CAS CS 460/660
Introduction to Database Systems

Functional Dependencies

and
Normal Forms

1.1

Review: Database Design

[]
¥ user needs; what must database do?
[]
+* high level descr (often done w/ER model)
[]
v* translate ER into DBMS data model
B Schema Refinement
v consistency,normalization
N - indexes, disk layout
m - who acgesses what

Keys (review)

M A key is a set of attributes that uniquely
identifies each tuple in a relation.

M A candidate key is a key that is minimal.

If AB is a candidate key, then neither A nor B is
a key on its own.

M A superkey is a key that is not necessarily
minimal (although it could be)

If AB is a candidate key then ABC, ABD, and
even AB are superkeys.

1.3

(Review) Projection

sname |rating
yuppy |9
lubber |8
5
sid |sname |rating |age illlsr?[gy 10
28 |yuppy | 9 35.0)
31 |lubber | 8 33.5 ﬂsname,mting()
44 | guppy 5 35.0
58 lrusty | 10 [35.0 45¢
S2 35.0
55.5

7T age(S 2)

1.4

Functional Dependencies (FDs)

M A functional dependency holds over relation
schema R if, for every allowable instance r of R:

implies ny(t.l) — ﬂy(tZ)

(where t1 and t2 are tuples;X and Y are sets of attributes)

B In other words: means

Given any two tuples in r, if the X values are the
same, then the Y values must also be the same.
(but not vice versa)

M Canread “ -7 as “determines”

1.5

FD’ s Continued

B An FD is a statement about 4/ allowable relations.
- Identified based on application semantics

« Given some instance r1 of R, we can check if rI
violates some FD f, but we cannot determine if
holds over R.

M How related to keys?
- if “K — all attributes of R” then
K is a superkey for R

(does not require K to be minimal.)

» FDs are a generalization of keys.

1.6

Example: Constraints on Entity Set

B Consider relation obtained from Hourly_Emps:
Hourly_Emps (ssn, name, lot, rating, wage_per_hr, hrs_per_wk)
v We sometimes denote a relation schema by listing the attributes: e.qg.,

v This is really the of attributes {S,N,L,R,W, H}.

v Sometimes, we refer to the set of all attributes of a relation by using
the relation name. e.g., “Hourly_Emps” for SNLRWH

B What are some FDs on Hourly_Emps (Given)?
S — SNLRWH
R—W
L — L (“trivial” dependnency)

1.7

Redundancy Problems DuetoR - W

S N L R |W |H
123-22-3666 |Attishoo |48 |8 |10 [40
231-31-5368 |Smiley 22 |8 |10 |30
131-24-3650 |Smethurst |35 |5 |7 |30 | Hourly_Emps
434-26-3751 |Guldu 35 |5 |7 |32
612-67-4134 |Madayan |35 |8 |10 |40
] Can we modify W in only the 1st tuple of SNLRWH?
O What if we want to insert an employee and don’ t

know the hourly wage for his or her rating? (or we get it wrong?)

] If we delete all employees with rating 5, we lose the
information about the wage for rating 5!

1.8

Detecting Reduncancy

S N L R |W |H

123-22-3666 |Attishoo (48 |8 [10 |40
231-31-5368 |Smiley 22 |8 |10 (30
131-24-3650 |Smethurst [35 |5 30
434-26-3751 |Guldu 35 |5 32
612-67-4134 |Madayan |35 |8 |10 |40

Hourly_Emps

Q: Why is R — W problematic, but S—W not?

1.9

Taming Schema Redundancy

Integrity constraints, in particular , can be

used to identify schemas with such problems and to suggest
refinements.

Main refinement technique:
+* replacing ABCD with, say, AB and BCD, or ACD and ABD.

Decomposition should be used judiciously:
v" Is there reason to decompose a relation?
v+ What problems (if any) does the decomposition cause?

Decomposing a Relation

B Redundancy can be removed by “chopping” the relation into
pieces.

