
CS 559: Algorithmic Aspects of Computer Networks Fall 2007

Lecture 9 — October 3,8

Lecturer: John Byers BOSTON UNIVERSITY Scribe: Samuel Epstein

In these lectures, we learned about how to use Count-Min sketches to efficiently approxi-
mate data streams. The first section of the notes describe fundamentals aspects of bounding
probability distributions. The second section describes the algorithm and analysis of the
Count-Min sketch algorithm.

9.1 Bounds on Distributions

9.1.1 Expectation and Variance

The expectation of a random variable X is the weighted average of the values it assumes:

E[X] =
∑

i

i ∗ Pr(X = i)

The expectation of the sum of random variables is equal to the sum of the expectations
of the random variables. This is known as the linearity of expectations. Given n random
variables X1, X2, . . . , Xn with finite expectations:

E

[

n
∑

i=1

Xi

]

=
n

∑

i

E[Xi]

The variance of a random variable is a measure of how far the random variable is likely to
be away from its expectation:

Var[X] = E[(X − E[X])2] = E[X2]− (E[X])2

9.1.2 Markov Inequality

Let X be a random variable that assumes only nonnegative values. Then for all a ≥ 0:

Pr(X ≥ a) ≤
E(X)

a

Markov’s inequality gives the best tail bound possible when the only information available
is the expectation of the random variable, and the guarantee that X is not negative.
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9.1.3 Chebysev Inequality

A tighter bound can be made if the variance of a probability distribution is known. Let X
be a random variable, for any a ≥ 0.

Pr(|X −E[X]| ≥ a) ≤
Var[X]

a2

9.1.4 Chernoff Bounds

Chernoff bounds are extremely powerful, giving exponentially decreasing bounds on the tail
distributions. Let X be a random variable, and let 0 ≤ δ ≤ 1. The Chernoff Bound is as
follows:

Pr(X ≥ (1 + δ)E[X]) ≤ 2eE[X]δ2/3

9.2 Datastream Summarization Problem

Consider a vector A of dimension size n. The vector’s current state at time t is represented
by A(t) = [A1(t), A2(t), . . . , An(t)]. A is initially the zero vector Ai[0] = 0 for all i. The tth
update is represented by < it, ct >, meaning that position it is increased by ct:

Ait(t) = Ait(t− 1) + ct

Ai′(t) = Ai′(t− 1), for all i′ 6= it

This vector A is a formalization of a datastream. The Datastream Summarization Problem

aims to use polylogithrmic space on n to approximate three types of queries for vectors A
and B.

• point query - Approximate Ai(t)

• range query - Approximate
∑

i≤j≤k Ai(t)

• inner product query - Approximate Ai(t) •Bi(t) =
∑

i Ai(t) ∗Bi(t)

9.3 Cash Register Problem

The datastream A is said to be a cash register, or monotone if ct ≥ 0. Thus Ai(t) ≥ Ai(s)
for all t ≥ s. The Count-Min, or CM, sketch (fig. 9.2) is a two dimensional array of width w
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Figure 9.1. Count Min Sketch

and height h and d hash functions h1, . . . , hd of range w. The two dimensional array consists
of wd counts. When an update < it, ct > arrives, for each 1 ≤ i ≤ d:

count[i, hi(it)]← count[i, hi(it)] + ct

CM-Sketch can produce an estimate of At(i), denoted by Ât(i). When a query for At(i) is
received, CM-Sketch returns:

Ât(i) = min
1≤j≤d

count[j, hj(i)]

9.3.1 Correctness Analysis of Cash Register Problem

The CM-Sketch can be written as CM-Sketch(δ, ε), where w = e/ε and h = ⌈ln 1
δ
⌉. It can

be proven using linearity of expectations and the Markov Inequality :

Pr
[

Ât(i) > At(i) + ε ∗ ||A||1

]

≤ δ

,where ||A||1 =
∑n

i=1 |ai(t)|. Ât(i) will always be greater than At(i), and the above equation
gives probabilistic upper bounds on the approximation.

9.4 Turnstile Problem

The datastream A is said to be an Turnstile, if ct can be negative. For the Turnstile Sum-

marization Problem, the approximation returned is equal to the median of the count cells:

Ât(i) = median1≤j≤d count[j, hj(i)]
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9.5 Space Analysis of CM-Sketch

Previous sketches required Ω
(

1
ε2 ln 1

δ

)

space, whereas CM-Sketch requires O
(

1
ε
ln 1

δ

)

space.
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