cs 591B1: ALGORITHMIC ASPECTS OF COMPUTER NETWORKS Spring 2002

Lecture 6 — February 25, 2002

Lecturer: John Byers Scribe: Ryan Mahon

In today’s lecture we examined a method for information dispersal of a file with consideration to security,
load balancing, and fault tolerance. First we solidified our background by examining Shamir’s Secret Sharing
Algorithm and then we went on to discuss Rabin’s information dispersal methodology.

6.1 Shamir’s Secret Sharing Algorithm

Motivating Example: How do you create and disperse the keys needed to launch the nuclear
weapons of your country? You do not want the loss of one of the keys to impede your coun-
try’s defense, nor do you want somebody who acquires just a few of the keys to be capable of
launching your weapons.

Suppose we have a certain piece of data D (the launch code in the above example). We wish to separate
D into n pieces such that any K of the n pieces is sufficient to recover D, but no information is revealed
from any K — 1 of the keys. This can be accomplished leveraging a basic mathematical principle known as
Polynomial Interpolation.

6.1.1 Polynomial Interpolation

Given any set of pairs {(zo, f(z0))(z2, f(z2))...(xk, f(zr)} there exists a unique polynomial P(z) of degree
k — 1 which interpolates the tuples. For instance, examining figure 1, we see that there is only one P of
degree four, the one drawn, that will fit the five points shown. Note that any k of the tuples will yield exactly
one polynomial of degree k — 1, but k£ — 1 of the tuples yield an infinite number of polynomials of degree
k — 1. We will use this premise to disperse our secret.

f(x)

Figure 6.1. Polynomial Graph

cs 591B1 Lecture 6 — February 25, 2002 Spring 2002

6.1.2 A Simple Numerical Secret

Let us create our first secret now. We will let D, an integer, be our secret. First create a secret polynomial,
P(x) = Ao+ A1z + Azx? + ... of degree k—1 (k can been viewed as a security parameter, the bigger it is, the
more points will be needed to discover D). The first coefficient(ag) should be set to D and the remaining
coefficients should be randomly and independently chosen.

Example 6.1

e k=2 : Two tuples will be required to discover the secret

e D =51 : Our secret

e P(z) =51+ 3z : Our secret polynomial (Graph Shown in Figure 6.2)

We can generate an infinite number of tuples (z, P(x)) based on our secret polynomial (i.e. (1,54)(2,57)(3,60)...
). Any two of these tuples will suffice to construct our polynomial (in this case a line), but no information
can be gathered about our tuple from only one tuple. This follows from the geometric idea that any two
points define exactly one line in the plane.

@ Note: If you always intend to use ag as your code word, then never generate P(0) or you will have
given away your code word!

f(x

7,72)

Figure 6.2. Simple Secret Graph

6.1.3 Lagrange Interpolation: Retrieving P(z)

To decode the polynomial P(z) of degree d once we have all the required tuples (ag, bp), (a1,b1), .-, (@d—1,ba—1),
we use equation 6.1. This is known as Lagrange Interpolation. A short example is shown below.

d—1
P) = b [[—25) (6.1)
j=0 j#k 1Tk

Example 6.2

e d =3 : Our polynomial is quadratic

cs 591B1 Lecture 6 — February 25, 2002 Spring 2002

e (0,2)(1,0)(3,2) : These are the three tuples we have received

o P(z) =2(2=1)(2=2)4+0(2=9)(2=2) +2(2=0)(2=1) = 22 —3x+2 : Note that P(a;) = b; so P(z) works!

6.1.4 Polynomial Interpolation in a Finite World
How do we do polynomial interpolation in finite terms?

o Let
D be the data to be coded

— n be the number of tuples to be generated

— P be the polynomial
— k be the degree of the polynomial P

e Pick a prime number p that is greater than both D and n. We will then work our arithmetic over Z,
(i.e. take everything mod p). Note:

— p must be prime so that Z, will be a field.

