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This is the Appendix of [Cve13]. The full text of [Cve13] is available online or send a
request to andrej@bu.edu. See also [CC12, CC13, CC11].
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Appendix A

Elements

A.1 Möbius transformations

Möbius transformations are a class of transformations of the complex plane that preserve
generalized circles. The special Möbius transformations that take D to D and preserve the
hyperbolic distance have the form

f (z) =
az+b
bz+a

, a,b ∈ C, |a|2−|b|2 6= 0. (A.1)

A.2 The matrix of composition ( f ◦g)(z) from matrices F and G

Write f ↔ F if f (z) =
az+b
cz+d

corresponds to F =

[
a b
c d

]
If f (z) :=

a1z+b1

c1z+d1
↔ F =

[
a1 b1
c1 d1

]
and

g(z) :=
a2z+b2

c2z+d2
↔ G =

[
a2 b2
c2 d2

]
then ( f ◦g)(z)↔ F ·G =

[
a1a2 +b1c2 a1b2 +b1d2
a2c1 + c2d1 b2c1 +d1d2

]
.

Namely: ( f ◦g)(z) = f (g(z)) = z(a1a2+b1c2)+a1b2+b1d2
z(a2c1+c2d1)+b2c1+d1d2

.

In particular, if f is represented by F , then
f i (z) ∆

= ( f ◦ f ◦ . . . f )︸ ︷︷ ︸
i times

(z) corresponds to F i = ∏
i
1 F .
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A.3 The matrix of f−1 (z) given F

If f ↔ F and g↔ G and g = f−1,

then f−1↔−|F |F−1 = G where |F | is the determinant of F .

Also, by symmetry, F =−|G|G−1, and |F |= |G|

Explicitly, if F =

[
a b
c d

]
, then G =

[
−d b
c −a

]
.

A.4 Fractional conformal mapping

A fractional conformal mapping is determined by three points and their images under the

mapping. Given three points and the corresponding images under w = w(z) =
az+b
cz+d

, here

we find the coefficients a, b, c, d.

Let wk = w(zk) , k = 1,2,3. Then

wi−w j =
azi +b
czi +d

−
az j +b
cz j +d

=
(zi− z j) |W |

(czi +d)
(
cz j +d

)
where W =

[
a b
c d

]
and |W | is the determinant of W . Observing the i j invariance of the

denominator, we have

(w−w1)(w2−w3)

(w−w3)(w2−w1)
=

(z− z1)(z2− z3)

(z− z3)(z2− z1)
.

Solving i.t.o. w = w(z),

w(z) =
−(w1 (w2 (z− z3)(z1− z2)+w3 (z− z2)(z3− z1))+w2w3 (z− z1)(z2− z3))

w1 (z− z1)(z2− z3)+w2 (z− z2)(z3− z1)+w3 (z− z3)(z1− z2)
.

That is,

a = w2w1 (z2− z1)+w1w3 (z1− z3)+w3w2 (z3− z2)

b = w1w2z3 (z1− z2)+w1w3z2 (z3− z1)+w2w3z1 (z2− z3)

c = w1 (z2− z3)+w2 (z3− z1)+w3 (z1− z2)
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d = w1z1 (z3− z2)+w2z2 (z1− z3)+w3z3 (z2− z1)

�

A.5 The invariant point of a transform

Let
f (z) =

az+b
cz+d

.

The invariant point of the transform is the solution of z = f (z), that is

z =
a−d±

√
a2−2ad +4bc+d2

2c
.

A.6 Geodesic through 2 points

In the context of the Poincaré disk model, given two points A(xa,ya) and B(xb,yb) in or
on the unit circle, we can find the coordinates of the center C (xc,yc) and the radius R
of the geodesic through A and B. This can be completed using suitably chosen Möbius
transformations, but here we opt to proceed without an appeal to them. All coordinates xi,
yi herein are Euclidean.

As in Figure A.1, let the Euclidean bisector of the segment AB be be y = ax+b. The slope
of AB is sAB = (yb− ya)/(xb− xa) and the slope of bisector is thus

a =−1/sAB =−(xb− xa)/(yb− ya)

The bisector passes through the midpoint of AB M (xm,ym) with xm = (xa + xb)/2. ym =
(ya + yb)/2 and satisfies ym = axm +b whence

b = ym−axm.

