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ABSTRACT
Internet coordinate schemes have been proposed as a method for
estimating minimum round trip time between hosts without direct
measurement. In such a scheme, each host is assigned a set of
coordinates, and Euclidean distance is used to form the desired
estimate. Two key questions are: How accurate are coordinate
schemes across the Internet as a whole? And: are coordinate as-
signment schemes fast enough, and scalable enough, for large scale
use? In this paper we make contributions toward answering both
those questions. Whereas the coordinate assignment problem has
in the past been approached by nonlinear optimization, we develop
a faster method based on dimensionality reduction of the Lipschitz
embedding. We show that this method is reasonably accurate, even
when applied to measurements spanning the Internet, and that it
naturally leads to a scalable measurement strategy based on the no-
tion of virtual landmarks.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design; C.2.4 [Computer-Communication Networks]:
Distributed Systems—Distributed applications

General Terms
Algorithms, Measurement, Performance

Keywords
Network Distance, Principal Component Analysis, Network Coor-
dinates

1. INTRODUCTION
In many emerging applications there is opportunity for optimiza-

tion based on knowledge of point-to-point delays in the underlying
network. Example applications that can benefit from such knowl-
edge include content delivery networks, peer-to-peer networks, mul-
tiuser games, overlay routing networks, and applications employ-
ing dynamic server selection. However, active measurement of net-
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work delays can be difficult, time consuming, and can add to net-
work load. In response a number of methods have been proposed
for estimation of network delays based on reduced or incomplete
measurements [10, 9, 8, 18, 11].

A promising method proposed in [18] is to assigncoordinatesto
nodes. The idea is to assign coordinates in such a manner that the
associated Euclidean distance approximates network delay (round-
trip propagation and transmission time). A node’s coordinates are
determined based on measurements to a fixed set of designated
nodes, called landmarks.

This method has a number of attractive properties as compared
to complete measurement of all inter-node delays. The primary
attraction is that it allows approximating a large number of net-
work distances (i.e., network delays) using only a small number
of actual measurements. That is, once two nodes have determined
their coordinates, the network distance between them can be es-
timated without any further network measurement. Furthermore,
the method allows distance between two nodes to be estimated by
any third party that knows the nodes’ coordinates. Finally, the use
of Euclidean space to represent node location is attractive because
of the large set of methods available for analysis of point sets in
Euclidean space, including methods for search, partitioning, clus-
tering, and dimensionality reduction.

The general problem of assigning coordinates in this manner is
one of embedding a finite metric space into a Euclidean space [16].
In the case of network distances, an exact embedding is not ex-
pected to be possible, so one seeks an embedding that minimizes
an error metric on distances. The resulting problem is a nonlin-
ear optimization, which in work to date has been approached using
iterative methods [18, 27].

The authors in [18] show that Euclidean embedding of network
distances is reasonably accurate for the dataset they studied, which
consists of about 16,500 node pairs. This is rather surprising be-
cause network delays are nota priori derived from measurements
of a Euclidean space. In fact, network delays do not necessar-
ily satisfy the triangle inequality, and so only form a semi-metric
space. Thus a natural question is how accurate Euclidean embed-
ding of network distances is over a wider range of datasets, and
over datasets that span a larger fraction of the networks comprising
the Internet.

This question is the first focus of this paper. We examine seven
datasets, including two that attempt to capture measurements from
a diverse set of destinations throughout the Internet. Across all
of our datasets, we find that the accuracy of Euclidean embedding
is remarkably good; typically approximately 90% of the distances
have relative error less than 0.5. This encouraging result justifies
further algorithmic exploration of Euclidean embeddings.

Assuming such embeddings can be accurate, two remaining bar-



riers to their wide deployment are the computational complexity of
coordinate determination, and the scalability of the associated mea-
surement process. The first barrier arises because to date optimal
network distance embeddings have been obtained using iterative al-
gorithms for nonlinear optimization. This method is computation-
ally expensive, which becomes an issue when working with large
datasets, or if nodes must frequently recalculate their coordinates.
Furthermore, this method is complex; it depends on proper settings
of a number of parameters to guide the optimization process. The
second barrier arises because each node determines its coordinates
from measurements to a fixed set of landmarks; thus the measure-
ment traffic arriving at the landmarks increases in proportion to the
number of nodes in the system.

These problems are the second focus of this paper. To generate
fast embeddings of network distances we employ the Lipschitz em-
bedding [6]. The basic idea of the Lipschitz embedding is to use
distances as coordinates. To find the coordinate vector�xi ∈ IRn for
nodei, one sets thejth component of�xi to the measured distance
between nodei and landmarkj, for j = 1, ..., n.

The Lipschitz embedding can be accurate because two objects
that are close to each other in a metric space typically have similar
distances to many other objects. Thus two nearby points in the
original metric space may have very similar coordinate vectors, and
so may map to nearby points under the Lipschitz embedding.

