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Abstract— One relatively unexplored question about the
Internet’s physical structure concerns the geographical
location of its components: routers, links and autonomous
systems (ASes). We study this question using two large
inventories of Internet routers and links, collected by
different methods and about two years apart. We first map
each router to its geographical location using two differ-
ent state-of-the-art tools. We then study the relationship
between router location and population density; between
geographic distance and link density; and between the size
and geographic extent of ASes.

Our findings are consistent across the two datasets
and both mapping methods. First, as expected, router
density per person varies widely over different economic
regions; however, in economically homogeneous regions,
router density shows a strong superlinear relationship
to population density. Second, the probability that two
routers are directly connected is strongly dependent on
distance; our data is consistent with a model in which a
majority (up to 75-95%) of link formation is based on geo-
graphical distance (as in the Waxman topology generation
method). Finally, we find that ASes show high variability
in geographic size, which is correlated with other measures
of AS size (degree and number of interfaces). Among
small to medium ASes, ASes show wide variability in
their geographic dispersal; however, all ASes exceeding
a certain threshold in size are maximally dispersed geo-
graphically. These findings have many implications for the
next generation of topology generators, which we envisage
as producing router-level graphs annotated with attributes
such as link latencies, AS identifiers and geographical
locations.

I. I NTRODUCTION

Despite the Internet’s critical importance in so-
ciety, surprisingly little quantitative information is
known about its physical structure and about the
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dynamic processes that drive its rapid growth. De-
veloping a better understanding of the Internet’s
structure is of interest from a purely scientific stand-
point, but is also of immediate practical interest,
since knowledge of the network’s properties enables
researchers to optimize network applications and to
conduct more representative network simulations.

Previous attempts to model Internet structure have
often made implicit or explicit assumptions about
the network’s geometry. For example, the Waxman
model [41] makes two such assumptions: 1) that
network nodes are placed uniformly at random in
the plane; and 2) that the likelihood two nodes
are directly connected is an exponentially declining
function of separation distance. On the other hand,
other models have implicitly assumed that there is
no important underlying geometry to the network,
and the patterns of connectivity are only influenced
by topological factors [9], [44], [1].

Despite these prevalent assumptions about net-
work geometry, very little work to date has actually
examined the geometry of the Internet’s infrastruc-
ture. In this paper, we present initial results bearing
on these questions. For example, with respect to the
Waxman assumptions, we find that assumption 1
(uniform distribution of routers) is very inaccurate
— the actual distribution pattern of routers is highly
irregular. On the other hand, we find evidence that
supports assumption 2 — the connectivity patterns
of routers show a strong relationship to distance.

In the process of obtaining these results, we
ask a number of basic questions. Regarding router
placement, we ask: Where are the routers com-
prising the Internet physically located? and: What
factors drive the geographic placement of routers?
Turning to connectivity, the key questions we wish
to answer are: Where are the links between Internet
routers physically located? and: To what extent does
router connectivity appear to be sensitive to physical
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distance? Our third set of questions concerns the
autonomous system (AS) structure of the network:
How does geographical size (number of locations)
relate to previously studied measures of AS size?
How do ASes disperse their resources geographi-
cally? and: How do interdomain links differ from
intradomain links geographically? The answers we
find to our main questions are consistent across
three different regions of the world, across two very
different sources of data, and across two different
geographic mapping techniques.

The choice of these questions is motivated by cur-
rent problems in network topology generation. We
turn to geography for inspiration because a number
of unsolved problems in topology generation appear
much easier to solve given an underlying geograph-
ical model. For example, an accurate geometric
model of router placement and link formation would
make the labelling of links with latency values a
straightforward matter.

Although the questions we pose are relatively
simple, providing reasoned and justifiable methods
to answer them is surprisingly difficult. The fore-
most difficulty is that there does not exist a recent
“snapshot” of the Internet that provides geograph-
ical location of routers, links, and ASes.1 To build
such snapshots, we took two large inventories of
Internet routers and links, collected by different
methods about two years apart, and processed them
in two stages: first, by mapping each router to
its associated AS number, and second, using two
different state-of-the-art tools to determine each
router’s geographical location.

We present our main results in Sections IV to
VI. In Section IV we show that router density
per person varies widely over different economic
regions, but that router density per “online user”
(defined in Section IV) shows much less variability
— suggesting that the number of network users
in a geographic region (as determined,e.g., by
surveys) can be used to roughly size the amount of
network infrastructure expected in the region. When
we restrict our focus to economically homogeneous
regions, we find that router density shows a strong
superlinear relationship to population density; that
is, the number of routers per person is higher
in highly populated areas. (This may reflect the

1The most recent geographical map of the entire Internet we have
been able to find dates from 1982 (ARPANET).

superlinear scaling of the number of communication
paths needed as a function of the number of network
users in an area.) These results justify the use of
population distribution (which is well studied, with
easily accessible datasets [5]) as an effective proxy
for the actual distribution of routers.