B FD’s are used to drive this process.
R — W is causing the problems, so decompose SNLRWH into what

relations?
S N L R [H
123-22-3666 |Attishoo |48 |8 [40 R |W
231-31-5368 |Smiley |22 |8 |30 2 110
131-24-3650 |Smethurst 35 |5 |30
434-26-3751 |Guldu 35 |5 (32 > |7
612-67-4134 |Madayan |35 |8 |40 Wages

Hourly_Emps2

Reasoning About FDs

B Given some FDs, we can usually infer additional FDs:
title — studio, star implies title — studio and title — star
title — studio and title — star implies title — studio, star
title — studio, studio — star implies title — star
But,

title, star — studio does NOT necessarily imply that
title — studio or that star — studio

B AnFD fis a set of FDs F if f holds whenever all FDs in F
hold.
mFt= is the set of all FDs that are implied by F. (includes

“trivial dependencies”)

Rules of Inference

B Armstrong’ s Axioms (X, Y, Z are sets of attributes):

v If YCX, then X—=Y
v If X—=Y, then XZ —YZ foranyZ
v If X=Y and Y—=Z, then X—=Z
B These are and inference rules for FDs!

v i.e., using AA you can compute all the FDs in F+ and only these FDs.

B Some additional rules (that follow from AA):
' IfX—=Y and X— 27, then X—=YZ
v IfX—=YZ, then X—=Y and X =Z

Example

[] , and:

v+ Cis the key: —

v Job purchases each part using single contract: —
v+ Dept purchases at most 1 part from a supplier: —

JP - C, C— CSIDPQV imply JP — CSIDPQV
(by transitivity) (shows that JP is a key)
SD — P implies SDJ — JP (by augmentation)
SD] — JP, JP — CSIDPQV imply SDJ — CSIDPQV
(by transitivity) thus SDJ is a key.

Q: can you now infer that SD — CSDPQV (i.e., drop J on
both sides)?

No! FD inference is not like arithmetic multiplication.

1.14

Attribute Closure

B Size of F* is exponential in # attributes in R;
+* Computing it can be expensive.

B If we just want to check if a given FD X —=Y'is in F*, then:

1) Compute the of X (denoted X*) wrt F
« Xt = Set of all attributes A such that X — Aisin F*
= initialize X+ :=X
= Repeat until no change:
if U— Vin F such that U is in X*, then add V to X*

2) Check if Y is in X*

B Can also be used to find the keys of a relation.
= If all attributes of R are in X* then X is a superkey for R.

= Q: How to check if X is a “candidate key”?

1.15

Attribute Closure (example)

||
||
B [sB—-EinF"?
B+ =B
Bt = BCD
B+ = BCDA
B+ = BCDAE ... Yes! B is a key for R too!®
B Is D akey for R?
D*=D
D* = DE

D+ = DEC .

... Nope!

Is AD a key for R?

AD* = AD

AD* = ABD and B is a key, so
Yes!

Is AD a candidate key
for R?

At = A
A not a key, nor is D so Yes!

Is ADE a candidate key
for R?

No! AD is a key, so ADE is a
superkey, but not a cand. key

Normal Forms

Question: is any refinement needed??!
If a relation is in a (etc.):
v+ we know that certain problems are avoided/minimized.
v helps decide whether decomposing a relation is useful.
+* NFs are syntactic rules (don't need to understand app)
Role of FDs in detecting redundancy:
v Consider a relation R with 3 attributes, ABC.
" There is no redundancy here.

5 — If A 'is not a key, then several tuples could have the same A
value, and if so, they’ Il all have the same B value!

1st Normal Form — all attributes are atomic (i.e., “flat tables™)
1st D2nd (of historical interest) D 34D Boyce-Codd D ...