As we discuss in later sections, the accuracy of the Lipschitz em-
bedding improves with the number of landmarks used. However
we show that it is not necessary for the number of components in
the coordinate vector to grow with the number of landmarks used.
That is, even when using (say) 20 landmarks, it is possible to con-
struct an accurate embedding using coordinates with only 7 to 9
components.

To do this we construct a low-dimensional embedding from a
high dimensional Lipschitz embedding using principal component
analysis (PCA). We start by taking measurements fromm nodes to
n landmarks (landmarks can be chosen at random). The result is an
m × n matrixA in which row i is the initialn-dimensional coor-
dinate vector�xi for nodei. By applying principal component anal-
ysis toA, we can map each�xi to a new�yi in a lower dimensional
space, while approximately preserving distances. That is we map
�xi ∈ IRn to �yi ∈ IRr such thatr � n and||�xi − �xj || ≈ ||�yi − �yj ||
for all i, j ∈ 1, ...,m.

The mapping from�xi to �yi obtained via PCA is a linear one.
That is,�yi = M�xi for someM (whereM is anr × n matrix, and
�xi and�yi are treated as column vectors). Thus we can think of the
final coordinates of nodei (the components of�yi) as distances to
virtual landmarks.The distance to a virtual landmark is defined as
a linear combination of distances to actual landmarks.

Virtual landmarks provide significant advantages. We show that
onceM has been computed using some set ofm nodes, it can be
used to accurately compute coordinates for all nodes (not just those
involved in coming up withM ). This means that the construction
of a node’s coordinate vector from network distance measurements
is a fast, simplematrix-vector multiplication(rather than an iter-
ative nonlinear optimization with parameters that require tuning).
Furthermore, the accuracy of the Lipschitz embedding can outper-
form that of the nonlinear optimization approach used in [18], al-
though the relative performance of the two methods differs on dif-
ferent datasets. Lastly, we show that similar virtual landmarks can
be constructed from different sets of actual landmarks. This leads
to a natural approach to measurement scalability in which the same
virtual landmarks are constructed by different nodes using mea-
surements to distinct sets of actual landmarks.

The success of our method relies on empirically observed prop-

erties of network delay measurements, which we find to be con-
sistent across all the datasets we examine. When one interprets
inter-node measurements as coordinates, one can easily construct
a very high-dimensional space — there are 116 dimensions in the
case of one of our datasets. However, all of our datasets suggest
that within this space, points tend to lie on a low dimensional Eu-
clidean manifold (of dimension approximately 7) and that within
this manifold, the desirable properties of the Lipschitz embedding
approximately hold – namely, that distance within this manifold
approximates actual network distance.

In the remainder of the paper we first summarize relevant back-
ground and related work (Section 2). We then describe the datasets
we use in Section 3, and present their characteristics related to Eu-
clidean embedding in Section 4. We then develop our embedding
method in Section 5 and discuss its scalability properties in Sec-
tion 6. We conclude in Section 7.

2. BACKGROUND AND RELATED WORK

2.1 The Embedding Problem
The embedding problem – the problem of inferring coordinates

from distances – is an old one, spanning many fields, including
mathematics and various branches of theoretical and applied com-
puter science.

The embedding problem can be cast as follows. Ametric space
is a pair(X, d) whereX is a set, andd is a metric. A metric is
a distance function such that forx, y, z ∈ X, d satisfies 1) sym-
metry: d(x, y) = d(y, x); 2) positive definiteness:d(x, y) ≥ 0
with equality iff x = y; and 3) the triangle inequality:d(x, y) +
d(x, z) ≥ d(y, z). A Hilbert spaceis a metric vector space, that is,
a metric space in whichX = IRn for somen. A Euclidean space
is a Hilbert space in which the metric is the Euclidean orl2 norm
d(�x, �y) = ||�x− �y||2.

An embeddingof a metric space(X, d) into a Hilbert space
(IRn, δ) is a mappingφ : X → IRn. In this paper(X, d) will
always be a finite metric space (i.e.,X is a finite set) and(IRn, δ)
will always be a Euclidean space. Thedistortionof an embedding
is the smallest value ofc2/c1 that guarantees that

c1 · d(x, y) ≤ δ(φ(x), φ(y)) ≤ c2 · d(x, y)
for all pairsx, y ∈ X andc1, c2 > 0. An embedding with dis-
tortion 1 is anisometry.Distortion is a worst-case measure of the
quality of an embedding; an average-case measure isstress. The
stress of an embedding is

P
x,y∈X(δ(φ(x), φ(y)) − d(x, y))2

P
x,y∈X d(x, y)2

.

Given (X, d) and (IRn, δ), the embedding problemconsists of
finding aφ that minimizes distortion, stress, or a similar error met-
ric on distances. In general, finding an exact solution is a nonlinear
optimization problem, because in Euclidean space,δ is a nonlinear
function of its arguments.

