V, E+VlogV Fredman-Tarjan

1986 E log (log* V) Gabow-Galil-Spencer-Tarjan PRINCETON
UNIVERSITY

1997 E a(V) log a(V) Chazelle

2000 E a(V) Chazelle

2002 optimal Pettie-Ramachandran

20xx E 77

Remark. Linear-time randomized MST algorithm (Karger-Klein-Tar jan 1995).

50



Euclidean MST

Given N points in the plane, find MST connecting them, where the distances
between point pairs are their Euclidean distances.

Brute force. Compute ~ N2/2 distances and run Prim's algorithm.
Ingenuity. Exploit geometry and do it in ~ ¢ Nlog M.



