CS 591B1: ALGORITHMIC ASPECTS OF COMPUTER NETWORKS Spring 2002
Lecture 7 — March 11, 2002

Lecturer: John Byers BOSTON UNIVERSITY Scribe: D. Barman, A. Maram

In today’s lecture, we learned some more information dispersal techniques continued from pre-
vious lectures. In the previous lecture we learned Shamir’s method for sharing information which is
described in the paper, “How to share a secret” [3] and Rabin’s Information Dispersal Algorithm [2].

7.1 Information Dispersal

In any information dispersal technique, the aim is to transmit a message consisting of d symbols
represented by bo, b1, ... ,bs_1 (d symbols over any finite field say, Z, where p is a prime). The
encoding of the d message symbols are eg,e1, ... e,—1 where n > d and the encoding has the
property that any d of the n suffice to reconstruct the original message i.e up to n — d losses can
be tolerated.

We now study several methods of information dispersal encoding techniques.

Method 1

Encoding:
Construct a degree d — 1 polynomial where the coefficients are the messages. The polynomial
is given by,

P(x) =bg+ b1z + bgl‘2 + ...+ bd_ll‘dil (7.1)

Evaluate this polynomial at n points 0,1,2,... ,n — 1 and transmit the coordinate pairs
(0,P(0)),(1,P(1)),...,(n—1,P(n — 1)) which a receiver will receive if no data is corrupted. All
the operations are taken over a finite field.

Decoding:

If a receiver receives any d of n pairs, he can recover the original message by constructing a
polynomial of degree d using Lagrange Interpolation. Once the polynomial is constructed, the
coefficients of this polynomial are the messages transmitted.

Lagrange Interpolation Theorem:

Given d points (a1,b1), (az,b2) ... (aq, bg) where a;’s are distinct, then there is a unique polyno-

mial P of degree d — 1 where P(a;) =b; Vi0 <i < (d—1). The Polynomial is :

Pla) =S [2% (72)

Method 2

Encoding;:
Construct a polynomial P(z) of degree d — 1 such that

P(0) = by, P(1) = by ... ,P(d 1) = bg_y (7.3)

7-1

CS 591B1 Lecture 7 — March 11, 2002 Spring 2002

Evaluate this polynomial at n points 0,1,2,... ,n — 1 and transmit the coordinate pairs
(OvP(O))v (I,P(l)), Tt (’)’L - 1,P(TL - 1))

Decoding: In general, same as before.

But if there is no loss of information, first d transmissions are the messages. In this method,
the original message is a part of transmitted message.

7.2 Erasure Codes vs Error-Correcting Codes

Error Correcting Codes: We wish to transmit a message (strings of symbols) over a noisy chan-
nel. Using Error Correcting Codes we encode the message in redundant way so that despite the
noise, the receiving party can reconstruct the original message.
Erasure Codes: The key idea behind erasure codes is that k blocks of message data are encoded
at the sender to produce n blocks of encoded data in such a way that any subset of k encoded
blocks suffices to reconstruct the message data. Such a code is called (n,k) code and allows the
receiver to recover from upto n — k losses in a group of n encoded blocks.

Erasure Codes [1] can be implemented via Reed-Solomon codes. These Reed-Solomon codes
can be implemented using

e Polynomial Interpolation

e Rabin’s Method [2]: Cauchy-based Reed Solomon. Here “Cauchy” refers to the A matrix
used in Rabin’s paper.

Decoding of Erasure codes can be done either in the matrix world or polynomial world.

Polynomial Codes and the Berlekamp-Welch Algorithm

Let Z, be the field modulo p. The message we wish to transmit is a string of elements from this
field : x1,... 2 € Z, where k < p. Notice that the z; define a unique polynomial f of degree < k
over Z, such that f (i) = x; for all 0 < i < k. The redundant encoding in this case is an evaluation
of f at all points of the field,i.e. the transmitted message is: f(0), f(1),...,f(p—1).

Because of possible noise, the receiving party may receive values of a different function (evaluated
at all the points of this field). We let f" = f + F be the received function where E(i) is the noise
when i*" element was transmitted. As we will next see, if the number of errors is not too large then
the receiving party can reconstruct the original message by evaluating f at the points O,..., k.

Let the distance between two functions f and g be : |f, g| = {i|f(?) # ¢g(i)}. We now show that if

the number of errors |f, f/| < % then f can be efficiently reconstructed from f’/. We start by

showing that f is the unique polynomial of degree at most & within distance at most % from f.
Notice that any degree k polynomial is completely determined by values at k + 1 points. Thus any
two distinct polynomials f and g of degree k can agree on at most k points, i.e. |f,g| > p—k. Now,

p—(k+1
2

if both f and g are within distance) from /" then by the triangle inequality |f, g| < p—(k+1),

a contradiction.

We now present the Berlekamp-Welch algorithm for recovering f from f’. The input for the
algorithm is f” evaluated at the p points of the field. We know that | f, f/| < % where f is a
degree k polynomial. The goal is to output f in polynomial time.