Further, R2 + r2 = OC2 with r = 1 since 4OCD is a right-angled triangle. Also, R =

AC = BC since C is on the bisector of AB. Therefore, AC2
+1 = OC2. Substituting AC2

=

(xc− xa)
2 +(yc− ya)

2 and OC2
= x2

c + y2
c we have (xc− xa)

2 +(yc− ya)
2 +1 = x2

c + y2
c ⇒

−2xcxa + x2
a−2ycya + y2

a +1 = 0.

Substituting yc = axc +b, yields
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Figure A.1: Geodesic through 2 points

−2xcxa + x2
a−2(axc +b)ya + y2

a +1 = 0

whence

xc =
xa

2 + ya
2 +1−2bya

2(aya + xa)

and we can calculate
yc = axc +b

R =

√
(yc− ya)

2 +(xc− xa)
2

A.7 Geodesic through 2 ideal points

In the context of the Poincaré disk model, given two ideal points a and b on the unit circle,
we can find the center c and the radius R of the geodesic through a and b. The derivation
shown here does not make use of Möbius transformations. All coordinates are Euclidean
complex.

In Figure A.2, 4ABC is a right-angled triangle and b =
√

pq. Namely, by similarity of
triangles, p/b = b/q and b2 = pq.
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Figure A.2: Geometric mean

In Figure A.3, a and b are ideal points on the unit circle, G is a geodesic with center c and
radius R, and m = (a+b)/2 is the midpoint of the Euclidean segment ab. r = 1 is the radius
of the unit circle.

We have r =
√

pq⇒ 1 = pq⇒ q = 1/p = 1/ |m|. The center of the geodesic c is

c =
m
|m|
·q =

m
|m| |m|

=
m

|m|2
=

m
m ·m

=
1
m

=
2

a+b
(A.2)

where m is the complex conjugate of m. The radius can be subsequently calculated as

R = |c−a| . (A.3)

When a and b are on a diameter of the unit circle, we have m = 0 and c = 1/m→ ∞ and
R→ ∞. Thus Equations (A.2) and (A.3) hold for this case as well.

We note that

1. the midpoint m of the Euclidean segment ab is the reflection of the origin O in the
geodesic defined by a and b Namely, R =

√
OC ·mC⇒ R2 = OC ·mC.

2. The center c and the midpoint m are reflections of each other in the unit circle.
Namely, pq = 1 = r2.

A.8 Reflection of a point from a geodesic

Given a geodesic in the Poincaré disk model and a point P we can find the reflection Q
from the geodesic.
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Figure A.3: Geodesic through 2 ideal points
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Figure A.4: Reflection of a point from a geodesic
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Generally, given a circle K (C,R) with center C (xc,yc) in Euclidean coordinates and radius
R and points P(xp,yp) and Q

(
xq,yq

)
on the ray CP, then we say P and Q are reflections of

each other in the circle K if PC ·QC = R2. P can be on the circle in which case P ≡ Q. If
P≡C then Q is at ∞. To find the coordinates of Q given the coordinates of P,

xq = xp +∆cosα (A.4)

yq = yp +∆sinα (A.5)

where
∆ = ρq−ρp (A.6)

ρp =

√
(xp− xc)

2 +(yp− yc)
2 (A.7)

ρq =
R2

ρp
(A.8)

α =
π

2
sign(yp− yc)− tan−1 xp− xc

yp− yc
(A.9)

The above, in complex coordinates: zp = xp + iyp, zc = xc + iyc, zq = xq + iyq

zq = zp +∆eiα

where

∆ = ρq−ρp ρp =
∣∣zp− zc

∣∣
ρq = R2/ρp α = ∠(zp− zc)

Listing A.1: refl()
1 function zq=re�(zp,zc,R)
2
3 ro_p=abs(zp−zc);
4 ro_q=R^2./ro_p;
5 zp=zp+i∗(imag(zp−zc)==0)/10000;
6 angl=pi/2∗sign(imag(zp−zc))−atan(real(zp−zc)./imag(zp−zc));
7 zq=zp+(ro_q−ro_p).∗exp(i∗angl);

Eqs. (A.4)–(A.9) work without modification for P outside of the circle. Eq. (A.9) re-
turns the angle ∠(CP,Ox) between the ray CP and the positive x-axis: α ∈ [−π,π), unlike
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tan−1 ( y
x

)
which returns angles only in quadrants 1 and 4.

