cs 591B1: ALGORITHMIC ASPECTS OF COMPUTER NETWORKS Spring 2002
Lecture 4 — February 11, 2002

Lecturer: John Byers BOSTON UNIVERSITY Scribe: Mina Guirguis

In today’s lecture, we discussed CAN, a distributed infrastructure that provides hash table-like function-
ality on Internet-like scales. For a d-dimensional space partitioned into n equal zones, we derived the average
routing path length between two zones as well as how routing can be achieved in such design. In the second
half, we discussed CAN’s design and its performance.

4.1 CAN as a Hash-Table

Main Idea : CAN divides a virtual d-dimensional Cartesian coordinate space among n individual nodes
(peers), where each node stores a zone of the hash table in the form of (key,value) pairs. To store or retrieve
a pair (K1,V1), key K1 is mapped onto a point P in the coordinate space using a deterministic uniform
hash function. Then the node who owns this zone where P lies, will be the one responsible for this pair
(K1,V1). Requests for a particular key are routed by intermediate nodes towards the CAN node whose
zone contains that key.

4.1.1 Example

““his pode willhe

wsponsible for any
Levs bashed to
pointe that hee
wmade itz zone.

/
?-ﬂmﬁ___ff
]

& ooode s virlual
coordinace zore { (%72 |
%= (xlx2) and v

.......... [(F‘I F-';I:l HT'IF:I T |:'?'1 ..r.-';I:l}

Table 4.1. A CAN node in a 3-dimensional space

4.2 Routing in CAN

It is clear for any d-dimensional space on a d-torus, each node will have 2d neighbors (one on each side per
dimension). Each CAN node will only maintain state for its 2d neighbors. The higher value of d, the shorter
is the path between two nodes but with correspondingly the more information state needed to be saved at
each node.

cs 591B1 Lecture 4 — February 11, 2002 Spring 2002

4.2.1 Example

Let’s assume we have 100 bit keys and a 4-dimensional space. The total number of keys that can be
represented and mapped into the space is equal to 2!%0.This will give us the volume of our universe
U(volume) = 2199, Let’s choose the number of nodes equal to 625, this will give us 5 degrees of free-
dom (5 nodes can be projected on any given dimension), as 5 = 625. Since we have 100 bit keys and 4
dimensions, then each 25 bits will give us a position in a given dimension indicating which node of the 5
nodes is responsible for this key.

Dhm I Ihm 2 Dhim 3 Lhm &
25hits 2ibits 25hits 25hits

U 100 hit key
Index ine Dim 1
Note that each 25 bits in the key, give us an index inside this dimension which can be calculated by the
decimal value associated with these bits.
Assume we start at Node A [2,1,3,0] and we want to route a request to Node B [3,2,1,4]. Since A is only
aware of its neighbors, it routes the request to one of its neighbors along the direction to the destination. So
in this case it routes to Node [3,1,3,0]. This process is repeated until the request reaches the destination as

shown below. Each column represents a dimension and each row represents a node along the path from the
source to the destination

| Dimension]

1
Source node A 2
CAN intermediate node | 3
CAN intermediate node | 3

3
3
3

CAN intermediate node
CAN intermediate node
Destination node B

NN NN | =N
=N W W W W
OO OIOO| -

Table 4.2. Intermediate CAN Node Routing

It is important to note here that there are other routes to the destination. These can be helpful when
nodes go down.

4.2.2 CAN Distance

Recall that when comparing two bit strings, the Hamming distance is the count of bits different in the two
patterns. In the same way we can define CAN distance as the minimum number of hops between 2 nodes.

4.2.3 Example

Consider the two patterns A and B, where A = 01101 and B = 11011, the hamming distance (A,B) = 3.
Now consider two nodes A and B, where A’s coordinate is (2,1,3,0) and B’s coordinate is (3,2,1,4), the
CAN distance(A,B) = 5.

4.2.4 Average path length between 2 CAN Nodes

Theorem 4.1. For a d-dimensional space partitioned into n equal zones, the average routing path length is
1
d.(")

cs 591B1 Lecture 4 — February 11, 2002 Spring 2002

Dimension 11234
A 2111310
B 312|114
CAN Distance on dimensioni | 1 |1 |2 |1

Table 4.3. CAN Distance (A,B) =5

Proof: To calculate the average distance between two CAN nodes chosen at random, we first look at com-
puting the average distance between two points chosen at random in the segment [0,1].

This value can be computed by the solving this double integral:

11
// |y —z| dydzx
0o Jo

Since there is symmetry between the choices of the two points, we can re-write this integral as follows

Now, let’s extend this problem to calculating the average distance between two points chosen randomly

in a torus i.e. the CAN case. This value can be computed by solving the following integral, where %
represents the distance between the two points in the torus (the distance equals 0r where r = % since the
circumference = 2rr = 1)and we calculate this integral over half the torus (the two points can’t be more

than half the circumference of the torus apart):

Returning back to the d-dimensional space, and projecting the n nodes into the torus, we get that the
k

average distance between two points is 7 where k is the number of nodes on one side of the torus.

n=k?