Next, in Section V, we show that the probability
that two routers are directly connected is strongly
dependent on the distance between them. In fact,
our data is consistent with a model in which a
surprisingly large majority (up to 75-95%) of link
formation is influenced by geographical distance. As
mentioned above, this is the assumption made in
the Waxman model [41] but it is explicitlynot an
assumption in more recent and more sophisticated
topology models. In fact, we even find that the
functional form of distance dependence used by
Waxman (i.e., an exponentially declining connec-
tion probability) is in agreement with our data. Of
course, the Waxman method produces topologies
very different from reality; but our results high-
light the relative importance in examining the point
distribution assumptions in the Waxman model in
assessing the sources of its inaccuracy.

Finally, in Section VI, we turn to questions of
how to use geographical information to assign nodes
to Autonomous Systems. We find that ASes show
remarkable variability in geographic extent. We
show that the number of distinct locations in which
an AS places routers has a long-tail distribution
similar to that previously reported for AS degree
[13] and number of routers in an AS [38]. We also
show that all three of these measures of AS size are
clearly correlated. In examining the geographic area
covered by the routers of an AS, we show evidence
for two distinct types of ASes: smaller ASes show a
wide range of variation in the geographic dispersion
of their infrastructure. On the other hand, there is
an upper cutoff in size (in terms of degree, number
of routers, or number of locations) beyond which
all ASes are maximally dispersed geographically. In
examining the AS-crossing properties of links, we
find that intradomain links constitute the majority of
links in our dataset (generally over 80%) and that
they are on average only half as long as interdomain
links.

We conclude in Section VII with a review of
our findings and a look to the future, including the
implications of our work for representative topology
generation.



3

II. RELATED WORK

Early work in generating test topologies fo-
cused on simple and natural methods for produc-
ing interconnections between a set of nodes on
the plane. The widely studied Erdös-Ŕenyi random
graph model [11] includes each possible connection
with a fixed probabilityp, but typically yields a
graph which is not connected whenp is chosen
so that the resulting graph is sparse. Waxman [41]
created topologies in which the probability that
a connection between a pair of nodes is made
decays exponentially as the distance between the
nodes increases, emphasizingspatialconsiderations
in topology generation. Structural models such as
Tiers and GT-ITM [9], [44] chose a different tack,
building an explicithierarchy into their topologies.

Following the discovery of then-unexplained
power laws in Internet topologies of Faloutsoset al:
[13], subsequent methods, notably the Barabási-
Albert model [1], and topology generators such as
Inet [21] and generation models in BRITE[27], mea-
sured success primarily in terms of graph connec-
tivity properties, such as node degree distributions.
An active debate about the merits and limitations
of these approaches is ongoing [21], [24], [7], [4];
the jury is still out on which models are best and
studies have shown varying conclusions depending
on the generators used [31].

Our goal is not to propose a new topology gen-
eration method in this paper, but to suggest a wider
set of bases for the construction of topology gen-
eration tools. To this end, we study the geographic
location of Internet links, routers and ASs. CAIDA’s
NetGeo [14] is a database that contains mappings
from IP addresses, domain names and AS numbers
to latitude/longitude values. NetGeo’s database is
built using whois lookups to the ARIN, RIPE,
and APNIC servers. Ixia’s IxMapper [20] database,
extends NetGeo by using other data sources and
heuristics, including geographically-based hostname
conventions. Padmanabhan and Subramanian [30]
show that this hostname based mapping is accurate
up to the granularity of a city. Another mapping
tool is Akamai’s EdgeScape [10] which uses ge-
ographical information gathered from ISPs along
with hostname conventions to resolve IPs to their
geographical locations. Besides Ixia and Akamai,
other commercial providers include Matrix NetSys-
tems [26].

To our knowledge, the only other work which
measures and models geographic location of Inter-
net resources is recent work of Yook, Jeong and
Barab́asi [43]. That paper demonstrated the similar
fractal dimension (� 1.5) of routers, ASes, and
population density; our work, not shown in this
paper, confirms this result for our datasets as well
(via the box-counting method [25], [12]). However,
our goals differ with respect to links and distance:
while [43] studied the distribution of link lengths,
we are concerned with the likelihood that two nodes
are directly connected as a function of the distance
between them. A preliminary version of our work
appears as [23].

III. M ETHODOLOGY

We use router level topology snapshots from
two sources, collected by different methods and
about two years apart. For each router interface IP
address in the datasets, we obtained a geographical
coordinate and the AS that originated that address.