— p must be greater than n so that we have distinct pieces. Otherwise we may not be able to
discover the secret with k — 1 pieces.

— p must be greater than D so that our secret is not corrupted by the modulus operation.

e Note that polynomial interpolation still applies, although we now know that there are only p possible
secrets.

6.2 Rabin’s Method for Information Dispersal

Motivation: We want to be able to divide a file into pieces to provide for fault tolerance, load
balancing, and security. Rabin’s algorithm builds off of Shamir’s ideas

6.2.1 Rabin’s Idea
o Let

— F be afile
L be the length of F (packets, bytes, etc.)

M be the number of pieces needed to reconstruct F (also the number of characters in each block)
— N be the number of pieces that F' will be split into

— p will be a prime number larger than the coded characters of the file (i.e. 256 possible characters,
use 257 or greater)

ﬁ be the number of blocks of F'

e We will manipulate F' into N pieces of length ﬁ such that any M pieces suffice to recover F.
e We will take F as a string of residues mod p: * (f1,..., far), (far+1y - fonr)y o (ooey L)

e We will take N = M + K such that %Sl-l—eforsomee>02

leach block is a string of elements in the finite field Z,
2the stretching is bounded

cs 591B1 Lecture 6 — February 25, 2002 Spring 2002

6.2.2 Encoding

Let us suppose that we have a special N x M-matrix A that is decided in advance. We will discover how
to create A and the properties it must have later on. Now, using matrix multiplication, let us multiply the
matrix A by a M x 1 matrix B where B’s components consist of the elements of a block (segmented sequence)
of F. (i.e. (fipr+1,--, fing)) This matrix multiplication will produce a coded matrix C as illustrated in figure
6.3. We will repeat this multiplication for all % of the blocks of F' to arrive at the C' matrix shown in figure
6.4. Each row of this matrix represents a coded piece of our file and will be a packet. Note that there are
exactly N pieces and each piece is of size % .

fi C1,1 fM+1 C1,2
[A] % f2 _ C2.1 [A] * fM+2 _ C22
fu cM,1 fom cM,2

Figure 6.3. The Coding Process

C1,1 C12 ... CiL/M
C2.1 C 2 C

C — s , Z,L/M
CN,1 CN2 .- CN,L/M

Figure 6.4. The Matrix C: Each of the N rows is a packet (M required to reconstruct the file)

6.2.3 Decoding

Claim: Any M of the pieces suffice to recover all the f;s

Let us now assume that of the N rows(packets), M have been recovered. We then reconstruct the
matrix C from figure 6.4 ignoring the missing (N — M) rows to form the matrix C’. Next we remove the
corresponding missing rows from the matrix A which will now become an M x M matrix which we shall
term A’. We then take the matrix inverse of A’ to form the matrix A'~!. We use A"~ to solve for the F
matrix as shown in equation 6.2. Note that in order for this to be possible, A’ must be invertible. This
means that the determinant of A’ cannot be zero and that the columns of A’ must be linearly independent.
We will have to keep this in mind when we decide how to select A, which we describe later.

A'xF = ('
A '« AxF = A1« (6.2)
F = A7«

6.2.4 Creating the Matrix A

Creating the matrix A is left to our discretion with one stringent requirement: The matrix A and any
possible M x M submatrix of A must have linearly independent columns and thus be nonsingular. This is a
requirement so that A’ will be invertible and so equation 6.1 can be solved. We will examine two methods
to generate A. The elements of A will be denoted as a;; where ¢ is the row number and j is the column
number.