In the special case where an isometry exists, it can be found
via the methods ofdistance geometry[5]. Methods based on dis-
tance geometry generally assume complete, exact distance mea-
surements, and so must be extended to handle cases when data
is incomplete, or points are not exactly embeddable; hence it is
best suited for problems (such as determination of molecular struc-
ture from NMR data [30]) in which the distance measurements are
actually drawn from an underlying Euclidean space of known di-
mension. Our investigations suggest that distance geometric ap-
proaches are not sufficiently robust in the face of the significant



distortion required for a Euclidean embedding of network distance.
The approaches we present in this paper significantly outperformed
distance geometric methods on the datasets we studied.

The most commonly used term for the process of embedding
an arbitrary finite metric space into a Euclidean space ismultidi-
mensional scaling (MDS)[31]. Applications of distance geometry
to the embedding problem are often referred to asclassical metric
MDS [28]. The general term MDS usually refers to incremental
methods (such as steepest descent) applied to the minimization of
stress. A good review of commonly used embedding methods is
[12].

In contrast to MDS, a different way of finding a goodφ is the
Lipschitz embedding.A Lipschitz embedding is defined in terms
of a setD of subsets ofX, D = {L1, L2, ..., Ln}. We extend
the distance functiond to a setL ⊂ X as follows: letd(x,L) =
miny∈L d(x, y). Then the Lipschitz embedding ofX with respect
toD is the mappingφ such that

φ(x) = [d(x,L1), d(x,L2), ..., d(x,Ln)]

where|D| = n and the mapping is into the vector space IRn. Thus,
the Lipschitz embedding defines a coordinate space in which each
axis i corresponds to the minimum distance fromx to the nearest
member ofLi. In this paper we only consider Lipschitz embed-
dings in which eachLi is a singleton, and we call the variousLis
landmarks.Hence the interpretation of our embedding is particu-
larly simple: componenti of the vectorφ(x) is simply the distance
from x to landmarki.

The intuition behind the Lipschitz embedding is that in a metric
space, two nearby points (say,a andb) will typically have similar
distances to a third point (say,x). This is required by the triangle
inequality:

|d(a, x) − d(b, x)| ≤ d(a, b).

So under a Lipschitz embeddingφ, the magnitude of the difference
between any component ofφ(a) and the corresponding component
of φ(b) is bounded above byd(a, b).

It is important to note that although two nearby pointsa andb
will have similar Lipschitz coordinate vectors, the magnitude of
the distance betweenφ(a) andφ(b) is affected by the number of
dimensions used in the embedding. For this reason it is necessary
to normalize the embedding by estimating the ratioβ between dis-
tances in the Lipschitz embedding and the original metric space.
This is generally done by least squares minimization:

β = arg min
θ

X

x,y∈X

(θ ||φ(x) − φ(y)||2 − d(x, y))2.

Thus, in the remainder of the paper, when we refer to the Lipschitz
embedding of a nodex we meanβ · φ(x), whereβ is computed
relative to all nodes in the given dataset.

The Lipschitz embedding is a powerful method. It is the basis for
a number of important theoretical results on minimum-distortion
embeddings [13, 6, 17]. In addition, it has been used in other set-
tings for related problems. In [4, 19] the authors used Lipschitz
embeddings to find nearby nodes for the purpose of geolocation.
Furthemore, [19] uses delay as the basis for constructing its Lip-
schitz embedding of Internet hosts, as in this paper, and uses the
Euclidean distance to known locations in the embedding as an in-
dicator of geographic proximity to those locations. However, in
those studies, the Lipschitz embedding was an intermediate step in
addressing geolocation; our paper does not address geolocation, but
rather focuses on the properties of the Lipschitz embedding itself.

It is clear that the quality of the results obtained via that Lip-
schitz embedding depends on the choice of landmarks [29, 3]. In

Section 5 we show that quality generally improves as the number of
landmarks increases. Thus, to create low-dimensional embeddings,
we employ dimensionality reduction based on principal component
analysis (described in Section 2.3), leading to the notion of virtual
landmarks, described in detail in Section 5.

2.2 Embedding Network Distances
As described in Section 1, the first paper to explore Euclidean

embedding of network distances was [18]. The metric of inter-
est is minimum round trip time – specifically, the minimum over
a set of measured delays of ICMP echo messages. Minimum RTT
measures the round trip time of a packet in the absence of conges-
tion; this value is assumed to change infrequently enough that it is a
worthwhile target for efficient measurement methods. We make the
same assumption in this paper (however we believe that our meth-
ods have potential to be extended and applied to more dynamic
network measures).

The embedding method used in [18], called Global Network
Positioning (GNP), works as follows: First, a set of landmarks
each measure their distances to all other landmarks, and calculate
their coordinates using MDS (iterative nonlinear optimization of
the stress metric). Next, each node in the system measures dis-
tances to each landmark, and then performs its own nonlinear opti-
mization to compute its coordinates.

The authors in [27] propose another approach to embedding net-
work distances which compares favorably in accuracy to GNP on
synthetically generated graphs. However the method is also an it-
erative nonlinear optimization, with parameters that must be tuned,
and is considerably more complex than GNP.

In contrast to these approaches, the methods we propose in this
paper are much simpler, and more computationally efficient. Fur-
thermore, the accuracy of our method is comparable to GNP for the
datasets we examine.