Normal Forms

, Normal form Defined by Brief definition

First normal Two versions: E.F. Codd (1970), C.J. Date . . .

form (1NF) (yo) Table faithfully represents a relation and has no repeating groups

fSOt:rcno?:Nn%)rmal E.F. Codd (1971)2! No non-prime attribute in the table is functionally dependent on a proper subset of any candidate key

.Thir d normal E.F. Codd (1971);/?! see also Carlo Zaniolo's |Every non-prime attribute is non-transitively dependent on every candidate key in the table. The attributes that
form (3NF) equivalent but differently expressed definition do not contribute to the description of the primary key are removed from the table. In other words, no transitivity

(1982)/1°] dependency is allowed.
Elementary Key

Normal Form |C.Zaniolo (1982)17!
(EKNF)

Boyce—Codd

normal form Raymond F. Boyce and E.F. Codd (1974)!'"! | Every non-trivial functional dependency in the table is a dependency on a superkey
(BCNF)

Every non-trivial functional dependency in the table is either the dependency of an elementary key attribute or a
dependency on a superkey

Fourth normal

form (4NF) Ronald Fagin (1977)/'2] Every non-trivial multivalued dependency in the table is a dependency on a superkey

:22: ?:':lr;al Ronald Fagin (1979)/'%] Every non-trivial join dependency in the table is implied by the superkeys of the table

'Domain/key

normal form Ronald Fagin (1981)[14! Every constraint on the table is a logical consequence of the table's domain constraints and key constraints
(DKNF)

fsol::;h (glzr:)al f(;r'ér::;es' (:;g;)ﬁ::rwen, arid o Table features no non-trivial join dependencies at all (with reference to generalized join operator)

Boyce-Codd Normal Form (BCNF)

Reln R with FDs Fis in if, forall X — A in F*
v AeX (called a FD), or
v X is a superkey for R.

In other words: “R is in BCNF if the only non-trivial FDs over R are key
constraints.”

If R in BCNF, then every field of every tuple records information that cannot
be inferred using FDs alone.

v Say we are told that FD X — A holds for this example relation:

e Can you guess the value of the YA
missing attribute? x |yl
y2 |?

eYes, so relation is not in BCNF

1.19

Boyce-Codd Normal Form -
Alternative Formulation

“The key, the whole key, and
nothing but the key”

Decomposition of a Relation Scheme

W If a relation is not in a desired normal form, it can be decomposed into
multiple relations that each are in that normal form.

B Suppose that relation R contains attributes A1 ... An. A
of R consists of replacing R by two or more relations such that:

v+ Each new relation scheme contains a subset of the attributes of R, and

v Every attribute of R appears as an attribute of at least one of the new
relations.

1.21

Example

S N L |[R W |H

123-22-3666 |Attishoo |48 |8 |10 |40
231-31-5368 |Smiley 22 18 (10 (30
131-24-3650 |Smethurst |35 |5 |7 |30
434-26-3751 |Guldu 35 |5 |7 |32
612-67-4134 |(Madayan |35 |8 |10 |40

Hourly_Emps

B SNLRWH has FDs S — SNLRWH and R = W
M Q: Is this relation in BCNF?

No, The second FD causes a violation;
W values repeatedly associated with R values.

1.22

Decomposing a Relation

B Easiest fix is to create a relation RW to store these associations,
and to remove W from the main schema:

S N L [RH

123-22-3666 |Attishoo |48 |8 |40 R |W
231-31-5368 |Smiley (22 |8 |30 g 110
131-24-3650 |Smethurst |35 |5 |30

434-26-3751 |Guldu |35 |5 |32 > |

612-67-4134 |Madayan |35 |8 |40 Wages

Hourly_Emps2

*Q: Are both of these relations now in BCNF?

eDecompositions should be used only when needed.
—Q: potential problems of decomposition?

1.23

Refining an ER Diagram

B 1st diagram becomes: Before:

. dname
+" Lots associated with @ . Q

workers.
OFKers Employees ‘@ Departments
B Suppose all workers in

a dept are assigned the same
lot: D—L

B Redundancy; fixed by:

After:

G o) | /@D

B Can fine-tune this: AN - /
Employees —Departments

1.24

Decomposing a Relation

B Easiest fix is to create a relation RW to store these associations,
and to remove W from the main schema:

S N L [RH

123-22-3666 |Attishoo |48 |8 |40 R |W
231-31-5368 |Smiley (22 |8 |30 g 110
131-24-3650 |Smethurst |35 |5 |30

434-26-3751 |Guldu |35 |5 |32 > |

612-67-4134 |Madayan |35 |8 |40 Wages

Hourly_Emps2

*Q: Are both of these relations now in BCNF?

eDecompositions should be used only when needed.
—Q: potential problems of decomposition?