A. Datasets

Our first topology dataset is a large collection
of ICMP forward path (traceroute) probes. This
data was collected by Skitter, a measurement tool
run on more than 20 monitors around the world
by CAIDA [15]. Skitter sends hop-limited probes
to a list of destination nodes located worldwide.
Intermediate routers which respond to packets with
expired TTL values transmit an ICMP message
back to the source. Contained within this packet
is the IP address of aninterface on the router;
thus a successful Skitter probe reports a sequence
of interfaces along contiguous routers on the path
from the source to the destination. In this study,
we treat interfaces as virtual nodes, and define a
link to mean a connection between two adjacent
interfaces. The destination lists are created with the
aim to cover all blocks of 256 addresses (/24s)
in the IPv4 space [3]. Destinations are selected
by several methods, among which are: results of
searches for several hundred thousand geographic
names and popular science articles from the top
five search engines, Squid web cache logs [42],
CAIDA’s IP geography server [14], and UCSD web
server and traffic logs. Our particular dataset was
gathered between December 26, 2001 and January
1, 2002 and is the union of traceroute paths from 19



4

monitors, each probing a destination list of varying
size. This dataset contains 704,107 router interfaces
and 1,075,454 incident links. To our knowledge, this
is one of the largest and most recent router level
dataset studied to date. On this dataset, we followed
the methods of [3] and discarded anomalies such
as self-loops. We further discarded all interfaces
appearing in the destination lists (18%). This was
motivated by the fact that many destinations in these
lists are end-hosts and we are interested only in
routers.

Our second dataset is another router level topol-
ogy snapshot collected during August 1999 by
the Scan Project’s [36] Mercator tool. Mercator
also uses hop-limited probes to discover and map
routers and links. Unlike Skitter, Mercator is run
from a single host to a heuristically determined
destination address space [16]. Further, Mercator
employs loose source routing to discover lateral
connectivity and therefore limits the tree-like prop-
erties commonly found in single-source router map-
ping efforts such as [33]. Our Mercator dataset is
considerably smaller than our Skitter dataset, at
268,382 router interfaces and 320,149 links. Mer-
cator employs published techniques [32] to collapse
interface IP addresses belonging to the same router
to a canonical IP address for that router. After this
disambiguation process, we are left with 228,263
routers and 320,149 links.

An important distinction between maps generated
by Mercator and Skitter is that the former generates
a map of routers, while the latter generates maps
of interfaces. Routers often have multiple interfaces,
thus maps that are unable to resolve which interfaces
are present on which routers are prone to inac-
curacies described elsewhere in the literature [2].
The primary method to resolve interfaces [32] is to
send UDP probe packets to unknown ports for every
interface in the dataset. When two interfaces are on
the same router, the router will respond with two
ICMP Port unreachable messages, both of which
have the same source IP address. Unfortunately, this
technique suffers from numerous limitations, espe-
cially because probe packets now frequently trigger
network intrusion detection systems, and routers
may not respond correctly to the probes. Because of
these reasons, we were not able to perform interface
disambiguation on the Skitter datasets. Despite this
difference, our conclusions seem robust whether
expressed in terms of routers or interfaces. But to

Dataset No. of No. of No. of
Nodes Links Locations

IxMapper, Mercator 214,498 258,999 7,696
IxMapper, Skitter 563,521 862,933 12,610
EdgeScape, Mercator 216,116 269,484 7,076
EdgeScape, Skitter 570,761 881,618 13,767

TABLE I

SIZES OFPROCESSEDDATASETS

emphasize this difference, we will always keep the
terms “router” and “interface” distinct in this paper.

B. Geographical Mapping

We draw on two different state-of-the-art ge-
ographic mapping tools to identify IP addresses
with their geographical longitude and latitude: Ixia’s
IxMapper [20] and Akamai’sEdgeScape[10].

IxMapper extends NetGeo’s [28] methods for
location mapping by using several data sources and
a library of heuristics to infer the geographical
location of an IP address. The primary technique
employed by IxMapper is hostname based mapping.
This technique exploits the fact that ISPs usually ad-
here to a strict naming convention for each of their
routers in which some sense of geographical loca-
tion (such as city name or airport codes) is specified.
For instance, 0.so-5-2-0.XL1.NYC8.ALTER.NET
maps to New York City. IxMapper also uses other
techniques, parsing whois records [17] and DNS
LOC records [8]. The whois lookup method is gen-
erally accurate for small organizations but may fail
in cases where geographically dispersed hosts are
mapped to an organization’s registered headquarters.
DNS LOC records, while accurate, are not required
and are therefore not always available. IxMapper
always tries to use hostname based mapping, de-
faulting to DNS LOC records if available and finally
to whois records.

Akamai’s EdgeScape service supplements host-
name based mapping techniques with internal ISP
geographical information. Akamai’s many relation-
ships with networks coupled with its extensive
server deployment give it access to such informa-
tion.

Our principle results are consistent across both
mapping tools. However, due to space limitations
and to avoid confusion, we only present results ob-
tained from IxMapper in the next sections. Results
from EdgeScape are provided in the Appendix.
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(a) US (b) Europe (c) Japan

Fig. 1. Regions Studied (Not to Same Scale).

