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Lecturer: John Byers BOSTON UNIVERSITY Scribe: Marwan Fayed

This day’s lecture, we learned how to Compactly Represent Bags of Integers using Bloom filters. The
formal definition of the problem, and its solution, appear below, but let us first understand why this is
necessary.

1.1 A Sample Application

Suppose we have a set of valid URLs, U. Suppose further that each URL is approximately 100 characters
in length; thus each URL requires 800 bits for proper representation. It should be clear that any subset of
URLs in U of size n requires 800n bits.

Now consider the following basic caching structure from [2] where

— \\\\\\\

Clp» NC2| NC3

‘\\\\\\7‘\¥

Table 1.1. A simple shared caching structure.

e (1,05, C5 are caches, each with a set of documents stored; documents are indexed by URL
e edges represent the xfer of a cache’s set of URLs

e generally, a query for URL x is sent to one of the caches; that cache must determine which (if any) of
the other caches has x.

One can imagine that if the set of URLs being exchanged is large, the total transfer time can be enour-
mous. In the above case, for example, if every cache stores 10,000 entries then a total of 48,000,000 bits!

are exchanged.
Clearly this is not acceptable. As it turns out, if we are willing to accept a small margin of error then
Bloom filters allow us to reduce the bits required by a factor of ~ 80.

1.2 Compactly Representing Bags of Integers

From that above application we can see the importance of needing to represent large amounts of information
in a compact manner. Subsequent sections detail a formalization of the problem, Bloom filters, an Bloom
filter example and a proof that Bloom filters work.

13 caches with 10,000 entries each; each chache shares with 2 other caches, and each entry requires 800 bits
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1.2.1 Formalization

Now that we have seen the importance of compactly representing information we need to formalize the
problem. Suppose that we are interested in n-element sets of the universe,

X ={xi1, Ti2, -, Tin }, Tij € U, |U| = u,u > n. (1.1)
On this set we need to perform the queries and operations,
e Membership: y € X;?
e Insertion : add y to X;

e Deletion?: remove y from X;

1.2.2 Evaluation

In any solution we are concerned with running time and space complexity (transfer size, in our context).
However, we might also consider the accuracy of a data structure. For now, we address the space required
to represent X;.

There are (Z) possible sets of size n.

‘ Aside. How many possible multisets of size n exist?? Proving the answer is left as an exercise. ‘

In order to determine the number of bits needed to represent (Z) sets we use the following theorem and
corollaries:

Theorem 1.1. Stirling’s Approximation: a! = v/2mwa (%)a (14 0(1))

Corollary 1.2. (Z) > (%)b

Corollary 1.3. (‘Z) < (%_e)b

Corollary 1.4. (‘Z) ~ ‘l‘,—’;, for large a.

We can safely say that the number of bits required to represent our sets is at least logs (Z) Using corollary
1.2,
log <u> log (E)
n n

nlog(u) — nlog(n)
So we can fully represent our set using nlog(u) bits. But exactly how is this possible?

v

v

Q(n log(u))

1.2.3 Using nlog(n) Bits...
This is quite easy. We need simply make sure to
1. map elements of U to integers;
e ie. map U — N so that Uy = {1..u}
2. it is now easy to enumerate the elements in Xj;
3. look-up and insert using some lexicographical structure.

This is all we can do if we wish to represent our set in an exact manner. However, as we saw in the example
application above, this results in a high messaging complexity. As it turns out, we are able to do much
better using Bloom filters if we are willing to accept a small penalty in accuracy.

2Deletion may be required to a lesser extent and will be discussed in asides as necessary.
3 . u)) _ (ut+n-—1
Answer: ((1)) = (*77.7)
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1.3 Bloom Filters

Definition. A Bloom filter is a bit vector, v, of m bits with k¥ independent hash functions, h;(z), ha(z),
..+, hg(z). Of course, z is our search value. So,

Vi, hy : U = {0,... m—1}, m<u
The required operations are implemented in the following manner:
e Initialization:
1. Set all m bits of v to zero.

e Insertion of x € U:

1. Compute hy(z), ha(z), ..., hr(x).

2. Set v[h1(z)] = v[ha(z)] = ... = v[hg(z)] = 1.
e Lookup of z € U:

1. Compute hq(z), ha(z), ..., he(z).

(a) If any of v[h;(x)] is zero, then z is not in the filter.

(b) Otherwise, report z in filter. Given the nature of compression, and query may return a
positive result when no such z exists.
1.3.1 An Example...

To make the above operations clear, a concise example is given. Consider an instance where,

m=2>5, k=2
ha(z) = (2 + 3)%5

Now perform the following operations. First we initialize our vector.

Initialize v: [0 [0 |0 [0 |0 |

Now insert 9 and 11. Remember that we compute all hash functions on the inserting value, then set the
corresponding value in the Bloom filter to 1.

h1 (.’B) h2 (IL‘)
Insert(9): 4 1 0j1j0|0|1
Insert(11): 1 0 1/1/0(0]1

Finally, let us attempt some lookups. Remember that if the value corresponding to the index of any
calculated hash function is 0, then the item cannot be in the filter. Given the filter as constructed above,
attempt the following operations.

hi(z) ho(z) Result
Lookup(15): 0 3 v[3] = 0; “Not in Filter.”
Lookup(16): 1 0 “16 is in Filter.”

@@ Notice that 16 was never inserted. As a result, false positives are possible.

This is obviously a contrived example but it does demonstrate that Bloom filters are not always accurate.
The likelihood of a false positive is discussed in the next section.

One may wish to note that deletions from may be supported with the use of counting filters. That is, any
insertion increases the appropriate value by 1 rather than simply set it to 1. In keeping with this idea a
deletion decreases appropriate values in the filter by 1. This, of course, requires that insertions be tracked.
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1.4 Analysis

As seen above, Bloom filters can report false positives (ie. report a € X when a ¢ X). The probability of
false positives,p, is called the false positive rate [3], and the key to understanding them is to analyse their
relationship to m.

FACT: (1- 1) mev/e

The probability that one hash fails to set a given a bit is (1 - —) Using the above fact, p is

no. of hashes

n
Prbit is still zero] = (1 - —)
e

SIE’

~
~

Note: This assumes that hash functions are independent and random.

If we let p = e %™/ then we can say that

Prlfalse positive] = Pr[All k bits are 1] (1.2)

kn\ *
( (1-1) ) 13)

Prob one bzt is1
ﬁ") (1.4)
— (1-pt (1.5)

~
~

~—
—

Now minimize f, the false positive rate, by finding the optimal number of hash functions. That is, minimize
f as a function of k by taking the derivative. To simplify the math, minimize the logarithm* of f with
respect to k.

kn

Let g = (f)—kln( (1-21)" )Then,ﬁ 1n(1_e—;)+kje7

We find the optimal k, or right number of hash functions to use, when the derivative is 0. This occurs when
k = n2m Gubstitute this value into (1.4), above,

f(lm2m) = (1) = (0.6185) %

Of course as m grows in proportion to n, the false probability rate decreases. To illustrate, when m = 8n
there exists a 2% chance of error; when m = 10n the false positive rate is less than 1%. As one can see, Bloom
filters are effective data structures which space and messaging complexity, while maintaining an acceptable
level of accuracy.

4] was reminded that minimizing the logarithm of a function is equivalent to minimizing the function itself.
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