The first method will be to set each of the a;; using equation 6.3 with the requirements in equation 6.4.
Note that both z; and y; are elements in the integer field of size p. It is easy to prove the determinant of
such a matrix is non-zero. Note the amount of calculation required to create such a matrix.

cs 591B1 Lecture 6 — February 25, 2002 Spring 2002

ai; = 1/(zi+y;) 6.3)
zit+y; # 0 6.4)
i F
xT; ?é Zj
Yi # Yj

A simpler method would be to randomly choose the a;;. Certainly it is no longer true that any M x M
submatrix is invertible. However it is claimed that with high probability that a randomly generated matrix
will be invertible. (The proof was given as an exercise and the solution is located in section 6.2.5). The
exact probability bounds are given in equation 6.5 Note that for a field size of greater than 100 there is less
than a one percent chance of selecting a singular submatrix!

1 p 1
1—(=)(——) <{Pr|A|#0}<1- = 6.5
(p)(-) < APr|Al# 0} ’ (6.5)
Note the above A’s will take on average cubic time to calculate A’s inverse. For M = 14, N = 10 this
is acceptable, but not when M and N grow as moderately large as 1000. Questions to be studied in future

lectures include if there is a better A and if there is a more efficient procedure for encoding and decoding.

6.2.5 Is a Random Matrix Nonsingular?

The following claim from the Rabin paper was assigned as a homework exercise. This proof was distilled
from solutions by John Byers and Jef Considine.

To show: Given a square matrix A in which the entries are chosen uniformly at random from Z,,

1 1
1- ——<Prl[A:|4| 40/ <1——-.
L <PiAs A 0] <1

Proof: We start with analysis relevant to both inequalities. Define the event C; to be the bad event that
the first 4 — 1 rows of the matrix are linearly independent, but the ¢th row is linearly dependent on the first
i rows. The probability that a random m X m matrix is non-singular is equivalent to the probability that
none of the bad events C; occur, i.e.: PriA: |4] #0=1-Pr[U;~, Ci].

The key to the analysis is the following lemma.

Lemma 6.1. Pr[Ci4] = If’;.

Proof: (of Lemma) Assume that there are ¢ linearly independent rows present in the matrix. Then there
are p* possible linear combinations of these rows, since each row can be multiplied by any of the p possible
coefficients from Z,, before these ¢ rows are added together. (Note that this statement also holds for the
all zeroes case at row 1). Moreover, each of these p’ linear combinations produce distinct vectors. If not,
then there exist distinct sets of coefficients {a;} and {b;} which when applied to row vectors z; yield
23':1 a;T; = Z;zl bjx;. This further implies that there exists a set of coefficients {c;}, where ¢; = a; — b,
such that 2321 cjT; = 0. Since the set {c;} is not all zero, this contradicts the assumption that these rows
are linearly independent. Therefore, the probability that the (i 4+ 1)st row is linearly dependent on the first
i (linearly independent) rows is exactly ;’—,; when rows are chosen uniformly at random, i.e. from a set of p™
possibilities. 0

Returning to the main claim, to prove the right inequality, we have that Pr[J;-, C;] > Pr[Cpn] = ;7.

Therefore, Pr[A:|A] #0] =1 -Pr[UJZ, Ci] <1— 1.

cs 591B1 Lecture 6 — February 25, 2002 Spring 2002

Now we work toward the lower bound expressed by the left inequality. Using a union bound, i.e. for
any set of events E;, Pr[U[", Ei] < Y7, Pr[E;], we have that Pr[U]", Ci] < Y13 :—;. This sum can
be rewritten as > .-, 1%‘ A useful bound which came up several times in CS 555, is Y0 o’ = {1, for
0 < z < 1. Clearly,

20V -E0) =B0) it

i=1 =0

Plugging back in to our original equation gives the result:

R LB) ()

=0

Pr[A:|A|#0]=1-Pr lGCi

i=1

6.3 Bibliography
[1] M. Rabin “Efficient Dispersal of Information for Security, Load Balancing, and Fault Tolerance,”
Journal of the ACM, 36(2):335-348, 1989.

[2] A. Shamir “How to Share a Secret,” Communications of the ACM, 22(11):612-613, 1979.

6-6

