This is the Appendix of [Cvel3]. The full text of [Cvel3] is available online or send a
request to andrej@bu.edu. See also [CC12,CC13,CC11].



Appendix A

Elements

A.1 Mbobius transformations

Mobius transformations are a class of transformations of the complex plane that preserve
generalized circles. The special Mobius transformations that take D to D and preserve the
hyperbolic distance have the form

b
f(Z)ZfH_, a,beC, |a|*—|b]*#0. (A.1)
bz+a

A.2 The matrix of composition (/o g) (z) from matrices F and G

b
Write f <+ F if f(z) = azjr—d corresponds to F = [ a b ]
cz

c d

_ajz+b | ar by
If f(z):= s —F= { ¢ d

b
Z::azz+ 2<_>G:|:a2 b2:|
c2z+ds c2 dp

} and

then (fog)(z) <> F-G = [ ajaz+bjc; ajby+bd; }

aycy+cad; bye;+dids

+b +a;by+b;d
Namely: (fog) (2) = f (8 (2)) = YaeeriTmertarnd

In particular, if f is represented by F', then
Fi(z2) 2 (fofo...f)(z) corresponds to F' = [T} F.
~—_——

i times
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A.3 The matrix of /! (z) given F

Iff<+Fandg<> Gandg=f!,

then f~! «++ —|F|F~! = G where |F| is the determinant of F.

Also, by symmetry, F = — |G|G~!, and |F| = |G|

a b —d b }
c

Explicitly, if F = [ ¢ d },then G= { ap

A.4 Fractional conformal mapping

A fractional conformal mapping is determined by three points and their images under the

b
mapping. Given three points and the corresponding images under w = w(z) = azi 7 here
cz

we find the coefficients a, b, ¢, d.

Let wy =w(z), k=1,2,3. Then

._az,‘—kb_azﬁ—b_ (zi—zj) |[W|
7 ezi+d  czj+d  (czi+d) (czj+d)

wi—w

b
d
denominator, we have

where W = [ i } and |W| is the determinant of W. Observing the ij invariance of the

(w—wi)(wa—w3)  (z—21)(22—23)

(w—w3)(wa—w1) (z—23)(z2—21)

Solving i.t.o. w = w(z),

W(Z) _ = (Wl (WZ (Z_Z3) (Zl _22) +w3 (Z—Zz) (Z3 —Zl)) +wowsz (Z—Zl) (ZZ —z3))
a wi(z—z1)(z2—z3) +wa(z—22) (zz—21) + w3 (z2—23) (21 — 22) '

That is,
a=wywj(z2—z1) +wiwsz(z; —z3) + wawz (23 — 22)

b=wiwyz3(z1 — 22) +wiwszza (23 — 21) + wawszy (22 — 23)

c=wi(z2—23)+w2(z3—21) + w3 (21 — 22)
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d=wjz;(z3—22) +w2z2 (27 — 23) + w323 (22 — 21)

A.5 The invariant point of a transform

Let b
az

The invariant point of the transform is the solution of z = f(z), that is

B a—d++va?—2ad+4bc+ d?
o 2¢ )

<

A.6 Geodesic through 2 points

In the context of the Poincaré disk model, given two points A (x,4,y,) and B (xp,yp) in or
on the unit circle, we can find the coordinates of the center C(x.,y.) and the radius R
of the geodesic through A and B. This can be completed using suitably chosen Mobius
transformations, but here we opt to proceed without an appeal to them. All coordinates x;,
y;i herein are Euclidean.

As in Figure A.1, let the Euclidean bisector of the segment AB be be y = ax -+ b. The slope
of ABis sap = (yp —Ya) / (xp — Xx4) and the slope of bisector is thus

a=—1/sap=—(xp—x4a)/ (Vb —Ya)

The bisector passes through the midpoint of AB M (X, yn) With X, = (Xg +xp) /2. ym =
(ya+yp) /2 and satisfies y,, = ax,, + b whence

b=y, —axy.

Further, R> + 1* = OC” with r = 1 since AOCD is a right-angled triangle. Also, R =

AC = BC since C is on the bisector of AB. Therefore, A_C2 +1= o_cz. Substituting A_C2 =
—=2

(xc —xa)2 + (ye—ya)? and OC” = 22 +y2 we have (xo —x)> + (ye —va)* +1 =2 +y2 =

—2X:Xg —|—x§ —2YeVa +y§ +1=0.

Substituting y. = ax. + b, yields
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r= R y=ax+b

Figure A.1: Geodesic through 2 points

—2XeXq +x2—2(ax.+b)ya+y:+1=0

whence
o Xq* +ya2 +1—2by,
¢ 2 (aya +xa)
and we can calculate
Ye =axc+b

R= \/(yc _ya)2 + (xe _xa)z

A.7 Geodesic through 2 ideal points

In the context of the Poincaré disk model, given two ideal points @ and b on the unit circle,
we can find the center ¢ and the radius R of the geodesic through a and b. The derivation
shown here does not make use of Mobius transformations. All coordinates are Euclidean
complex.