1.25

Problems with Decompositions

B There are three potential problems to consider:
impossible
= Fortunately, not in the SNLRWH example.
= Fortunately, not in the SNLRWH example.
= e.g., How much does Guldu earn?

Must consider these
issues vs. redundancy.

1.26

(Review) Rel Alg Operator: Join (<)

B Joins are compound operators involving cross product, selection,
and (sometimes) projection.

B Most common type of joinis a “ ” (often just called “join”).
R > S conceptually is:

v Compute R X S

v Select rows where attributes that appear in both relations have
equal values

¥ Project all unique attributes and one copy of each of the common
ones.

B Note: Usually done much more efficiently than this.
B Useful for putting “normalized” relations back together.

1.27

Natural Join Example

sid [sname |rating |age
sid |bid | day 22 |dustin | 7 [45.0
22 1101 |10/10/96 31 |lubber | 8 55§
58 1103 |11/12/96 58 |rusty 10 135.0
R1 S1
R1D><1 S1 =

sid |sname |rating |age |bid |day

22 dustin |7 45.0 |101 |10/10/96

58 rusty |10 35.0 |103 |11/12/96

1.28

Lossless Decomposition (example)

S N L R |H
123-22-3666 |Attishoo |48 |8 |40 R
231-31-5368 |Smiley 22 |8 |30 g 10
131-24-3650 |Smethurst |35 |5 |30 D q
434-26-3751 |Guldu 35 |5 |32 5
612-67-4134 |Madayan |35 |8 |40
S N L R W |H
123-22-3666 |Attishoo (48 (8 |10 (40
— 231-31-5368 |Smiley 22 (8 [10 |30
T 131-24-3650 |Smethurst |35 |5 30
434-26-3751 |Guldu 35 |5 32
612-67-4134 |Madayan |35 |8 |10 |40

1.29

Lossy Decomposition (example)

C

cn \O OO

B

AN WV A

B

AN WV A

A

— <t

C

cNn \O OO0 OO0 on

B

AN VN AN A A

A

— <t >~ — >

C

cn \O OO

B

AN WV A

A

— <t

C

cn \O OO

B

AN WV A

B

AN WV A

A

— <t

1.30

Lossless Decomposition

B Decomposition of Rinto X and Y is w.r.t. a set of FDs F if,
for every instance r that satisfies F:

T x(n DAT() =1

M The decomposition of R into Xand Y is
if and only if = contains:

>

>

in previous example: decomposing ABC into AB and BC is lossy, because
intersection (i.e., “B”) is not a key of either resulting relation.

B Useful result: If W — Z holds over Rand W N Zis
empty, then decomposition of R into R-Z and WZ is
lossless.

1.31

Lossless Decomposition (example)

A B |C Alc| [B]c
L2 73 j> E E
415 16 4 16 5 16
7 12 |8 7 18 | |2 18
—- B C—=B
A |C B |C A B |C
E E — 1 203
46N56 4 15 |6
7 18 2 |8 7 12 |8

But, now we can’t check A — B without doing a join!

1.32

Dependency Preserving

Decomposition
O (Intuitive):

+'If R is decomposed into X, Y and Z, and we
enforce the FDs that hold individually on X, on Y
and on Z, then all FDs that were given to hold
on R must also hold.

B The projection of F on attribute set X (denoted -,) is the set of FDs

— (closure of F, not just F) such that all of the attributes on
both sides of the f.d.

v That is: U and V are subsets of X

1.33

Dependency Preserving Decompositions
(Contd.)

B Decomposition of Rinto X and Y is if

v i.e., if we consider only dependencies in the closure F * that can be checked in X
without considering Y, and in Y without considering X, these imply all
dependencies in F .