Name North South West East
US 50˚ N 25˚ N 150˚ W 45˚ W
Europe 58˚ N 42˚ N 5˚ W 22˚ E
Japan 60˚ N 30˚ N 130˚ E 150˚ E

TABLE II

BOUNDARIES OFREGIONSSTUDIED

Our results of geographic mapping the
router/interfaces from both datasets are encouraging.
After discarding private addresses originating from
misconfigured routers, only 1% of Mercator’s
routers and 1.5% of Skitter’s interfaces could
not be located by IxMapper. Similarly, only
0.6% of Mercator’s routers and 0.3% of Skitter’s
interfaces could not be identified by EdgeScape.
All unmapped interfaces were discarded. For the
Mercator dataset, we determined the location
of a router by the location most commonly
reported across all its interfaces. We discarded
routers with ties for the most commonly reported
interface location (2.9% for IxMapper and 2.5% for
EdgeScape). Table I summarizes the final number
of geographically mapped interfaces/routers and
links for both datasets.

For reasons described in the next section, the
majority of our results are based on analysis of three
regions, delineated by the latitude and longitude
lines shown in Table II. These regions, along with
the results of our IxMapper mapping for the Skitter
dataset, are shown in Figure 1.

C. Mapping to Autonomous Systems

We next label all nodes in both datasets with their
parent AS. This was done by identifying the longest
advertised prefix in a BGP table that matches the
IP address and recording the AS which originated
that prefix. While there are several publicly available

sources of raw and processed BGP data [34], [19],
[35], we used the RouteViews data from the Uni-
versity of Oregon’s Advanced Network Technology
Center which has been the most comprehensive
public source since 1997. RouteViews data is the
union of many BGP backbone tables contributed
by several dozen participating ASes. We used BGP
tables from August 10, 1999 and January 1, 2002 to
map the routers in the Mercator and Skitter datasets,
respectively. For the Mercator dataset, we again
determined the parent AS of a router by choosing
the AS most commonly reported by its interfaces.
A small fraction of IP addresses (2.8% for Mercator
and 1.5% for Skitter) were not mapped. We grouped
these into a separate AS, which was omitted in our
analysis of Autonomous Systems (Section VI).

D. Sources of Error and Validation

While we have taken considerable effort to ensure
the validity of our results that we present in the
following sections, there are inevitable sources of
error given the current state of the art in constructing
Internet maps and in identifying geographic loca-
tions of routers. Foremost among these sources of
error are that our router-level datasets are known to
be incomplete and subject to measurement biases,
and that the accuracy of our geographic mapping
tools has not been formally quantified. For these
reasons, we confirmed our results across two dif-
ferent router inventory collection methods and two
different geographic mapping tools, reflecting the
best available snapshots of the router topology and
the best mapping methods in use today. While the
results we present hold for all combinations of these
pairings, we cannot rule out the possibility that our
findings might differ if we had access to completely
accurate maps.

We now briefly survey some experiments we
conducted in assessing the accuracy of the geo-
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Population Interfaces People Per Online Online per
(Millions) Interface (Millions) Interface

Africa 837 8,379 100,011 4.15 495
South America 341 10,131 33,752 21.9 2,161
Mexico 154 4,361 35,534 3.42 784
W. Europe 366 95,993 3,817 143 1,489
Japan 136 37,649 3,631 47.1 1,250
Australia 18 18,277 975 10.1 552
USA 299 282,048 1,061 166 588
World 5,653 563,521 10,032 513 910

TABLE III

VARIATION IN PEOPLE/INTERFACEDENSITY ACROSSREGIONS

graphic mapping tools. The accuracy of these tools
is difficult to verify without a priori knowledge of
IP locations; moreover, a systematic validation of
these tools is a significant undertaking in and of
itself, and one that leads us away from the central
questions we seek to answer in this paper. We
instead examine where and how often both tools
differ on our datasets. No clear pattern of bias
emerged when we manually inspected outliers, i.e.
those IP addresses for which the mapping tools
strongly disagreed. Instead of trying to deduce and
“model” where a particular tool fails, we considered
an alternative methodology to assess the impact of
mapping inaccuracies. We discarded all IPs that
were mapped more than100 miles apart, and reran
all of our experiments on this reduced graph, where
we have high confidence in the accuracy of the map-
ping. We found that our principle results do indeed
hold on these reduced versions of the datasets, a
fact that supports our comparable findings on the
complete datasets (which we now present).

IV. ROUTERS ANDPOPULATION

It is natural to assume that demand for Internet
services is greater in areas of higher population.
All of the drivers for Internet service would seem
to have a connection to population:e.g., end-user
demand, content availability, and switching capacity.
What is less obvious is what precise relationship
we should expect between population density and
density of network infrastructure. In this section we
explore that relationship quantitatively; the results
then form a foundation for subsequent sections.

