
1

Running Time Analysis

Introduction to O-notation

How can we quantify and compare performance 
of different algorithms given:

• different machines, processors, architectures?

• different size data sets, orderings?

• different computer languages?

• different compilers?

Unfortunately, raw performance times don’ t tell 
us much (rigorously).



2

Possible Approaches 

• Benchmarks -- test data or test programs 
that are designed to help us quantitatively 
evaluate performance.

• O-notation (Big-O) 

Quantify and compare performance of different 
algorithms that is independent of:

• machine, processor, architecture

• size of data sets, ordering of data

• computer language

• compiler used



3

void guess_game(int n)
{

int guess;
char answer;

assert(n >= 1);

cout << “Think of a number between 1 and ”  << n << “ .\n” ;
answer = ‘N’ ;
for(guess = n; guess > 0 and answer != ‘Y’  and answer != ‘ y’ ;--guess)
{

cout << “ Is your number ”  << guess << “?”  << endl;
cout << “Please answer Y or N, and press return:” ;
cin >> answer;

}
if(answer == ‘Y’  or answer == ‘ y’ ) cout << “Got it :) \n” ;
else cout << “ I think you are cheating :( \n” ;

}

Algorithm Performance

• Worst case performance? 

• Best case performance?

• Average case performance?



4

Algorithm Performance

• Worst case performance:  loops n times!!

• Best case performance?

• Average case performance?

Algorithm Performance

• Worst case performance:  loops n times!!

• Best case performance: loops once.

• Average case performance?



5

Algorithm Performance

• Worst case performance:  loops n times!!

• Best case performance: loops once.

• Average case performance:
– assume: all answers between 1 and n are 

equally likely.

– average case 

2
)...321(

11

1

n
n

n
i

n

n

i

=++++=∑
=

void guess_game(int n)
{

int guess;
char answer;

1 assert(n >= 1);

1 cout << “Think of a number between 1 and ”  << n << “ .\n” ;
1 answer = ‘N’ ;
2n+2 for(guess = n; guess > 0 and answer != ‘Y’  and answer != ‘y’ ;--guess)

{
n cout << “ Is your number ”  << guess << “?”  << endl;
n cout << “Please answer Y or N, and press return:” ;
n cin >> answer;

}
1 if(answer == ‘Y’  or answer == ‘y’ ) 
1 cout << “Got it :) \n” ;
1 else cout << “ I think you are cheating :( \n” ;

}  
Total: f(n) = 5n +  7



6

Computation required as function of n

• What is the total number of operations 
needed in guess_game?

• The number of operations required is a 
linear function of n: f(n) = c + kn.

• As n increases, computation required 
increases linearly.  We say it is O(n).

Why Simplify?

• As n gets bigger, highest order term 
dominates.

• Take for instance

• then when n = 2000, the square term accounts 
for more than 99% of running time!!

2045)( 2 ++= nnnf



7

Examples

6792)( 24 +++= nnnnf

cnnnnf ++= 22 log)(

)1(log)( −+= nnnnnf

20log2)( nnnnf n ++=

Examples

)(6792)( 424 nOnnnnf →+++=

)log(log)( 222 nnOcnnnnf →++=

)()1(log)( 2nOnnnnnf →−+=

)2(log2)( 20 nn Onnnnf →++=



8

Intuition

Adjective O-notation
constant O(1)
logarithmic O(logn)
linear O(n)
nlogn O(nlogn)
quadratic O(n2)
cubic O(n3)
exponential O(2n), O(10n), etc.

scale
of

strength

Intuition

Example O-notation
constant O(1)
binary search O(logn)
scale vector O(n)
vector, matrix multiply O(n2)
matrix, matrix multiply O(n3)

scale
of

strength



9

Running time for algorithm

f(n) n=256 n=1024 n=1,048,576

1 1µsec 1µsec 1µsec

log2n 8µsec 10µsec 20µsec

n 256µsec 1.02ms 1.05sec

n log2n 2.05ms 10.2ms 21sec

n2 65.5ms 1.05sec 1.8wks

n3 16.8sec 17.9min 36,559yrs

2n 3.7x1063yrs 5.7x10294yrs 2.1x10315639yrs 

Largest problem that can be solved if Time <= T at 
1µsec per step

f(n) T=1min T=1hr T=1wk T=1yr
n 6� 107 3.6� 109 6� 1011 3.2� 1013

nlogn 2.8� 106 1.3� 108 1.8� 1010 8� 1011

n2 7.8� 103 6� 104 7.8� 105 5.6� 106

n3 3.9� 102 1.5� 103 8.5� 103 3.2� 104

2n 25 31 39 44



10

Warning:

Some algorithms do not always take the same amount of 
time for problems of a given size n.  

Worst case performance  vs.
Average case performance

In general, best case performance is not a good measure.

Formal Definition

We say f(n) is O(g(n)) if there exist two positive
constants k and n0 such that

|f(n)| <= k|g(n)| for all n>= n0

The total number of steps does not exceed 
g(n)*constant provided we deal with 
sufficiently large problems (large n).