In Figure A.2, AABC is a right-angled triangle and b = ,/pq. Namely, by similarity of
triangles, p/b = b/q and b* = pq.
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\ q \

Figure A.2: Geometric mean

In Figure A.3, a and b are ideal points on the unit circle, G is a geodesic with center ¢ and
radius R, and m = (a + b)/2 is the midpoint of the Euclidean segment ab. r = 1 is the radius
of the unit circle.

We have r = \/pq = 1 = pq = q=1/p =1/ |m|. The center of the geodesic c is

_ 2 (A.2)

m m m m 1
m-m WM  a+b

c=—-q
[m]

7 =

- mllm| pm|
where m is the complex conjugate of m. The radius can be subsequently calculated as

R=|c—al. (A.3)

When a and b are on a diameter of the unit circle, we have m = 0 and ¢ = 1 /m — o and
R — oo. Thus Equations (A.2) and (A.3) hold for this case as well.

‘We note that

1. the midpoint m of the Euclidean segment ab is the reflection of the origin O in the
geodesic defined by a and b Namely, R = VOC -mC = R> = OC - mC.

2. The center ¢ and the midpoint m are reflections of each other in the unit circle.
Namely, pg =1 = r2.
A.8 Reflection of a point from a geodesic

Given a geodesic in the Poincaré disk model and a point P we can find the reflection Q
from the geodesic.
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Figure A.3: Geodesic through 2 ideal points

N

Figure A.4: Reflection of a point from a geodesic
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Generally, given a circle K (C, R) with center C (x.,y.) in Euclidean coordinates and radius
R and points P (x,,y,) and Q (xq, yq) on the ray CP, then we say P and Q are reflections of
each other in the circle K if PC- QC = R?. P can be on the circle in which case P = Q. If
P = C then Q is at c. To find the coordinates of Q given the coordinates of P,

Xqg =Xxp+Acosa (A4)
Yg=Yyp+Asinx (A.5)
where
A= Pq—Pp (A.6)
Pp = \/(xp _xc>2 + (p —yc)2 (A7)
R2
pg=— (A.8)
q Py
TC . 71 xP _.xc
o = —sign(y, —y.) —tan = —— (A9)
2 ( )4 ) yp — Ve

The above, in complex coordinates: z, = x, +iyp, Zc = Xc +iVe, 2g = Xg +iyq
Zq - Zp + Aela
where
A=ps—pp Pp = |zp — 2|

pg=R/py o= 2(zp—2zc)

Listing A.1: ref1()

function zq=refl(zp,zc,R)

ro_p=abs(zp—zc);

ro_q=R"2./ro_p;

zp=zp+ix(imag(zp—zc)==0)/10000;
angl=pi/2xsign(imag(zp—zc))—atan(real(zp—zc)./imag(zp—zc));
zq=zp+(ro_q—ro_ p).xexp(ixangl);

~N NN kW=

Egs. (A.4)-(A.9) work without modification for P outside of the circle. Eq. (A.9) re-
turns the angle Z (CP, Ox) between the ray CP and the positive x-axis: @ € [—x, ), unlike
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tan ! (}Xc) which returns angles only in quadrants 1 and 4.

Listing A.1 shows refl1(), a Matlab implementation of Eqs. (A.4)—(A.9). refl() can
take a vector z;, of complex points and returns the vector of corresponding images. Line 4
in Listing A.1 is to avoid division by zero in (A.9) by replacing zeros with 10~*

A.9 Hyperbolic distance in the Poincaré disk

The advantage of using the Poincaré disk model D over the half-plane model of the hy-
perbolic plane is that there exists an explicit formula to convert between hyperbolic and
Euclidean distance for a pair of points in D.

The formula that links Euclidean and hyperbolic distance between z; and z; in D is

21 — 22|

(1-1al) (1-1?)

where d is the hyperbolic distance dp (z1,22) and |z; — z»| is the Euclidean distance. The
proof is by direct calculation [And07, Prop4.3]

d
(coshd — 1) = sinh? 3 (A.10)

l\)l'—‘

Solving cosh:
e!+e
2
(e")? — 2xe + 1

cosha = =X

e=x+vVx2—1 a=log <xj: VX2 — 1)
But also

<x+\/—>< \/—1):1
log (x+ \/x2—1> +log (x— x2—1) —0

so only one is positive and finally

a=log <x+ \/x2—1>.
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As an alternative to Equation (A.10), the hyperbolic distance between x and y in ID can be
calculated using

Yy
d = 2atanh
(x,y) = 2atan =

(A.11)

Namely, for x # y points in the Poincaré disk I, choose

B az+b
bz+a

p(z)

with |a|> — |b]* = 1. p(z) moves the pair (x,y) to (0, p(y)) with p(y) real and positive:

_a(z—x)
PO = Ty
Then ( )
B _aly—x
p(X)—O, p(y)_a<1_xy> >0
and

d(x,y) = d(0,p(y)).