The methods proposed in [20] are focused on enhancing scala-
bility of coordinate schemes; as in our work, they propose the use
of multiple landmark sets to distribute the load due to measurement
traffic. However their methods are based on a distance geometric
embedding, which we have found lacks robustness across diverse
datasets.

In work performed concurrently with that in this paper, the au-
thors in [15] propose methods very similar to ours. While [15]
focuses on comparison to a wider set of alternative distance es-
timation methods, this paper concentrates to a greater degree on
examining the method’s performance on a wider variety of Inter-
net measurements. Furthermore, the two papers take different ap-
proaches to improving the scalability of the basic scheme.

Finally, work that provided some of the inspiration for our paper
is described in [7]. That paper is concerned with clustering the IP
address space for efficient route selection, and implicitly uses Eu-
clidean distance in a Lipschitz embedding as the clustering metric.
A similar clustering method is proposed in [8].

2.3 Principal Component Analysis
Portions of our analysis and approach rely on principal compo-

nent analysis (PCA, also called the Karhunen-Lòeve Transform).
Here we briefly review the relevant aspects of PCA. For more de-
tails, see [25, 21].

PCA is based on singular value decomposition (SVD), which is
a matrix factorization with a number of advantageous properties.
SVD factors anm× n matrixA into the product of three matrices
U , W , andV T . U is m × n, andW andV are bothn × n. That



is,

A = U ·W · V T (1)

This factorization has three key properties:

1. V is orthogonal andU is column-orthogonal. Hence, mul-
tiplication of a vector byV does not change its length, and
multiplication of a set of vectors byV does not change the
distances between them. (All vectors here and below are
column vectors unless otherwise specified. Furthermore, we
will use the termsvectorandpoint interchangeably.)

2. W is a diagonal matrix with nonnegative entrieswi on the di-
agonal. We assume that the entries are ordered in decreasing
value (which can be obtained via a corresponding reordering
of the columns ofU and rows ofV T ). The nonzero diagonal
entrieswi are called thesingular valuesof A.

3. The columns ofU are eigenvectors ofAAT and the rows
of V T are eigenvectors ofATA. The values ofwi that are
nonzero are the square roots of the nonzero eigenvalues of
bothAAT andATA.

Note that (1) can be rewritten to express matrixA as a sum of
outer products of columns of U and rows ofV T , with the weighting
factors being the singular valueswk:

Aij =

nX

k=1

wkUikVjk 1 ≤ i ≤ m, 1 ≤ j ≤ n

The central idea of principal component analysis (PCA) is that
often we can approximateA by only a few terms in the sum, in
which case only a subset of the columns ofU and of the rows of
V T need to be stored.

In fact, SVD yields theoptimal linear approximations toA in
a mean-square sense. In particular, letv(i) be theith row of V T ;
it can be shown thatv(1) points in the direction ofmaximum vari-
ancein the point set corresponding to the rows ofA. Furthermore,
each subsequent row ofV captures the maximum variance possible
among the remaining orthogonal directions:

v(n) = arg max
||x||=1

||(A−
n−1X

i=1

w′
iv

T
(i))x||

wherew′
i is a column vector of allwi’s. The vectorv(i) is referred

to as theith principal component of the point set represented by the
rows ofA.

Thus, when we approximate the point setA by a partial sum

A′
ij =

rX

k=1

wkUikVjk 1 ≤ i ≤ m, 1 ≤ j ≤ n

with r < n, we obtain a new set of points in IRr that is the “best”
linear transformation of those points from the higher dimensional
space IRn to the lower dimensional space IRr. This is illustrated
in Figure 1. The figure shows a set of points in two dimensions,
along with the first principal component, representing the optimal
linear mapping (in a mean-square sense) of those points to a single
dimension.

Thus PCA is the application of SVD to dimensionality reduction.
Since each column ofU and each row ofV T is a unit vector, the
magnitude of the contribution of dimensioni to overall variance of
the point setA′ is entirely determined by the valuewi. Thus, if the
first r singular values are much bigger than the rest, we can expect
to introduce very little error by reducing fromn to r dimensions.

Figure 1: Principal Component Analysis applied to a 2-
dimensional dataset

This suggests that an important way to assess the potential for di-
mensionality reduction in an empirical dataset is to plot its singular
values in decreasing order. Such a plot is called ascree plot; if
the scree plot shows a knee after some number of valuesr, this is
good evidence thatr dimensions are sufficient to capture most of
the variability in the dataset.

3. DATASETS STUDIED
As we will show in Sections 4 and 5, the properties of network

delays as actually measured in the Internet are crucial to the success
of the methods we describe in this paper. While previous studies
of Euclidean embedding have looked at only one or two datasets
of moderate size (tens of thousands of measurements), we base our
results on seven datasets collected at different times and locations,
and including two large datasets (each comprising millions of mea-
surements).