B Important to consider - in this definition:
v+ ABC, A—B, B—C, C— A, decomposed into AB and BC.

= note: F* containsFU {A —-C,B— A, C— B}, so...

B F,; contains A —Band B — A; Fg- contains B— Cand C — B
B So, (Fas U Fgo)t contains C — A

1.34

Decomposition into BCNF

B Consider relation R with FDs F.

—

v of this idea will give us a collection of relations that are in
, and guaranteed to terminate.

v e.g., CSIDPQV, keyC, JP—-C, SD—-P, 1 —=S

¥ {contractid, supplierid, projectid,deptid,partid, qty, value}

v To deal with SD — P, decompose into SDP, CSIDQV.

v+ To deal with J — S, decompose CSIDQV into JS and CIDQV
v+ So we end up with: SDP, JS, and CIDQV

B Note: several dependencies may cause violation of BCNF. The order in
which we fix them could lead to very different sets of relations!

1.35

BCNF and Dependency Preservation

B In general,

vegqg., CZ CS—=2 2—-C
v Can’ t decompose while preserving 1st FD; not in BCNF.

B Similarly, decomposition of CSIDPQV into SDP, JS and CIDQV is not
dependency preserving (w.r.t.the FDs JP - C, SD - P and] — S).

B {contractid, supplierid, projectid,deptid,partid, qty, value}
v+ However, it is a lossless join decomposition.

v+ In this case, adding JPC to the collection of relations gives us a dependency
preserving decomposition.

= but JPC tuples are stored only for checking the f.d.

1.36

Third Normal Form (3NF)

B Reln R with FDs F is in if, forall X — A in F*
A € X (called a trivial FD), or
X is a superkey of R, or

A is part of some candidate key (not superkey!) for R. (sometimes stated as “A
is prime”)
] of a key is crucial in third condition above!

B If Ris in BCNF, obviously in 3NF.

m If Ris in 3NF, some redundancy is possible. It is a compromise, used when
BCNF not achievable (e.g., no ~ "good’’ decomp, or performance
considerations).

s

1.37

Decomposition into 3NF

B Obviously, the algorithm for lossless join decomp into BCNF can be used to
obtain a lossless join decomp into 3NF (typically, can stop earlier) but does
not ensure dependency preservation.

[]
e —

Problem is that XY may violate 3NF! e.g., consider the addition of CJP to
“preserve’ JP — C. What if we also have J — C?

O Instead of the given set of FDs F, use a

1.38

Minimal Cover for a Set of FDs

N G for a set of FDs F:
v Closure of F = closure of G.
¥ Right hand side of each FD in G is a single attribute.

v+ If we modify G by deleting an FD or by deleting attributes from an FD in G, the
closure changes.

B Intuitively, every FD in G is needed, and "7 in order
to get the same closure as F.

®m eg., A— B, ABCD - E, EF - GH, ACDF — EG has the following
minimal cover:

+v+A—-B, ACD—E, EF—-G and EF - H
B M.C. implies 3NF, Lossless-Join, Dep. Pres. Decomp!!!
¥ (more in book)

1.39

Assertions

B How to testif and FD is satisfied?

B ASSERTIONS:

CREATE ASSERTION assertion_name CHECK predicate
Example:

CREATE ASSERTION SmallClub

CHECK ((SELECT COUNT(S.sid) FROM Sailors S) +
(SELECT COUNT(B.bid) FROM Boats B) < 100)

1.40

Assertions

Constraint: A customer with a loan should have an account with at
least 1000 dollars.

create assertion balance_constraint check
(not exists (select * from loan L
where not exists (select *
from borrower B, depositor D, account A
where L.loan_no = B.loan_no

and B.cname = D.cname
and D.account_no = A.account_no

and A.balance >= 1000))

1.41

Another example

customer(customer_name, customer_street, customer_city)

Constraint: Customer city is always not null.
Can enforce it with an assertion:

Create Assertion CityCheck Check
(NOT EXISTS (
Select *
From customer
Where customer_city is null));

1.42