To find the hyperbolic length of a segment OA where O is the center and A is any point on
the positive real line such that OA has Euclidean length r:

Parametrize in Euclidean rectangular coordinates: f(¢) =t¢,¢ € [0,r]. (Thatis, x(t) =1,
y(t) =0). Then |z| = || =t in the given interval and |dz| = | f' (t)|dt = |¢'|dt = dt

2 |dz| =1 2dt
Fl=lz* Jimo 112

t=r 1 1
= —+—— | dt =
/t:O (1—|—t+1—l)

1
= ln( +r):2tanh_1(r).

1—r

d(0,p(y)) = 2atanh (p (y)) = 2atanh (M) .

a(l-xy)
But since p (y) > 0,
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Figure A.5: A simplified model

SO
y—Xx

d(0,p(y)) = 2atanh (p (y)) = 2atanh |~ %

=d(x,y). (A.12)

Eq. (A.12) is computationally more convenient than (A.10).

A.10 Number of next hop candidates

In the context of the analysis of Section ??, consider a rooted d-regular tree. For example,
Figure A.5 shows such a tree with d = 3 (binary tree). Let d; = d — 1 be the number of
children at each non-leaf node. Take the root node D to be at level ¢ = 1, its children nodes
at level ¢ = 2, etc. We have for the total number of nodes up to level L:

n = l4+d+d(d—1)+dd—1)7>+..+dd—1)?*=
dd-1)""—2  (di+1)-df7'-2
d—2 B dy—1 '

Therefore the exact number of nodes in Ay is

(d+1)-di2 -2
di—1

#A, =
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and
#A,  (di+1)di2 -2

P T iy yd T

The free terms can be easily omitted for the d values typically occurring in the graphs of
interest in this work, whence

A e
P = F = d1 .
1
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Appendix B

K Embedding

This section outlines the details of the implementation of the d-regular tree greedy embed-
ding procedure [Kle07], used in Chapters ?? and ??.

As in [Kle07], every node w in the infinite regular tree of rooted at node r has an associated
Mobius transformation ,, () such that the node’s complex coordinate in the Poincaré disk
model greedy embedding of the tree can be calculated as

Cp =, (v) (B.1)

where
v=—0(0) (B.2)

is a constant that can be calculated for a given d (see below).

For a node w in the regular tree of degree d, let the wg, wy, ..., wy_1 be a relative naming
of w’s direct neighbors such that wy is the parent node of w relative to the root r. Let w’s
Mobius transformation p,, () have a corresponding matrix M,, (as in Section A.3). Then
for k = 1..d — 1 the functions p,, () of the neighbors wy of w have corresponding matrices
given by

M,, =B*-A-M, (B.3)
and their complex coordinates in the Poincaré disk model are given by C,,, = ,u;kl (v).
The matrix A = [ _Ol (1) } does not depend on d and its corresponding transformation is

a(z) = —z. The matrix B is given by

B=SRS™! (B.4)

ei2m/d
k=[5

where
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since p (z) > R is the rotation p (z) = ze2®/4 = (zeiz”/ a4 0) /(0z+1).

To obtain the matrix S corresponding to o (z), we apply the method given in Section A.4 to
the points

Z]Zl W1:1
z2=2zp| wp=0
3=z | w3 =-—1

Refer to Figure B.1 for the calculation of zp and zp. In the figure, C is the Euclidean
center of the geodesic between the ideal points A and B defining one side of the ideal
polygon with vertices e*2m/d k= 0..d — 1. The complex coordinate of C is z¢c = x¢ + iyc.
Clearly xc = 1 and from AOAC we have yo = —tan %; the Euclidean radius of the arc AB
is R = |y.| = tan7. Let P be the intersection of the ray OC and the arc APB. Clearly P is
the center of the arc APC. Let A denote the Euclidean distance of the segment OC. Then

A=0C—-R= \/x%—ky%—R: V14 R? —R. and the coordinates of P are

T
xp = Acos—
d

T
= —Asin—
yp d

whence zp = xp + iyp = Ae~"™/¢_ On the other hand, zp = e~2%/4.