7-2

CS 591B1 Lecture 7 — March 11, 2002 Spring 2002

Let m = |f, f| < %. Consider a non-zero error-locater polynomial defined by e(i¢) = 0 if an
error occured in 4, i.e. if f(i) # f’(7). Such a polynomial exists with degree(e) < m.

We can see that f(i) - e(i) = f/(i) - e(i) Vi € Z,. If an error occurs at any point z;, e(z;) will be 0,
then both the sides of the equation will be 0. If there is no error, f(z;) = f'(x;) for all i.

Let h = f-e. Then h(i) = f'(i) - e(i)Vi € Z,. Furthermore,
—(k+1 k—1
degree(h) = degree(f) + degree(e) < k+m < k+ L2 (2) — p+2 .

—(k+1) | ptk—1) _
P , 4P) -

Since f'(i) are known, it gives p equations in p — 1 unknowns, which are the

coefficients of e and h.

We now show that these equations have a unique non-zero solution (taking e = h = 0 is always a
solution) up to a common multiplicative factor, i.e that the quotient polynomial % is the same for
all the non-zero solutions.

Let e1, h1 and ez, ho be the two distinct non-zero solutions to the above set of equations. We first
observe that

hl(l) . eg(i) = hg(i)el (Z) Vi € Zp
This is clear when e1(i) = 0 (resp, e2(i) = 0) since in this case hq ()
f'(1)e(i) = h(i) must hold. If both e;(7) and e3(7) are non-zero then
above equation holds.
Summing the bounds on the degrees of e and h we get that the degree of both hl -e2 and h2 - el

are strictly less than p. Thus, since these two polynomials agree on p points , they are the same.
Hence, the quotient polynomials % and Z—; are the same polynomials.

0 (resp hg() = 0) becasue
) —

hl(e = f/(i) and thus

1(i

N

fh

As we mentioned before, there is always at least one non-zero solution for which f = % (take e to
be the error locating polynomial defined before, and h = f-e). Thus, for any non-zero solution €',
R’ of the above equations, f = h/.

7.3 Efficient Erasure Correcting Codes(EECC)

Reed-Solomon codes gives the perfect information recovery but its running time for encoding and
decoding is O(n?). In EECC, the running time is improved to linear time. It is proportional to
nln(2) for all € > 0 at the price of slight increase in stretch factor (1 + e).

7.3.1 Performance Metrics

The following metrics can be used to analyse the different erasure correcting codes.

1. Time complexity: Running time to encode/decode. In Rabin/Reed-Solomon techniques,
matrix inversions take O(n?) where n is the number of rows.

2. Decoding inefficiency which is defined as

Number of pkts need to receive for decoding

Number of input symbols

Decoding inefficiency can be weakened using erasure code. In other words, any (1 + €)n
symbols are sufficient to recover input symbols with high probability. Here, the decoding
inefficiency is (1 + ¢)

Reed-Solomon coding is the perfect with decoding inefficiency equal to 1.

7-3

CS 591B1 Lecture 7 — March 11, 2002 Spring 2002

7.3.2 Erasure Codes via Bipartite Graphs

Main idea

1. Cascade sequence of ”Error-reduction” codes. The k input symbols are associated with the
leftmost n nodes of a bipartite graph. The graph has redundant or check nodes on the
right hand side.The number of redundant check nodes is fk. We can assume that each node
corresponds to a packet or bit as shown in Figure 7.1.

2. Extract the check nodes first.

3. Extract the message nodes.

n
@ n ﬁ 2
n
srt(k) sart(k)

n input \ O;>O O
symbols Small
- O O\—*O O

"Reed-Solomon"
code

"bits" or 5
packets O
O =7
/
D~ |

output symbols

Figure 7.1. A graph defines a mapping from message nodes to check nodes. Mapping: A check node on the right
is XOR of all neighboring message nodes on the left

Erasure Decoding

1. Decode right to left.

2. First decode final layer using a more conventional erasure correcting code such as Reed-
Solomon code.

3. Then, assuming all check nodes are known for layer ¢ and assuming some of the nodes in layer
1 — 1 are directly recovered, decode the other nodes in layer ¢ — 1.

To illustrate through an example, let 7 be the input symbols and y; be the output symbols .
Also linear constraints give us:

1= T3

Y2 = T2Dx3

Y3 = z1DT3

Yo = 1 DT2D Ty

The process of recoving the left hand nodes (Figure 7.2) is as follows.

CS 591B1 Lecture 7 — March 11, 2002 Spring 2002

X]_ Q Y1

% %

Figure 7.2. A graph showing recovery provess

Recovery rule : Recover a node on left hand side if it has a degree one neighbour on the right
hand side.

Using the above rule, we can directly get x3. o and z1 can be recovered by XOR-ing x3 with
yo and y3 respectively. We can solve for x4 by XOR-ing x1 and zo with y4

Invariant at any level, all of the right hand symbols are recovered, plus some of the left hand
symbols. To produce codes that can correct erasures of check nodes as well as message nodes, we
cascase the codes.

The decoding time is proportional to the number of edges across all the levels.