Listing A.1 shows refl(), a Matlab implementation of Eqs. (A.4)–(A.9). refl() can
take a vector zp of complex points and returns the vector of corresponding images. Line 4
in Listing A.1 is to avoid division by zero in (A.9) by replacing zeros with 10−4.

A.9 Hyperbolic distance in the Poincaré disk

The advantage of using the Poincaré disk model D over the half-plane model of the hy-
perbolic plane is that there exists an explicit formula to convert between hyperbolic and
Euclidean distance for a pair of points in D.

The formula that links Euclidean and hyperbolic distance between z1 and z2 in D is

|z1− z2|2(
1−|z1|2

)(
1−|z2|2

) =
1
2
(coshd−1) = sinh2 d

2
(A.10)

where d is the hyperbolic distance dD (z1,z2) and |z1− z2| is the Euclidean distance. The
proof is by direct calculation [And07, Prop4.3]

Solving cosh:

cosha =
ea + e−a

2
= x

(ea)2−2xea +1

ea = x+
√

x2−1 a = log
(

x±
√

x2−1
)

But also (
x+
√

x2−1
)(

x−
√

x2−1
)
= 1

log
(

x+
√

x2−1
)
+ log

(
x−
√

x2−1
)
= 0

so only one is positive and finally

a = log
(

x+
√

x2−1
)
.

�
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As an alternative to Equation (A.10), the hyperbolic distance between x and y in D can be
calculated using

d (x,y) = 2atanh
∣∣∣∣ y− x
1− xy

∣∣∣∣ (A.11)

Namely, for x 6= y points in the Poincaré disk D, choose

p(z) =
az+b
bz+a

with |a|2−|b|2 = 1. p(z) moves the pair (x,y) to (0, p(y)) with p(y) real and positive:

p(z) =
a(z− x)

a(−xz+1)
;

Then

p(x) = 0, p(y) =
a(y− x)

a(1− xy)
> 0

and

d (x,y) = d (0, p(y)) .

To find the hyperbolic length of a segment OA where O is the center and A is any point on
the positive real line such that OA has Euclidean length r:

Parametrize in Euclidean rectangular coordinates: f (t) = t, t ∈ [0,r]. (That is, x(t) = t,
y(t) = 0). Then |z|= |t|= t in the given interval and |dz|= | f ′ (t)|dt = |t ′|dt = dt

`D f =

ˆ
f

2 |dz|
1−|z|2

=

ˆ t=r

t=0

2dt
1− t2 =

=

ˆ t=r

t=0

(
1

1+ t
+

1
1− t

)
dt =

= ln
(

1+ r
1− r

)
= 2tanh−1 (r) .

d (0, p(y)) = 2atanh(p(y)) = 2atanh
(

a(y− x)
a(1− xy)

)
.

But since p(y)> 0,
p(y) = |p(y)| ,



APPENDIX A. ELEMENTS 11

D

S 1

S 2

S 3

S 4

Λ4

Λ3

Figure A.5: A simplified model

so

d (0, p(y)) = 2atanh(p(y)) = 2atanh
∣∣∣∣ y− x
1− xy

∣∣∣∣= d (x,y) . (A.12)

�

Eq. (A.12) is computationally more convenient than (A.10).

A.10 Number of next hop candidates

In the context of the analysis of Section ??, consider a rooted d-regular tree. For example,
Figure A.5 shows such a tree with d = 3 (binary tree). Let d1 = d− 1 be the number of
children at each non-leaf node. Take the root node D to be at level `= 1, its children nodes
at level `= 2, etc. We have for the total number of nodes up to level L:

n = 1+d +d (d−1)+d (d−1)2 + ...+d (d−1)L−2 =

=
d (d−1)L−1−2

d−2
=

(d1 +1) ·dL−1
1 −2

d1−1
.