We will often cast a dataset as a matrixA. A will always be
m × n, with m ≥ n. The nodes corresponding to rows areR =
{Ri, i = 1, ...,m}, and the nodes corresponding to columns are
C = {Ci, i = 1, ..., n}. ThenAij = d(Ri, Cj). Whenm = n and
Ri = Ci for all i = 1, ..., n, the matrix (or dataset) issymmetric;
otherwise it is asymmetric. For a symmetric dataset, will useN to
refer to eitherR or C since they are identical in that case.

The methods we use assume no missing entries in the matrixA.
However, in practice for large datasets, inevitably some entries will
be missing. We removed the rows containing missing entries in the
two large datasets, which comprised less than 2% of the data in
both cases.

3.1 GNP
The GNP project [18] measured minimum round trip time be-

tween 19 active sites and 869 targets. In addition, measurements
were taken between all pairs of active sites. These are respectively
referred to as the GNP asymmetric and GNP symmetric datasets,
and were collected in May 2001. About half of the targets, and 12
of the probes are in North America; the rest are distributed glob-
ally. Target IP addresses were chosen by probing the IP address
space randomly. Distance between two hosts was taken as the min-
imum time among 220 pings sent one second apart.

3.2 RON
The RON project [2] collected a variety of measurements includ-

ing ping latency between all pairs of nodes in an overlay network.
Two datasets are available, both symmetric: RON1 is taken from
a 13× 13 mesh, and RON2 is taken from a 15× 15 mesh; these



were collected in March 2001 and May 2001, respectively. The
vast majority of RON sites are in the US. Network distance in each
case is the minimum of thousands of ping times.

3.3 NLANR AMP
The NLANR Active Measurement Project [1] collects a variety

of measurements between all pairs of participating nodes. Most
participating nodes are at NSF supported HPC sites, and so have
direct connections to the Abilene network; about 10% are outside
the US. The dataset we use was collected on January 30, 2003 and
is symmetric, consisting of measurements of a 116× 116 mesh.
Each host was pinged once per minute, and network distance is
taken as the minimum of the ping times over the day’s worth of
data.

3.4 Skitter
The Skitter project [23] is a large-scale effort to continuously

monitor routing and connectivity across the Internet. It consists of
approximately 19 active sites that send probes to hundreds of thou-
sands of targets, including the set of active sites. Thus this dataset
has a symmetric subset, but is primarily asymmetric. Targets are
chosen so as to sample a wide range of prefixes spanning the Inter-
net. Results reported in [14] suggest that about 50% of the targets
in this dataset are outside the US. The dataset we used was col-
lected in December 2002; each target was pinged approximately
once per day. Network distances are the minimum ping time over
12 days. The set of targets varies among active sites; selecting the
largest set of rows for which complete data is available yields a 12
× 12 symmetric dataset, and a 12× 196,286 asymmetric dataset
with 2,355,565 entries.

3.5 Sockeye
Our last dataset was collected at Sockeye Networks [24]. It con-

sists of measurements from 11 active sites to 156,359 locations.
Targets were chosen through a scheme designed to efficiently ex-
plore as much of the routable Internet as possible. From a compos-
ite BGP table obtained from RouteViews [22], all listed /24 pre-
fixes were extracted (over 4,600,000 prefixes). Addresses within
each prefix were probed, seeking live addresses; approximately
745,000 prefixes were found to have live addresses. A traceroute
was performed to a live address in each such prefix, and the penul-
timate hop was identified. The resulting set of 158,707 penulti-
mate hops comprised the targets used. Removing rows with miss-
ing measurements resulted in a 11× 156,359 asymmetric dataset
with 1,719,949 entries. Each active site sent a ping to each target
on an hourly basis. Network distance was taken as the minimum of
all pings over a single day.

4. CHARACTERIZING NETWORK DISTANCE
Before we describe our method for Euclidean embedding of net-

work distance measurements, it is helpful to examine some prop-
erties of our network distance datasets. The properties we describe
shed light on why our Euclidean embedding method works well.

4.1 Violations of the Triangle Inequality
The first question we address concerns the assumption implicit in

the Lipschitz embedding, namely, that network distances obey the
triangle inequality. It is clear that Internet traffic does not always
follow the shortest possible path [26] and that there is potential
for violation of the triangle inequality due to routing policy. Thus,
before exploring the Lipschitz embedding it is helpful to quantify,
in frequency as well as severity, violations of the triangle inequality
in network distance.
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Figure 2: Severity of triangle inequality violations: the cumula-
tive distribution of mink(d(i, k)+d(k, j))/d(i, j) over all pairs
i, j.

To measure the frequency of triangle inequality violations, we
ask how many two-hop paths are shorter than the corresponding
one-hop path. That is, for all combinations ofi, j, k, we count how
many timesd(i, k) + d(k, j) < d(i, j). Our results show that
for the GNP symmetric dataset, this occurs 3.7% of the time; for
RON2, 6.3% of the time; and for AMP, 1.4% of the time. Thus
triangle inequality violations are not particularly frequent.