The construction of cascaded bipartite graphs
Let’s denote the sequence of bipartite graphs as B, Bo, ... in the cascaded bipartite graph.
1. Pick up a sequence of bipartite graphs B, Bo,

2. Choose right hand nodes in B;;; with left hand nodes in B;. The edges can be chosen
randomly or with some distribution.

3. Terminate when the number of nodes~ vk

4. Truncate with O(n?) time decodable code such as Reed-Solomon codes.

Encoding of Bipartite graphs

1. First, place the values of initial k left nodes in By (here n is assumed to be total number of
nodes, k is input symbols).

2. Encode from left to right by setting the values in the right nodes to parity (XOR) of their
left neighbors.

7.3.3 Analysis of 3-6 Bipartite graphs

3-6 Bipartite graph is a bipartite graph in which every node on the left hand side has a degree of
3 and all the nodes on the right hand side has a degree of 6.

7-5

CS 591B1 Lecture 7 — March 11, 2002 Spring 2002

O O

0.|><

Yo "6

<5

(a)

Figure 7.3. (a) z; on the left has degree 3 and y; on the right hand side has degree 6 (x4, xs,wvs, 7 and xs are
directly recovered) (b) shows dependence of z2 on its neighbors

Let us try to analyze the probability that we can solve for any z; in a 3-6 bipartite graph. Here, we
are assuming at any stage, the right hand nodes y; are already recovered for each left hand node.
We also assume that a section of zj will be directly recovered and a section will be not. Let p be
the probability that any x; is already recovered.

By following any of of three edges from a left hand node, probability that we can recover that left
hand symbol is p°.

Total chance of recovering Z = a(1 — (1 — p5)3)

where o = fraction of total number of nodes in contention to be resolved (i.e., an is the number of
nodes which are not directly recovered).

The decoding efficiency of d-2d graph is shown in Figure 7.4.

7.3.4 Moving to irregular graphs

A random graph can have arbritrary degree distribution as in Figure 7.5 in which we can have,
1. More chances for nodes of higher degree.
2. Some nodes have better chances of resolving left neighbours.

3. High degree nodes act as an insurance in providing dense connectivity to other nodes.

Let us refer to the edges that are adjacent to a node of degree i on the left (right) as edges of

degree i on the left(right). Each of the degree sequences is specified by a pair of vectos(A1,... , Ay,)
and (p1,...,pm), where \; and p; are given as,

Ai = Fraction of edges of degree 7 on left

p; = Fraction of edges of degree 7 on right

7-6

CS 591B1 Lecture 7 — March 11, 2002 Spring 2002

Decoding 1.6
Inefficiency
125 -~~-------7+7 A
1 . R-S codes
|
! |
| 1
3 10
degreed

Figure 7.4. Performance bound on d-2d graphs

The sequence A and p give rise to generating polynomials A(z) = Y, \iz'™ and p(z) =
> pix’ 1. The coefficient of 2! in the polynomial is the value of ;.

Example: Assume that half the message nodes have degree three and half have degree four and
that there is a total of n nodes. Since every degree three node has three edges emanating from it,
whereas every degree four nodes has four edges emanating from it we see that there are in total
%?m edges which emanate from degree three nodes and that there are a total of %471 edges which
emanate from degree four nodes. Therefore we have

\ 1/2:3 3
s 1/2.3+1/2-4 7
1/2-4 4
Ay = =2
1/2-3+1/2-4 7

3

So, in this case A(z) = %xg + %a: . The fraction of edges which emanate from a degree i node is
the coefficient of =1 rather than z* as one might expect at first.
Let p be the probability that a node is not yet recovered (lost in the erasure channel).

Pr[all right neighbours were recovered] = p1+p2- (1 —p)+p3-(1—p)* +...
Y opi-(1=p)
= p(1=p)

Let z; be a left node which is adjancent to a right node y; of degree d. By right neighbors we
mean the set of z7 which are also adjacent to y;.

The probability that a node z; is adjacent to a right node y; of degree 1 is p; and such a node y;
is assumed to be recovered. Similarly, the probability that a node z; is adjacent to a right node y;
of degree k is pr(1—p)* 1. The probability that y; has k— 1 other neighbors recovered is (1—p)F~1.

The best distributions found from the experiments are: left hand side : heavy-tail, right hand-side : Poisson

-7

CS 591B1 Lecture 7 — March 11, 2002 Spring 2002

A MAA

YW |

Figure 7.5. Irregular graph with some degree distribution of the node degrees

7-8

Bibliography

[1] M. Amin Shokrollahi Michael G. Luby, Michael Mitzenmacher and Daniel A. Spielman. “Effi-
cient Erasure Correcting Codes”. In IFEFE Transactions on Information Theory, Vol 47 No 2,
February 2001.

[2] M. Rabin. “Efficient Dispersal of Information for Security, Load Balancing and Fault Toler-
ance”. In Journal of the ACM 38, pp. 335-348, 1989.

[3] Adi Shamir. “How to Share a Secret”. In Communications of the ACM 22(11), pp. 612-6183,
1979.