Therefore the exact number of nodes in Λ` is

#Λ` =
(d1 +1) ·d`−2

1 −2
d1−1
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and

p` =
#Λ`

n
=

(d1 +1)d`−2
1 −2

(d1 +1)dL−1
1 −2

.

The free terms can be easily omitted for the d values typically occurring in the graphs of
interest in this work, whence

p` ≈
d`−2

1

dL−1
1

= d−(L−`+1)
1 .
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Appendix B

K Embedding

This section outlines the details of the implementation of the d-regular tree greedy embed-
ding procedure [Kle07], used in Chapters ?? and ??.

As in [Kle07], every node w in the infinite regular tree of rooted at node r has an associated
Möbius transformation µw () such that the node’s complex coordinate in the Poincaré disk
model greedy embedding of the tree can be calculated as

Cw = µ
−1
w (v) (B.1)

where
v =−σ (0) (B.2)

is a constant that can be calculated for a given d (see below).

For a node w in the regular tree of degree d, let the w0, w1, ... , wd−1 be a relative naming
of w’s direct neighbors such that w0 is the parent node of w relative to the root r. Let w’s
Möbius transformation µw () have a corresponding matrix Mw (as in Section A.3). Then
for k = 1..d−1 the functions µwk () of the neighbors wk of w have corresponding matrices
given by

Mwk = Bk ·A ·Mw (B.3)

and their complex coordinates in the Poincaré disk model are given by Cwk = µ−1
wk

(v) .

The matrix A =

[
−1 0
0 1

]
does not depend on d and its corresponding transformation is

a(z) =−z. The matrix B is given by

B = SRS−1 (B.4)

where

R =

[
ei2π/d 0

0 1

]



APPENDIX B. K EMBEDDING 14

since ρ (z)↔ R is the rotation ρ (z) = zei2π/d =
(

zei2π/d +0
)
/(0z+1).

To obtain the matrix S corresponding to σ (z), we apply the method given in Section A.4 to
the points

z1 = 1 w1 = 1
z2 = zP w2 = 0
z3 = zB w3 =−1

Refer to Figure B.1 for the calculation of zP and zB. In the figure, C is the Euclidean
center of the geodesic between the ideal points A and B defining one side of the ideal
polygon with vertices eik2π/d , k = 0..d−1. The complex coordinate of C is zC = xC + iyC.
Clearly xC = 1 and from 4OAC we have yC =− tan π

d ; the Euclidean radius of the arc AB
is R = |yc| = tan π

d . Let P be the intersection of the ray OC and the arc APB. Clearly P is
the center of the arc APC. Let ∆ denote the Euclidean distance of the segment OC. Then

∆ = OC−R =
√

x2
C + y2

C−R =
√

1+R2−R. and the coordinates of P are

xP = ∆cos
π

d

yP = −∆sin
π

d

whence zP = xP + iyP = ∆e−iπ/d . On the other hand, zB = e−i2π/d .

Alternatively, as in [Kle07], the midpoint of the arc AQB, zQ, given by zQ = e−
π

d = z1/2
B can

be used to calculate σ () in which case the points to be used with the Section A.4 method
are

z1 = 1 w1 = 1
z2 = zB

1/2 w2 =−i
z3 = zB w3 =−1

In any case we would have

σ (z) = 1− z (2+2i)+ e
π i
d (2+2i)− ze

π i
d (2+2i)−2−2i

2 cos
(

π

d

)
−2 sin

(
π

d

)
−2ze

π i
d −2+ ze

π 2i
d (1− i)+ z (1+ i)

.

The calculation of the node coordinates according to Eqs. (B.1) and (B.3) would require
the inversions

M−1
wk

= M−1
w ·A−1 · (B−1)k. (B.5)
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Figure B.1: zP and zB

It is interesting to note that B−1 has a more compact symbolic expression compared to B.
It can be obtained by substituting S and R into Eq. (B.4):

B−1 = SR−1S−1 =

 1
2

(
e−

2π i
d +1

)
− ie−

π i
d −1

2

(
1+ e−

2π i
d

)
−1

2

(
1+ e−

2π i
d

)
1
2

(
e−

2π i
d +1

)
+ ie−

π i
d

 (B.6)

Listing B.1 contains a Matlab calculation of B−1 for a given value of d in variable-precision
arithmetic (VPA).