A. Variation Across Economic Regions

While a relationship between population and net-
work infrastructure density is natural, it is also

obvious that this relationship is not the same in
all parts of the world. We explore the variation in
degree of Internet development in Table III. This
table shows various regions of the world, including
both less developed regions and highly developed
regions.2 The Interfacescolumn shows the number
of interfaces from our Skitter dataset that were
mapped into this region.Population numbers are
from Columbia University’s CIESIN database [5],
and the number ofOnline Usersper region is from
the extensive repository of survey statistics gathered
and maintained by Nua, Inc [29].3

Looking at the first three columns of the table,
it is clear that penetration of Internet infrastructure
varies dramatically across regions; the ratio of peo-
ple to interfaces varies by a factor of over 100 from
less developed to highly developed regions. This
makes it clear that studying population vs. interface
density over the entire world will be misleading.
On the other hand, the last two columns provide
a different perspective: the ratio of online people
to interfaces showsmuch less variability — only
about a factor of four across the regions studied.
This is encouraging for two reasons: first, it suggests
that the number of online users in an area may
provide a rough indicator of the amount of network
infrastructure present; and second, it suggests that
our datasets are not excessively biased in favor of
any particular geographical area. We note that we
found the same ranges of variation in our Mercator
dataset — a variation of a factor over 100 in people
per router, and only about a factor of 4 in online

2Regions in this table, and throughout this paper, are delineated
by simple latitude/longitude boundaries. The names assigned to such
regions are only approximate, since we are not working with precise
political boundaries.

3According to Nua, an online user is defined as an adult or child
who has accessed the Internet at least once during the last 3 months,
although not all of their data is strictly based on this definition.
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Fig. 2. Router/Interface Density vs. Population Density: Upper, Mercator (Routers); Lower, Skitter (Interfaces). Corresponding results using
EdgeScape can be found in the Appendix (Figure 11).

people per router.

Fig. 3. Regions Used to Test for Homogeneity

Population Interfaces People Per
(Millions) Interface

Northern US 168 182,846 991
Southern US 132 101,102 1305
Central Am. 154 4,361 35,533

TABLE IV

TESTING FORHOMOGENEITY

Thus it is important to restrict our study to
regions that are roughly homogeneous in terms of
development of Internet infrastructure. Using simple
tests we can easily verify whether a region meets
this criterion. For example, consider the case of the
continental US. We can test its homogeneity by di-
viding it into two subregions, as shown in Figure 3.
We also include a portion of Central America as a
third region for comparison. The statistics for these

three regions are shown in Table IV. It is clear that
the two subregions of the US are quite similar in
deployment of network infrastructure, and that the
Central American region is dramatically different.

B. Infrastructure vs. People in Homogeneous Re-
gions

Focusing on the economically homogeneous re-
gions shown in Figure 1 and delineated in Table II
allows us to ask how router density relates to
population density. To answer this question, we
subdivided each region into patches of size 75 arc-
minutes� 75 arc-minutes. At the latitudes studied,
this creates patches about 90 miles on a side. This
size is much larger than the median location error
reported by Padmanabhan and Subramanian [30]
for their toolset, which employs techniques similar
to (and a subset of) those used by IxMapper and
EdgeScape. Within each patch, we tally the popu-
lation and the number of routers or interfaces.

The results are plotted on log-log scale in Fig-
ure 2, for the two datasets and three regions.
Each plot includes a least-squares fitted line for
comparison purposes. The figure shows that within
each region, the plots for routers and interfaces are
qualitatively quite similar, as are the properties of
the fitted lines. This similarity is striking given the
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(a) US, bin size = 35 mi. (b) Europe, bin size = 15 mi. (c) Japan, bin size = 11 mi.

Fig. 4. Empirical Distance Preference Function: Upper, Mercator; Lower, Skitter. Corresponding results using EdgeScape can be found in
the Appendix (Figure 12).

considerable time difference of collection between
the two datasets, and the very different collection
methods.

All the plots show a strong relationship be-
tween infrastructure and population density. Al-
though these plots appear roughly linear on these
log-log axes, the precise functional relationship
between population density and router density is
difficult to identify from these data because of the
significant amount of noise, and the relatively lim-
ited range of scales available. For example, it would
be hard to distinguish an log n relationship from a
power law relationship for the data in Figure 2(a).

Nonetheless, we conclude that in each plot,
router/interface density clearly bears asuperlinear
relationship to population density (slope of the
fitted line is larger than 1). This surprising result
indicates that the number of routers or interfaces per
person ishigher in areas of high population density
(population centers).

Furthermore, it seems reasonable to use a simple
power law relationship as an approximation for the
trends seen in these plots; that is, over the limited
range of data studied, we can approximately model
router or interface densityR and population density
P as related by

R � P�

with � varying from 1.2 to 1.7 across the regions
studied, based on the slopes of the fitted lines.

