
CS559: ALGORITHMIC ASPECTS OF COMPUTER NETWORKSFall 2007

Lecture 15 — October 31

Lecturer: John Byers BOSTON UNIVERSITY Scribe: Georgios Smaragdakis

In today’s lecture, we elaborate more on structured peer-to-peer systems based on Dis-
tributed Hashing Tables (DHTs). We present two of them, (1) the Chord system [3], and
(2) the Content-Addressable Network (CAN) [2]. Both systems are motivated by very large
storage applications, where a large universe of items has to be placed and retrieved in a large
network.

15.1 DHT Basics

Main functions of DHTs are:

• Lookup; given a key, the key is mapped onto a node, resulting a < key, value >
pair. The metric that is used to evaluate the performance of lookup is the number of
messages to perform a lookup. DHTs eliminate the need for bootstrapping.

• Maintenance, i.e. repairs and updates.

– Correctness, i.e. maintain the invariance of the system under churn, is a require-
ment.

– The performance metric is the number of messages needed to perform a restoration
due to the arrival of a new node in the system, departure or failure of a node (the
restoration complexity is identical).

15.2 Chord

In Chord, both the nodes and the items are hashed on [0, R], where R is the maximum value in
the hashing space (the hash space in not any more a line, but a ring). Consider a system with
N nodes and I items or keys (henceforth, we will use the terms items and keys interchange-
ably). A node in position p stores its successors (the finger table):

⋃

i succ
(

p + R
2i mod R

)

,
∀i ∈ [1, 2, ..., log R] (see Figure 15.1).

For routing purposes, a node needs to store its successor and the intervals that each
successor is responsible for. Thus, the space requirements for the routing table is ≈ log R
pointers and intervals. Each node is also connected to the immediate neighbor (to guarantee
that a request always progresses). Note that the aforementioned system achieves load bal-
ancing of storage, if hashing is also used to place objects. On average, I/N items are stored
in each node. It is also proved that the distance to an object is halved after each hop, with
high probability.

15-1



CS559 Lecture 15 — October 31 Fall 2007

PSfrag replacements

p

R 1

Figure 15.1. Graphical illustration of the overlay neighbors that node with id p maintains.

example: p = 50, R = 100
Routing table:
3 [3 49]
78 [78 2]
63 [63 77]
...

15.2.1 An alternative view of the Chord structure

• Diagrammatically looks different than random trees [1].

• Nevertheless, Chord structure is similar to an unbalanced k-ary tree, like random tree
(see Figure 15.2). Ideas like threshold-replication can be also applied in Chord. Notice
that different paths traverse the same links before reaching a target node.

15.2.2 Node insertions and departures

Node Insertion

Initially, a newcomer node should have an entry point, i.e. connect to at least one node that
already participates in the network. Then it proceeds to the following steps:

15-2



CS559 Lecture 15 — October 31 Fall 2007

long jumps

smaller jumps

PSfrag replacements

p

R 1

Figure 15.2. Reduction of Chord to Random Tree structure.

Chord CAN

Lookup O(log N) O(d · N 1/d)
for d = log N, O(log N)

Restoration O(log2 N) O(d · N 1/d)
(log N pointers have to be adjusted for d = log N, O(log N)

and each one is located in log N steps)

Table 15.1. Complexity (probabilistic bounds) of lookup and restoration in Chord and CAN. N is the
number of nodes in the system and d is the dimensionality of space in CAN.

1. Find the successor and predecessor, in O(log N) steps. The newcomer lookups the
hash value for key and node id that are mapped to the same space, and selects the
responsible node id as successor (or predecessor accordingly). The selection is strictly
based on the has value and not any network or geographical distance metric.

2. Migrate < key, value > pairs.

3. Update finger table (entries that point to the interval [x, p]). There are log N intervals
each of size dist(x, p) that have to be corrected. Locating the first node in each of
these intervals amounts a lookup that takes O(log N) time. Interval width is expected
to be a small (see also Figure 15.3).

Note that each node has a constant out-degree and in-degree.

Node Departure

When a node departs (or fails), the aforementioned steps have to be undone. Note that now
the successor and the predecessor of the departing node are known.

15-3



CS559 Lecture 15 — October 31 Fall 2007

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

PSfrag replacements

p

R 1

Figure 15.3. Node p is a newcomer in the system. Shaded area denotes that hash area that has to
be reassigned.

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

�������
�������
�������
�������
�������
�������

	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	


�
�


�
�


�
�


�
�


�
�


�
�


�
�


�����
�����
�����
�����
�����
�����
�����

PSfrag replacements

p

R 1

Figure 15.4. Node p is leaving the system. Shaded area denotes that hash area that has to be
reassigned.

15-4



CS559 Lecture 15 — October 31 Fall 2007

15.3 CAN

In CAN, items are placed in a d-dimensional lattice (coordinate system). Servers are re-
sponsible for zones (regions) in the d-dimensional space. Requests are routed to neighboring
regions, resulting a worse routing time of d ·N 1/d (product of dimensions and side length of
dimension, see Figure 15.6). Insertion of a server causes a zone to be split, along with mi-
gration of < key, value > pairs, and update of neighboring servers in the coordinate system.
Departures of servers causes zones to be merged (along with migration of pairs and updates
of neighboring servers).

0

1

1

PSfrag replacements

√

N

√

N

N1/3

N1/3

N1/3

Figure 15.5. CAN defines a d-dimensional space. It can be abstracted as a d-grid with N 1/d points
in each dimension.

A

B

0.25

0.25

Figure 15.6. Forwarding in (2-dimensional) CAN.

15-5



Bibliography

[1] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and Daniel
Lewin. Consistent hashing and random trees: distributed caching protocols for relieving
hot spots on the world wide web. In STOC ’97, 1997.

[2] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Schenker. A
scalable content-addressable network. In SIGCOMM ’01, 2001.

[3] Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans Kaashoek,
Frank Dabek, and Hari Balakrishnan. Chord: a scalable peer-to-peer lookup protocol for
internet applications. IEEE/ACM Trans. Netw., 11(1):17–32, 2003.

6