We measure the severity of triangle inequality violations as fol-
lows: for each node pair, we ask what the shortest path is between
the two that passes through a third node. That is, for all pairs of
nodesi andj, we compared(i, j) with mink(d(i, k) + d(k, j)).
The relative change in path length passing through the best alter-
nate path ismink(d(i, k) + d(k, j))/d(i, j). The cumulative dis-
tribution of this quantity is presented for three symmetric datasets
in Figure 2.

The figure shows that in fact many node pairs participate in non-
triangular combinations with a third node. As many as 40% of the
node pairs have a shorter path through an alternate node. However
the severity of violations is not particularly great; for only 10%
of the node pairs is there an alternate path that is more than 20%
shorter.

4.2 Intrinsic Dimensionality
The next question concerns the best number of dimensions to

use in embedding network distances in a Euclidean space. While
increasing the number of dimensions will always increase the ac-
curacy of the embedding, we seek to find a small number of dimen-
sions that captures most of the information in our datasets.

To assess the appropriate number of dimensions needed for em-
bedding, we examine scree plots of the distance matrixA. Then the
scree plot ofA can give some insight into the intrinsic dimension-
ality of the underlying point set. To demonstrate this we perform
the following experiment. We start with 250 points distributed uni-
formly at random in a unit hypercube of dimensionn. We then
form the 250× 250 distance matrixA and examine its scree plot.
The result is shown in Figure 3 forn = 5, 10, 15 and 20.

The figure shows that when the points are distributed inn-
dimensional space, the firstn singular values of the distance ma-
trix are significantly larger than the rest. This is evidenced by the
“knee” in the scree plot at the corresponding value ofn. This sim-
ple experiment suggests that we can gain some insight into the in-
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Figure 3: Scree plots of distance matrices for synthetic point
sets in varying numbers of dimensions.
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trinsic dimensionality—the number of dimensions necessary to ac-
curately embed a set of distances—by examining the scree plot of
the distance matrix.

In Figure 4 we show scree plots for all our datasets (for ease of
comparison the largest singular value in each case is normalized
to 1). This figure shows that these datasets have two surprising
features:

1. All of the datasets have remarkably similar sets of singular
values. There is not much difference between the distribu-
tion of singular values for the small, geographically localized
datasets (RON1, RON2), the medium sized datasets (GNP,
AMP), and the large, geographically dispersed datasets (Skit-
ter, Sockeye).

2. The number of large singular values in each dataset is only
about 7 to 9, even though most matrices have many more
columns (and one – AMP – has 116 columns).

Of course, our empirical distance matrices are not taken from a
Euclidean space, so comparing Figures 3 and 4 is only suggestive.
However the scree plots provide some justification for the observa-
tion made in [18] that approximately 7 dimensions is sufficient for
accurate embedding of the GNP dataset.

Mean Rel.
Dataset Error
GNP Symmetric 8%
GNP Asymmetric 25%
RON1 10%
RON2 8%
AMP 12%
Skitter 10%
Sockeye 13%

Table 1: Mean relative error when compressing datasets to 7
dimensions.

Furthermore, as discussed in Section 2.3, these results suggest
that each distance matrix can be compressed without much loss of
accuracy as follows. Using SVD, factorA into U ·W · V T . Now
let U ′ be ther leftmost columns ofU , let W ′ be the upper left
r×r submatrix ofW , and letV ′T be ther uppermost rows ofV T .
Then we only need to storeU ′,W ′, andV ′T in order to reconstruct
a good approximation toA as:

A′ = U ′ ·W ′ · V ′T . (2)

To illustrate this, we compress each dataset tor = 7 dimensions.
This results in compression factors from about 2 in the case of
Sockeye to about 8 for AMP. We then measure the mean relative
error between the entries in the resultingA′ and those in the orig-
inal matrix of measured dataA. The results are shown in Table 1.
The Table shows that preserving only 7 columns of each of the fac-
torsU andV is sufficient to capture almost all of the information
in any of the network distance datasets we examined.

5. LIPSCHITZ COORDINATES
The previous section showed that our datasets appear to be suit-

able for Lipschitz embedding: the triangle inequality usually holds,
and a small number of dimensions (perhaps 7) should be sufficient.

Applying the Lipschitz embedding to our datasets is straight-
forward. Consider a distance matrixA. Then any subset of the
columns ofA defines a Lipschitz embedding ofR, and any subset
of the rows ofA defines a Lipschitz embedding ofC.

For example, assume we seek an embedding for a set of nodes
with symmetric distance matrixA. Then we seek to find aφ that
embeds the finite metric space(N , d) into the Euclidean space
(IRr, δ), whered(Ni,Nj) = Aij and δ is the Euclidean norm.
The Lipschitz embedding consists of choosingr columns ofA, to
form anm × r matrix which we denoteL. Thenφ(Ni) = L(i),
whereL(i) is row i of L interpreted as a vector in IRr.

However, the choice of how many rows or columns to use in
forming L has a strong effect on the quality of the resulting em-
bedding. This is the problem of landmark selection, introduced in
Section 2.1. We illustrate the problem of landmark selection via an
example with synthetic data, as follows.

