CS 591B1: ALGORITHMIC ASPECTS OF COMPUTER NETWORKSpring 2002
Lecture 11 — April 17, 2002

Lecturer: Prof. Snyder BOSTON UNIVERSITY Scribe: Anna Karpovsky

11.1 “Faster IP Lookups Using Controlled Prefix Expansion” by
Srinivasan & Varghese

This paper presents a fast way for IP lookups and updates using transformation techniques.
11.1.1 Basic Model

8 words
1 word 32B blocks

Wi DRAM
5us

1
1/2 MB

Figure 11.1. Router Implemented in Software on a PC

IP address lookup requires the longest matching prefix lookup.
Performance Metrics:

e 15T metric: # of access to DRAM
e 2% metric: account for cache + DRAM access

Recall:
Internet Lookup Problem: Given IP address, find the longest matching prefix in a routing table
and return the interface number.

Prefix | Interface # ’
Py Iy
P I

Table 11.1. Routing Table

2 issues:
e lookup

e dynamic mapping between prefixes and interfaces

11-1

CS 591B1 Lecture 11 — April 17, 2002 Spring 2002

11.1.2 Review: 1-Bit Trie - basic data structure

0.1
o/@ height is 32 with IPV6
/

Figure 11.2. Binary(1-bit) Trie

Problem:

e waste time/space => might do DRAM access at each level

=> shrink the tree, collapse path

11.1.3 Basic Idea

e Create Tries (Patricia Tries) with strings on each arch

Couple ways to think about this:

e A Stride of a node is the length of the strings labeling its outputs.

00 11 001010...
01 1 0
stride = 2

=> no reason to be consistent, just make sure that each node records what stride it is.

e Fixed stride: All nodes at one level have the same stride.

01 101 10 1101

e Variable stride: no restrictions!

Problem: lookups in fixed stride trie can only store IP address at the nodes.
Example:

00 11 010*?

CS 591B1 Lecture 11 — April 17, 2002 Spring 2002

11.1.4 Solution: “Control Prefix Extension”

- Expand any prefix that would end up in the middle of a stride to the next stride length.
Expansion:

111* want to expand to length 5:

11100%*

11101*

11110*

11111*

Problem:
Example 1:

0*

01*

0* expands to:
- 00*
- 01* - but already have this =>erroneous

Have to keep track of what you already have (previously declared prefixes)

Example 2:
0*->17 => 00*->17, 01*->17
01* -> 35

00* -> 17
01* -> 35
Want to delete 01*, but want the result to be:
00*->17
01*->17

Cost trade-off:
- efficient memory lookup (# of lookups decreased)
- wasted space
Solution: Decide the depth of the tree, then design a tree with the depth at most that.

11-3

CS 591B1

Lecture 11 — April 17, 2002

Spring 2002

Example:(Figure 1 and Figure 2 from the paper)

Original Expanded(3 levels)
Ps=0% 00*(P5)
P=10* 01*(Ps)
Py=111* 10%(Py)
Py=11001* 11%(Py)
Py=1% 11100%(Py)
Ps=1000* 11101%(Py)
P;=100000* 11110%(P)
Ps=1000000* 11111%(P)
11001*(Ps)

10000%(P)

10001*(Ps)

1000001* (P;)

1000000%(Py)

Table 11.2. Controlled Expansion of the Original Database

11-4

CS 591B1

Lecture 11 — April 17, 2002

Spring 2002

P6

P6

Insertion is complicating
From the example above:

P, = 11||1*

P; = 11]|001*

: For each node build 1-bit trie to record the difference.

P5 |00
P5 |01
P1L | 10
P4 11

P7

00

01

10
11

P3

P2

P2

P2

P2

Figure 11.3. Expanded Trie

Add Py=1100* => 11000*, 11001*

P9

P3

001

11-5

000
001

010
011
100
101
110
111

CS 591B1 Lecture 11 — April 17, 2002 Spring 2002

Add P;;=1110* => 11100*, 11101*

0 1
0 P2
P9 /1
P11 100 1 P11
P11 | 101 b3

Pack sparse nodes
- loose bits as an offset, might have to do something else, but might fit into cache

Leaf-push
KB WA
/ P3 tops

Save space

P4 P4

Optimization

- How do you choose stride lengths?

histogram of all prefixes
lengths in the set

\L 012 32
S | where to pick these lengths?
0 1 12 13 32
Idea:

spike at 16 and 24 => pick modes (most frequent prefixes) =>
DOES NOT WORK
| |

2 2324
this one expands a lot

Idea: Dynamic Programming
- choose how many lengths you want
- start with the highest (since need to cover all)
- recurse

11-6