This result may be interpreted as a consequence
of simple scaling effects: as the number of network
usersn in a region grows, the number of potential
connections between pairs of users grows via ann2

law. If the capacity of individual switches does not
scale accordingly, then in order to provide accept-
able service it becomes necessary to add switches
in a superlinear fashion. Thus,e.g.,multistage inter-
connection networks for multiprocessor computers
are often designed to scale inn log n fashion [22],
[18].

V. L INKS AND DISTANCE

Given an understanding of how routers are dis-
tributed over the Earth’s surface, we next proceed
to examine the geographical properties of node-
node links. As described in Section II, early work
in topology generation used a distance-sensitive
function for link creation, while later work has fo-
cused on different features, such as overall network
structure and node degree distribution.

Our data provides an opportunity to examine the
sensitivity of router connections to distance. To do
so we proceed as follows: we measure the empirical
probability that two routers separated by great-circle
distanced, are directly connected.
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Fig. 5. Empirical Distance Preference Function, Smalld, Semi-Log: Upper, Mercator; Lower, Skitter. Corresponding results from EdgeScape
can be found in the Appendix (Figure 13).

Note that this is not the same as assuming that
link creation is in fact dependent on distance; more
detailed data would be needed to verify that claim.
However, evidence of distance-sensitivity in router
connectivity is suggestive of factors influencing link
creation, and provides an important characteristic to
be taken into account in constructing and validating
topology generators.

For any pair of routers separated by distanced
let C be the event that the two routers are directly
connected. Then we are interested in estimating the
likelihood function:

f(d) = P [Cjd]:

We call this thedistance preference function.We
estimate this function by placing the data into bins
of size b. Then we form the empirical distance
preference function as:

f̂(d) =
# links with length in[d; d+ b)

# node pairs with distance in[d; d + b)
(1)

for values ofd that are multiples ofb.
The resulting estimates for our three regions are

shown in Figure 4. The maximum value ofd varies
with size of the region considered; in each case we
use 100 bins (the bin sizes are noted on the figure).
Note that for large distances the number of links and

router pairs grows small, making the estimate based
on (1) noisy, so we omit the very largest distances
from these plots.

Broadly speaking, these plots appear to show
two regimes: for short distances,f(d) declines with
distance; while for longer distances,f(d) seems
nearly constant. To explore this relationship further,
we break the data up into two regions, “smalld”
and “larged”, and plot the two regions separately.
We motivate how to choose the cut-off point mo-
mentarily.

Focusing first on smalld, we plot ln(f(d)) vs.
d. These plots are shown in Figure 5. Surprisingly,
these plots show a linear tendency on the semi-
log axes, suggestive of an exponentially declining
function.4 In fact, these fits can be characterized in
terms of Waxman’s method for topology generation
[41]. In the Waxman model, the probability that two
nodes are connectedfW (d) is:

fW (d) = � exp(�d=�L)

whereL is the maximum distance between nodes,
0 < � � 1 is the sensitivity of link formation to
distance, and0 < � � 1 controls link density.

4Note again that the much smaller number of routers and links
for the Japan region means that the method results in more noisy
estimates.
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Fig. 6. Cumulated Empirical Distance Preference Function, Larged: Upper, Mercator; Lower, Skitter. Corresponding results obtained from
EdgeScape can be found in the Appendix (Figure 14).

In terms of the Waxman model, we find estimates
of �L � 140 miles for the US and Japan, and 80
miles for Europe. This is not to suggest that the
Waxman model is a correct model for the growth
of the Internet over these distance ranges, but rather
that it is surprisingly descriptive of the end result.5

In the other region (larged), the functionf(d)
appears nearly constant,i.e., insensitive to distance.
Because of the noise in the data, we study the
cumulated distance preference function,

F (d) =
X

d0<d

f(d0):

Summing the data smooths out noise, and if the
original functionf(d) is constant, then the cumu-
lated functionF (d) will be linear.

The results are shown in Figure 6. In each plot, a
fitted least square line is also shown for comparison.
Again, for large distances the number of links and
router pairs grows small, so the trailing off of the
points from the fitted line may not be significant. All
of these plots but one (Mercator, Europe) show good
agreement with the linear fit line, suggesting that the
probability two routers are directly connected for
larged is independent of their separation distance.

5It is important to note that the Waxman topology generator places
points randomly in the plane, which is very far from the case for our
data.

Mercator Skitter
% Links % Links

Limit < Limit Limit < Limit
USA 820 mi. 82.1% 818 mi. 77.2%
Europe 383 mi. 97.3% 366 mi. 95.4%
Japan 165 mi. 91.5% 116 mi. 92.8%

TABLE V

LIMITS OF DISTANCE SENSITIVITY

By setting the exponential functional fits in Fig-
ure 5 equal to the averagef(d) value for larged,
we obtain a value for each plot that approximately
demarcates the limit of the distance-sensitive por-
tion of the empirical preference function. Roughly
speaking, links between router pairs that are further
apart than this limit can be considered distance-
independent, while links with length less than
the limit are consistent with a distance-dependent
model.