We distribute 250 points uniformly at random in a 20-
dimensional unit hypercube, and calculate the resulting distance
matrixA. We then study the quality of the Lipschitz embedding of
A as a function of the landmarks used. In the first case we use as
landmarks points that lie at location 10 on each of the axes (i.e., for
each point, 19 coordinates are zero and one has value 10). These
points are not part of the dataset, and are very far from any points in
the dataset. Although unrealistic, they provide a near-optimal com-
parison. In the other cases we use 20, 50, or 100 randomly chosen
landmarks.

The results are shown in Figure 5, which plots the cumulative
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Figure 5: Effect of different landmark sets on accuracy of Lip-
schitz embedding for synthetic data. Cumulative distribution
of relative error of embedding.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

F
ra

ct
io

n 
of

 D
is

ta
nc

es

Relative Error

100 Random -> 20 Virtual Landmarks
100 Random Landmarks

50 Random -> 20 Virtual Landmarks
50 Random Landmarks
20 Random Landmarks

Figure 6: Effect of applying PCA to landmark set for synthetic
data. Cumulative distribution of relative error of embedding.

distribution of the relative error of each Lipschitz embedding across
all 62,500 distance measurements. The results are in agreement
with intuition. The choice of 20 random landmarks is the worst one,
since at least 20 points are needed to span the underlying space.
As we increase the number of landmarks, the accuracy improves
toward the optimal (20 distant landmarks).

Unfortunately, using 100 landmarks implies assigning a coordi-
nate vector of length 100, which is undesirable. To address this
problem we make use of the observations made in Section 4. That
section showed that the column space ofA is typically captured
in roughly 7 to 9 dimensions. Furthermore, we note that approxi-
matingL with L′ by applying PCA via (2) does not significantly
alter thedistancesbetween the points corresponding to the rows of
L andL′. So we can form a new embedding of the points corre-
sponding to an embeddingL by computingLV ′. SinceL ≈ L′,
LV ′ ≈ U ′W ′.

ThusLV ′ is anm×r matrix in which the rows are anewembed-
ding ofR. In similar fashion, we can calculate the new embedding
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Figure 7: Quality of the embedding by virtual landmarks.

�y ∈ IRr for any point whose Lipschitz embedding is�x ∈ IRn as:

�y = V ′T �x.

Note that the components of�y are linear combinations of the
components of�x, which are themselves distances. So a component
of �y is a linear combinations of distances, and we can think of it as
a distance to avirtual landmark.

We first illustrate this idea using our synthetic data. For each of
the two 250× n matrices corresponding to the Lipschitz embed-
dings that usen = 50 or 100 random landmarks, we apply PCA
and reduce it to a 250× 20 matrix. The rows of this smaller matrix
are an embedding using 20 virtual landmarks. The resulting rela-
tive error distribution is shown in Figure 6. Note that in each case,
not only is using the 20 virtual landmarks much more accurate than
using 20 actual landmarks, it is at least as accurate as using the
actual landmarks (50 or 100) that were used as input to the method.

Turning now to empirical measurements, we applied the method
of virtual landmarks to our datasets. For each dataset, we per-
formed the virtual landmarks embedding using 8 dimensions.1 The
results are shown in Figure 7 as cumulative distribution plots of
relative error.

The figure shows that the method results in embeddings that
are accurate, and that accuracy is remarkably consistent across
datasets. Furthermore, the best performance is achieved on the
largest datasets (Sockeye and Skitter). For Skitter, 90% of the dis-
tances have relative error less than 0.34. In the other cases em-
bedding by virtual landmarks is sufficient to recreate 90% of the
distance measurements with relative error less than 0.5.2 This level
of performance is comparable to or better than that reported in [18]
for the GNP method.

We compare the accuracy of the virtual landmarks approach to
the GNP embedding method in Figures 8 and 9. Figure 8 com-
pares the methods using the AMP dataset. This plot shows that the
method of virtual landmarks performs much better than the GNP
method for this dataset. Furthermore, the difference in compu-
tational requirements is large: running on a Sun Ultra E450, the
1In these experiments all rows ofA were used in the PCA step; we
leave for future work the question of the smallest number of rows
useful for reasonable accuracy, and the proper choice of those rows.
2Since measurements between landmarks were not available for the
Skitter and Sockeye datasets, coordinates for the landmarks them-
selves cannot be computed. As a result we estimated landmark
coordinates using those of nearby nodes for those datasets.
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Figure 8: Comparison of virtual landmarks embedding with
GNP embedding on AMP dataset. The same set of 20 land-
marks was used in each case, yielding an embedding in 8 di-
mensions. The virtual landmark method required less than 1
second of computation, while the GNP method required over 1
hour.

GNP method required 3,626 seconds of processing time, while the
virtual landmarks method required less than 1 second.

Figure 9 compares the methods using the GNP dataset. Here we
see that the virtual landmarks method performs worse than the GNP
method, although still reasonably well (88% of distances have rel-
ative error less than 0.5). The difference in computational require-
ments is still significant: 182 seconds for GNP compared to less
than 1 second for the virtual landmarks method.