Alternatively, as in [Kle07], the midpoint of the arc AQB, zg, given by zp = e d = leg/ 2 can

be used to calculate o () in which case the points to be used with the Section A.4 method
are

21:1 W1:1
_ 1/2 _ .
22 = ZB Wy = —1
73 = ZB w3 =—1

In any case we would have

Z(242i)+e7 (2+2i)—ze? (2+2i)—2—2i
2cos(Z) —2sin(Z) —2zeT —2+4ze"T (1—i)+z(1+i)

ozg)=1-

The calculation of the node coordinates according to Eqs. (B.1) and (B.3) would require
the inversions
M, =m;t AT (BHE (B.5)
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0,/ A A

T/d
T/
P R
R
Q N
N\

B

Figure B.1: zp and zp

It is interesting to note that B~! has a more compact symbolic expression compared to B.
It can be obtained by substituting S and R into Eq. (B.4):

1 (e*% i 1) —ie L (1 +e—¥>

B '=SR's!= | 2ri [ o Jm (B.6)
() (T e

1+e 4

Listing B.1 contains a Matlab calculation of B~! for a given value of d in variable-precision
arithmetic (VPA).

Listing B.1: K Embedding Calculations

RR=tan(vpa(pi)/d);

DEL=sqrt(1+RR"2)—RR;

3 | zP=DELxexp(—ixvpa(pi)/d);

zB=exp(—ix2xvpa(pi)/d);

51z1=1; wl=1; z2=2zP ; w2=0 ; z3=zB ; w3=-1;
wa=—w1xw2x(z1—22) —wlsw3*(z3—2z1) —w2sw3*(z2—23);

7 | wb=wlsxw2x(z1—22)*z3 + wlxw3%(z3—z1)*z2 + w2sxw3x(z2—2z3)%z1;
we=w1x(z2—2z3) +w2x(z3—z1) + w3x(z1—z2),

9 | wd=—wl*(z2—2z3)*z1 —w2#(z3—z1)%z2 —w3x(z1—22)%z3;

—

11 | S=[wa wb ;wc wd];
% A=[ab; cd]=[A(1) A(3) : A(2) A(4)]
13| v=—5(3)/5(4);
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15| % B~—1

B 1 = 0(d)[1./(2.xexp((2.xvpa(pi).*i)./d))—i./exp((vpa(pi).*i)./d)+vpa(1)./2
—1./(2.xexp((2.xvpa(pi).xi)./d))—vpa(1)./2;

17 | —1./(2.xexp((2.*xvpa(pi).*i)./d))—vpa(1)./2 (exp((2.xvpa(pi).*i)./d)+2.xi.xexp((

vpa(pi) ). /d)-+vpa(1))./ (2.exp((2 <vpa(pi)-<i)./d))]:

19 |B_1d=B_1(d); % substitute the concrete value of d

21 | A=
A

We note that the fixed point o (0) in Eq. (B.2) (see also Section A.5) and the matrix B with
unit determinant in the cases d = 3,4,6 have simple, closed-form symbolic expressions
summarized below.

4] 0(0) | B |
. 12+i 172
3]i2-V3) /2 1/2—i
. (V2240 V2)2

4 ’(ﬁ_l) V22 V2)2—i

6l o (V3/2+i V32 ]

3 N
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Appendix C

C Embedding

Listing C.1 contains a Matlab implementation of the C Embedding [CC09].

Listing C.1: C Embedding

function coord=f(predecessors,root,list)

% 1. INITIALIZE
4 | alpha(root)=pi; % real
beta(root)=2xpi; % real

aa(root)=exp(ixalpha(root)); % complex
8 | bb(root)=exp(ixbeta(root)); % complex

10 | geo  ctr(root)=2/( conj( aa(root) + bb(root) ) ); % complex
geo rad(root)=abs(geo ctr(root) — aa(root)); % real

12
coord(root)=—0.1—ix0.1; % complex
14
% 2. FOR EACH

16 | for curnode=list(2:end),

18 parent=predecessors(curnode);

20 % 2a (i)
alpha(curnode) = alpha(parent);
22 beta (curnode) = ( alpha(parent)+beta(parent) ) / 2; % real

24 % 2a (ii)

alpha(parent) = beta(curnode); % update
26
% 2b (i)

28 aa(curnode) = exp(ixalpha(curnode)); % complex

bb(curnode) = exp(ixbeta(curnode)); % complex

30 geo_ctr(curnode) = 2 / ( conj( aa(curnode) + bb(curnode)) ); % complex




APPENDIX C. C EMBEDDING

32

34

36

38

geo_rad(curnode)=abs(geo ctr(curnode)—aa(curnode)); % complex

coord(curnode)=geo rad(curnode)”~2/(conj(coord(parent)—geo ctr(curnode)
))+geo_ctr(curnode); % complex

% 2b (ii)
alpha(curnode)= ( alpha(curnode) + beta(curnode) ) / 2;

end

18
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