The limit values are shown in Table V. The table
also shows the fraction of links whose length is less
than the limit in each case. The table shows that
values across datasets are strikingly consistent, but
across regions are not. The variation across regions
is a consequence of the differences in overall density
of links and different distance sensitivity parameters
(�L) in each region.

Even more notable is the fraction of links in each
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Fig. 7. Distributions of AS Sizes (World). Corresponding results using EdgeScape can be found in the Appendix (Figure 15).
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Fig. 8. Scatterplots of AS Size Measures (World). Corresponding results using EdgeScape can be found in the Appendix (Figure 16).

dataset with length less than the sensitivity limit.
Most links (from 75% to 95%) fall within the range
of link lengths considered distance-sensitive. We
conclude that distance sensitivity of router connec-
tivity applies to the vast majority of router-router
links in our datasets.

On the other hand, we note that although a
small fraction of routers are connected in a manner
insensitive to distance, they are clearly not randomly
connected, and their connections doubtless play an
important structural role. In fact, work in [40] has
shown that only a very small fraction of non-local
links is needed to dramatically reduce the average
diameter of an otherwise locally-connected graph.

VI. A UTONOMOUSSYSTEMS

Having developed an understanding of how prop-
erties of routers and links relate to geography, we
now turn to the properties of autonomous systems.
A significant, unsolved problem common to all
current topology generators is their inability to label
routers with autonomous system information in a
representative way. This prevents topology genera-
tors from being able to assign IP addresses automat-
ically to routers for simulating interdomain routing.

In this section we study two geographic properties
of ASes that can help guide the assignment of
routers to ASes: the number of distinct locations
spanned by an AS, and the geographical dispersion
of an AS’s components.

Due to space limitations, this section uses data
from Skitter (with IxMapper) only, but our results
in this section are consistent across the two datasets
and both mapping methods.

A. AS Size: Number of Locations

Previous work has documented the distribution of
AS sizes measured in degree in the AS-graph [13]
and measured in the number of routers within the
AS [38]. In both cases, the observed distribution
is highly variable, with a long tail spanning many
orders of magnitude. In this section we show that a
similar property holds for AS size when measured
as the number of distinct locationsin which an
interface for the AS is present.

In Figure 7 we show log-log complementary
distribution plots of three measures of AS size in our
skitter data: (a) the number of interfaces contained
in an AS; (b) the number of distinct geographic
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locations contained in an AS; and (c) the degree
of the AS in the AS-graph (the number of other
ASes directly connected to an AS).

Figures 7(a) and (c) generally agree with previous
work suggesting that these AS size measures have
long-tail distributions. Figure 7(b) broadens this
understanding by showing that the same is true for
the number of distinct locations spanned by an AS.

In [38], the authors point out that the number
of routers in an AS and the degree of the AS are
strongly related. Our data shows that in thethree-
way relationship among (1) number of interfaces,
(2) number of locations, and (3) degree, each pair
of measures shows correlation. This is shown in
Figure 8, which shows scatter plots of (a) number of
interfaces and number of locations; (b) number of
interfaces and degree; (c) number of locations and
degree.

These plots show that the correlation between
number of locations and degree (Figure 8(c)) is
as strong or stronger than the previously docu-
mented correlation between the number of interfaces
and degree (Figure 8(b)). The strongest correlation
(tightest scatterplot) appears to be that between

number of interfaces and number of locations (Fig-
ure 8(a)), suggesting that ASes with a large number
of interfaces (routers) tend to place those resources
in many distinct locations.

Figure 8(a) also reveals that there is surprising
geographic diversity in how ASes place routers. For
example, it shows that some ASes with hundreds
of interfaces have placed them in onlytwo loca-
tions distinguishable by our methods (lowest line
of points in plot).

B. AS Size: Geographical Extent

The results in the last subsection suggest that
topology generators that label routers with AS num-
bers should do so in a manner that creates many
geographically distinct locations for large ASes,
while creating a more variable number of distinct
locations for medium and small ASes. However,
it is not clear from this datawheresuch locations
should be chosen relative to each other. To answer
this question we examine the geographical extent
of ASes — the degree to which an AS’s routers are
dispersed over the Earth’s surface.
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Inter Address Space Intra Address Space
Count Mean Length Count Mean Length

World 146,936 1664 mi. 715,997 757 mi.
US 77,367 762 mi. 354,593 421 mi.
Europe 15,365 88.6 mi. 99,023 29.1 mi.
Japan 3,651 181 mi. 44,701 54.5 mi.

TABLE VI

INTER ADDRESSSPACE VS. INTRA ADDRESSSPACE LINKS

To assess this property we measured the convex
hull of each AS’s interface set. The standard defi-
nition of convexity of a point set is not applicable
on a manifold such as the globe, so we adopted the
following simple approach: we mapped each point
onto the plane using the Albers Equal Area projec-
tion [37]. This conic projection does not preserve
areas perfectly (no projection can) but since our goal
in this section is primarily qualitative, this approach
was deemed sufficient. The globe is unfolded at the
poles and the International Date Line, thus yielding
a standard planar geometry in which convexity of a
set is well defined.