Unfortunately, the computational demands of GNP make it im-
possible to compare against the datasets where the virtual land-
marks method performs best (Sockeye and Skitter). Computing
embedding via virtual landmarks for those datasets took less than
15 seconds in each case.

These results suggest that in some settings, the virtual landmarks
method can perform as well as the GNP method while requiring
much less computation; however we also conclude that further ex-
ploration is needed to understand the reasons why the relative per-
formance of the two methods differs in different settings.

6. SCALING THE METHOD
A significant drawback of all methods that use a fixed set of land-

marks is that measurement traffic to the landmarks increases in pro-
portion to the number of nodes participating in the system. This is
true as well for the method as described in the previous section.

However, we show in this section that the notion of virtual land-
marks makes it easy to distribute measurement load more evenly
throughout the system. The basic insight is that, using the virtual
landmarks method, a randomly chosen set of landmarks defines an
embedding space that can be easily (linearly) mapped into the an-
other embedding space derived from a different set of landmarks.

That is, letL1 andL2 be two different Lipschitz embeddings of
a set of nodesR. We can think of these embeddings as each be-
ing defined by selectingn columns from a distance matrixA. For
each embedding, we can obtain a virtual landmarks embedding us-
ing PCA, as described in the previous section, yieldingL1V

′
1 and

L2V
′
2 . Since these two embeddings are both likely to be projections

onto the firstr principal components ofA, it is likely that the two
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Figure 9: Comparison of virtual landmarks embedding with
GNP embedding on GNP Asymmetric dataset. The same set of
20 landmarks was used in each case, yielding an embedding in
8 dimensions. The virtual landmark method required less than
1 second of computation, while the GNP method required over
three minutes.

point sets are nearly isometrically embeddable. To find the isome-
try we can selectr points and determine the transformation of their
coordinates fromL2V

′
2 toL1V

′
1 .

Let P1 be the coordinates ofr points fromL1V
′
1 , andP2 be the

coordinates of the samer points inL2V
′
2 . We arbitrarily choose the

coordinate space ofL1V
′
1 to be canonical. Then we solveP2T2 =

P1 to findT2. To increase accuracy in the presence of measurement
error, we can use more thanr points, in which case we solve for
T2 using least squares. Once we haveT2, then we can calculate
the canonical coordinates of a node whose measurements are to
landmarks in set 2 as:

�yi = TT
2 V

′T
2 �xi (3)

where�xi is the vector of measurements to landmarks in set 2.
This suggests the measurement scheme shown in Figure 10.

Nodes needing coordinates are divided into multiple sets (repre-
sent by hosts “A” and “B” in the diagram). Each node in seti is
equipped with its localVi andTi. A node performs measurements
to landmark seti and calculates its coordinates using (3).

The transformation matrixTi is calculated by a special set of
nodes (“Spanners” in the diagram). Spanners measure coordinates
to two landmark sets: seti, and some other setj for which V ′T

j

andTj are already known. The spanners then solveLiV
′T
i Ti =

LjV
′T
j Tj for Ti.

We can assess the accuracy of this method using our AMP
dataset. We select two landmark sets at random (each of size 20),
and find the locations of all 76 remaining nodes in the canonical
coordinate scheme two ways: directly via landmark set 1, and in-
directly via landmark set 2 using the remaining nodes as spanners.
We then measure the relative error in position for each point. The
results of five replications of this process, shown as cumulative dis-
tributions in Figure 11, suggests that there is very little error in-
troduced by calculating coordinates indirectly via spanners, rather
than directly to the canonical landmark set.

7. CONCLUSIONS AND FUTURE WORK
In this paper we’ve explored the properties of network distance
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Figure 10: Diagram of Scaling Method
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Figure 11: Accuracy of the Scaling Method

in the Internet. We’ve found, rather surprisingly, the network dis-
tances can generally be described as the linear combination of a
small number of orthogonal vectors – typically 7 to 9. This sug-
gests that an embedding in a Euclidean space of 7 to 9 dimensions
is likely to be sufficient for reasonable accuracy.

We have also proposed and explored one such embedding, the
Lipschitz embedding. By applying dimensionality reduction to the
Lipschitz embedding, we obtain an embedding that has approxi-
mately the same accuracy with many fewer dimensions. The new
dimensions are linear combinations of distances to landmarks, so
we refer to them as distances to virtual landmarks.

We show that the method of virtual landmarks is simpler,
and much faster, than previously proposed nonlinear optimiza-
tion methods for embedding. Furthermore, the virtual land-
marks method shows reasonable accuracy across a large variety of
datasets. The method is more accurate than previously proposed
methods on one dataset, and less accurate on another, which sug-
gests that more investigation is warranted into the relative strengths
of the method compared to nonlinear optimization. However, the
overall performance of the method is good: approximately 90%
of distances are preserved with relative error less than 0.5 on of our
datasets, with the largest datasets showing even better performance.

Finally, we have shown that the virtual landmarks method is eas-
ily extended to a scalable measurement framework, that places only
a constant measurement load on any host as the system size scales.
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