A=

k=n

so the average distance between two nodes on any given dimension = %
Then the average path length between two nodes is

3
";| Al

(Number of dimensions)(average distance between two nodes on any given dimension) =(d)(

)

4-3

cs 591B1 Lecture 4 — February 11, 2002 Spring 2002

4.2.5 Observation

With n fixed and large, as d increases the term dni decreases.
Lets see how the average path length changes as we double the dimension d

2d.n 24 d.n3 2
1
d

d.n

g

1 1
d.nzd.nzd n

So this means that doubling the dimension d will only be better if nza > 2
What is a good choice for d?
Maximizing d subject to the constraint above would yield O(logn)

1
1 Togm
The average path length = %

_ logn(2'°8")Tn
B 4

2 logn

1
As stated above, increasing the number of dimensions d results in shorter path lengths (d%), but higher
per-node neighbor state (2d).

4.3 CAN Basics

CAN basic operations can be summarized as follows:
e Bootstrapping
1. Find a CAN node
e Enter the CAN

1. Choose a random point P ¢ U
2. Search for P using the hash function
3. Inform the node owning P to split. Its recommended to split from left to right across dimensions.

4. Inform old node’s neighbors with this change
e Leave the CAN

1. In case of graceful departure, inform your neighbors with explicit handing over your zone

2. In case of dropping out, (key,value)pairs must be refreshed periodically in the background and a
distributed algorithm (TAKEOVER) will redivide the CAN zones.

4.4 CAN Design Improvements
e Multi-dimensioned coordinate space

Increasing the number of dimensions d not just results in shorter path lengths but also, implies that a
node has more neighbors, hence it can find more next hop nodes so routing can be more fault tolerant.

cs 591B1 Lecture 4 — February 11, 2002 Spring 2002

e Realities: multiple coordinate spaces

We can maintain multiple independent coordinate spaces (realities) with each node. So a node would
be responsible for different zones in different realities. Such increase in realities 7 would improve data
availability since data would be stored on every reality. Also, Multiple realities improve routing fault
tolerance, because in the case of a routing breakdown on one reality, messages can continue to be
routed using the remaining realities.

One important point to know here is that if one were willing to incur an increase in the average
per-node neighbor state for improving routing, then the right way to do so would be to increase the
dimensionality d rather than the number of realities r.

e Better CAN routing metrics
In CAN routing, a node routes messages to one of its neighbors along the direction to the destination.
If this node measures the network-level round-trip-time RTT to each of its neighbors and then selects
the neighbor with the maximum ratio of progress to RT'T, this would reduce the network latency.

e Overloading coordinate zones

With zone overloading, we allow multiple nodes to share the same zone (nodes that share the same
zone are called peers). So rather than splitting the space, they share the space. This sharing have
several advantages. First, it reduces the path length because by placing multiple nodes per zone, we
reduce the number of nodes in the system. Second, it improves the fault tolerance because a zone is
down if all the peers are down. Third, when combining the RTT measurements with the choice of
peers, we can reduce the network latency. Overloading zones adds to system complexity as nodes must
track a set of peers.

e Multiple hash functions
Hashing a key using k£ hash functions would map this key into k£ points in the space. This would
improve data availability because the pair (key, value) that is associated with this key is unavailable
only when all the k& replicas are simultaneously unavailable.

e Topologically-sensitive construction of the CAN overlay network
CAN construction mechanism allocates nodes to zones in random, which doesn’t reflect anything about
the underlying IP network. What we want is to make neighbors in the coordinate space are likely to
be topologically close on the Internet. This can be achieved by the idea of land-marking where nodes
measure their RTT to different landmarks and order this list and when they join the CAN, they only
join in that portion of the coordinate space associated with its landmark ordering.

e More Uniform Partitioning
In order to achieve more uniform partitioning, when a node joins the CAN, rather than splitting the
zone with the zone’s owner, the zone owner checks its neighbors and then the node with the largest
volume would split its zone with the incoming join requester.

CAN provides a scalable indexing mechanism in its core, not only for peer-to-peer file distribution but
also can be used to construct a wide-area name resolution service. With DNS, the naming scheme is coupled
with the name resolution process (like www.cs.bu.edu would be resolved to bu.edu). With CAN, we can
hash any name on any location to a point and find its IP from the node associated with this zone, thus
decoupling the naming from the name resolution process.

4-5

Bibliography

[1] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. ”A Scalable Content-Addressable
Network,” in Proceedings of ACM SIGCOMM ’01.