Figure 9 shows CDFs of convex hull size for the
World, and for portions of the map restricted to the
US and Europe regions. These plots show that the
vast majority of ASes have no extent at all: around
80% of ASes in each dataset have either one or two
locations (and thus zero area). However, among the
remaining ASes, there is considerable variability in
geographical dispersion.

To understand what drives geographical disper-
sion, we compare the size measures from the last
section to the convex hull measure. The results are
shown in Figure 10. These plots expose two distinct
strategies or regimes for AS interface placement,
depending on AS size.

For smaller ASes, the minimum convex hull size
grows with other size measures, but there is a
maximum size that is often attained even for the
smallest ASes. That is, even small ASes (e.g.,those
with only three or four locations, or two or three
connections to other ASes) may be very widely
dispersed geographically (in fact, worldwide).

For the largest ASes, there is no relationship be-
tween other size measures and geographical extent;
all these ASes are fully dispersed geographically.
This can be seen for ASes with degree greater than
about 100 (Figure 10(a)), with more than about 1000
interfaces (Figure 10(b)), or with more than about

100 locations (Figure 10(c)).

C. Domains and Link Lengths

A final question bearing on the geographic ar-
rangement of ASes regards the properties of AS-
AS connections. To study this question we make the
distinction between links that cross ASes (interdo-
main) and links that lie within an AS (intradomain).
Previous work have labeled a link as interdomain
if the routers it connects are assigned to different
ASes, and intradomain otherwise [39], [3]. A
problem with such an approach is that border routers
are often assigned an IP address from a neighboring
ASs’ address space, as detailed in [6]. Therefore,
we instead study links that cross address spaces and
links that lie within the same address space. The
properties of these links in the Skitter dataset are
shown in Table VI. This table shows that about half
of all links in our dataset lie within the continental
US. With respect to length, the table shows that
for our dataset, inter address space links tend to
be about twice as long as intra links, and that
the majority of links (83% or more) lie within an
address space. Comparing this table with Table V
shows that the mean length of intra address space
links is well within the limits of distance sensitivity,
while for the US and Japan, the mean lengths of
inter address space links approaches or exceeds the
limits of distance sensitivity.

VII. C ONCLUSIONS

In this paper we have described a wide range
of geographical properties of the Internet, focusing
on routers, links, and autonomous systems. We are
specifically motivated to develop results to guide
the development of geographically-driven topology
generation methods.

We believe that geographically-based topology
generation has some advantages over existing meth-
ods. To be useful, network topologies must be
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labeled with link latencies; these can be approxi-
mated in a straightforward manner when nodes have
geographical location. Second, network topologies
must be labeled with link bandwidths; such labeling
might also be more tractable when starting from
a geographical placement of nodes. Finally, routers
need autonomous system labels in order to assign
IP addresses to them in a realistic manner,e.g.,
to simulate inter-domain routing; we believe that
knowledge of geography provides leverage here as
well.

Given the evident promise of geographically-
based topology generation, we have presented in this
paper a collection of results intended to bring that
goal closer. First, we have described the quantitative
relationship between population density, and the
corresponding density of routers (or router inter-
faces). We have shown that, within economically
homogeneous regions, there is a systematic rela-
tionship between these two densities that appears
superlinear, so that router density per person is
higher in population centers.

Second, we have shown that the connection pat-
terns between routers are strongly related to geo-
graphical distance. For our data, between 75% and
95% of all links are consistent with a distance-based
model for link formation.

Finally, we have shown that the number of dis-
tinct locations spanned by an AS is strongly cor-
related with two other measures of size: number
of interfaces, and degree in the AS graph. Among
small to medium ASs, these locations show wide
variability in their geographic dispersal. However,
all ASs exceeding a certain threshold in size are
maximally dispersed geographically.

Beyond and apart from these implications for
topology generation, we believe that understanding
the relationship between physical geography and the
Internet’s resources is an important component of
Internet science(loosely, the study of laws and pat-
terns in Internet structure); we anticipate that under-
standing the relationship between network structure
and geography will have broad applicability across
disciplines and for future problems.
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APPENDIX

RESULTS FROMEDGESCAPE MAPPING

The results presented in this Appendix were
obtained from Akamai’s EdgeScape mapping and
are provided as a comparison point against plots
presented in the paper using IxMapper.
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Fig. 11. Router/Interface Density vs. Population Density: Upper, Mercator (Routers); Lower, Skitter (Interfaces). Compare with Figure 2.
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Fig. 12. Empirical Distance Preference Function: Upper, Mercator; Lower, Skitter. Compare with Figure 4.
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