
CAS CS 112 – Spring 2012, Programming Assignment 6
Due at 10:00 pm on Thursday, May 3

In this assignment you have to investigate the structure of a real world graph using some
of the techniques that we discussed in class. The graph that you will use is a co-authorship
graph from the DBLP database that contains information about articles published in a large
number of computer science journals and conferences:

http://www.informatik.uni-trier.de/~ley/db/.
In a co-authorship graph, each vertex in the graph represents an author and an edge is

present between two authors if they have published at least one paper together. Your task
is to use simple techniques to analyze this graph. You will try to find the “importance” of
an author based on a number of different measures including number of co-authors, neigh-
borhood characteristics, and its “centrality” in this graph:

http://en.wikipedia.org/wiki/Eigenvector centrality#eigenvector centrality.

Building the Graph
(20 Points) You will be provided with a file (graph.txt) which contains the graph data

using the format from the text described on p. 431. Each vertex in the graph is represented
as an integer number between 0 and 226412, some of which refer to authors of single-authored
papers (no incident edges). There are roughly 700 thousand edges in the graph. The edges
are undirected. Therefore, if an edge (a, b) is specified, so is (b,a). Since the graph is
very sparse, use an adjacency list representation to store it. Your first task is to read in
the graph.txt file line by line and add the corresponding edge to the graph representation.
(Hint: do NOT start with this huge graph. Do everything on much smaller graphs from the
booksite, like mediumG.txt.)

Ranking Vertices by Degree
(20 Points) The simplest way to determine the importance of a vertex is by its degree.

For example, in a social interaction network the person who knows the most people may
be important (but of course that is not always the case). Using our graph representation,
it is very easy to determine the degree of each vertex (just get the size of its adjacency
list). First, output a list of vertices sorted by decreasing degree, where each line contains
the name of the vertex and its degree. You should notice that most vertices have very low
degree, but there are still a considerable number of hub vertices with high degree. For this
and subsequent questions, break any ties (if they occur) by printing lower-numbered vertices
among ties first.

Ranking Vertices by Closeness Centrality
(20 Points) A second measure that signifies the “importance” of a vertex in a graph is

the closeness centrality of this vertex. The idea behind this measure is that if a vertex is
close to the center of the graph, it should be easy to reach any other vertex in the graph.
Given a graph G = (V,E) that is connected (that is, there is at least one path between every
pair of vertices), the closeness centrality CLC of a vertex v is defined as follows:

1

CLC(v) =
∑

u∈V ′ d(v,u)

|V |−1

where V ′ = V − {v} and d(v, u) is the shortest distance between vertices v and u in the
graph (the size of the shortest path). Thus, the CLC(v) is the average distance of vertex v
to every other vertex in the graph.

To calculate CLC(v) of a vertex v you can run a breadth-first search from v and keep a
counter of the number of vertices with distance 1, 2, 3, and so on. After all vertices of the
graph have been visited, you can use these counters to compute CLC(v).

Compute the closeness centrality of the top-100 vertices ranked by degree and output
those as a sorted list (sorted by increasing closeness centrality) as well.

Ranking Vertices by Clustering Coefficient
(20 Points) Another way to determine the importance of a vertex is by considering how

dense is the immediate neighborhood of this vertex. One way to measure this is by consid-
ering what fraction of its neighbors are connected. This metric is known as the clustering
coefficient. Formally, for undirected graph G = (V ;E), define the neighbor set of vi ∈ V ,
denoted by Nvi , to be the set of vertices connected to vi:

Nvi = {vj|(vi, vj) ∈ E}.

Then the clustering coefficient of vi, denoted by CC(vi), is the fraction of vertex pairs in
Nvi that share an edge:

CC(vi) =
|{(vj, vk)}|(

|Nvi |
2

) : vj, vk ∈ Nvi , (vj, vk) ∈ E.

Compute the clustering coefficient of the top-100 vertices ranked by degree, and again
output a sorted list (sorted by decreasing clustering coefficient).

2