Listing B.1: K Embedding Calculations

1 RR=tan(vpa(pi)/d);
DEL=sqrt(1+RR^2)−RR;

3 zP=DEL∗exp(−i∗vpa(pi)/d);
zB=exp(−i∗2∗vpa(pi)/d);

5 z1=1 ; w1=1 ; z2=zP ; w2=0 ; z3=zB ; w3=−1 ;
wa=−w1∗w2∗(z1−z2)−w1∗w3∗(z3−z1)−w2∗w3∗(z2−z3);

7 wb=w1∗w2∗(z1−z2)∗z3 + w1∗w3∗(z3−z1)∗z2 + w2∗w3∗(z2−z3)∗z1;
wc=w1∗(z2−z3) +w2∗(z3−z1) + w3∗(z1−z2);

9 wd=−w1∗(z2−z3)∗z1 −w2∗(z3−z1)∗z2 −w3∗(z1−z2)∗z3;

11 S=[wa wb ;wc wd];
% A=[ a b; c d ] = [A(1) A(3) ; A(2) A(4)]

13 v=−S(3)/S(4);
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15 % B^−1
B_1 = @(d)[1./(2.∗exp((2.∗vpa(pi).∗i)./d))−i./exp((vpa(pi).∗i)./d)+vpa(1)./2

−1./(2.∗exp((2.∗vpa(pi).∗i)./d))−vpa(1)./2;
17 −1./(2.∗exp((2.∗vpa(pi).∗i)./d))−vpa(1)./2 (exp((2.∗vpa(pi).∗i)./d)+2.∗i.∗exp((

vpa(pi).∗i)./d)+vpa(1))./(2.∗exp((2.∗vpa(pi).∗i)./d))];

19 B_1d=B_1(d); % substitute the concrete value of d

21 A=vpa([−1 0; 0 1]);
A_1=A^−1;

We note that the fixed point σ (0) in Eq. (B.2) (see also Section A.5) and the matrix B with
unit determinant in the cases d = 3,4,6 have simple, closed-form symbolic expressions
summarized below.

d σ (0) B

3 i
(
2−
√

3
) [

1/2+ i 1/2
1/2 1/2− i

]
4 i

(√
2−1

) [ √
2/2+ i

√
2/2√

2/2
√

2/2− i

]
6 i

√
3

3

[ √
3/2+ i

√
3/2√

3/2
√

3/2− i

]
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Appendix C

C Embedding

Listing C.1 contains a Matlab implementation of the C Embedding [CC09].

Listing C.1: C Embedding

function coord=f(predecessors,root,list)
2

% 1. INITIALIZE
4 alpha(root)=pi; % real

beta(root)=2∗pi; % real
6

aa(root)=exp(i∗alpha(root)); % complex
8 bb(root)=exp(i∗beta(root)); % complex

10 geo_ctr(root)=2/( conj( aa(root) + bb(root) ) ); % complex
geo_rad(root)=abs(geo_ctr(root) − aa(root)); % real

12
coord(root)=−0.1−i∗0.1; % complex

14
% 2. FOR EACH

16 for curnode=list(2:end),

18 parent=predecessors(curnode);

20 % 2a (i)
alpha(curnode) = alpha(parent);

22 beta (curnode) = ( alpha(parent)+beta(parent) ) / 2; % real

24 % 2a (ii)
alpha(parent) = beta(curnode); % update

26
% 2b (i)

28 aa(curnode) = exp(i∗alpha(curnode)); % complex
bb(curnode) = exp(i∗beta(curnode)); % complex

30 geo_ctr(curnode) = 2 / ( conj( aa(curnode) + bb(curnode)) ); % complex
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geo_rad(curnode)=abs(geo_ctr(curnode)−aa(curnode)); % complex
32

coord(curnode)=geo_rad(curnode)^2/(conj(coord(parent)−geo_ctr(curnode)
))+geo_ctr(curnode); % complex

34
% 2b (ii)

36 alpha(curnode)= ( alpha(curnode) + beta(curnode) ) / 2;

38 end
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