
1.1

CAS CS 460/660
Introduction to Database Systems

Functional Dependencies
and

Normal Forms

1.2

Review: Database Design

■ Requirements Analysis

➹  user needs; what must database do?

■ Conceptual Design

➹  high level descr (often done w/ER model)

■  Logical Design

➹  translate ER into DBMS data model

■ Schema Refinement

➹  consistency,normalization

■ Physical Design - indexes, disk layout

■ Security Design - who accesses what

1.3

Keys (review)

■ A key is a set of attributes that uniquely
identifies each tuple in a relation.

■ A candidate key is a key that is minimal.

If AB is a candidate key, then neither A nor B is
a key on its own.

■ A superkey is a key that is not necessarily
minimal (although it could be)

If AB is a candidate key then ABC, ABD, and
even AB are superkeys.

1.4

(Review) Projection

)2(, Sratingsnameπ

πage S()2

S2

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sname rating
yuppy 9
lubber 8
guppy 5
rusty 10

age
35.0
55.5

1.5

Functional Dependencies (FDs)
■ A functional dependency X → Y holds over relation

schema R if, for every allowable instance r of R:
 t1 ∈ r, t2 ∈ r, πX (t1) = πX (t2)
 implies πY (t1) = πY (t2)
(where t1 and t2 are tuples;X and Y are sets of attributes)

■  In other words: X → Y means

 Given any two tuples in r, if the X values are the
same, then the Y values must also be the same.
(but not vice versa)

■ Can read “→” as “determines”

1.6

FD’s Continued

■ An FD is a statement about all allowable relations.
•  Identified based on application semantics

•  Given some instance r1 of R, we can check if r1

violates some FD f, but we cannot determine if f
holds over R.

■ How related to keys?
•  if “K → all attributes of R” then
 K is a superkey for R

(does not require K to be minimal.)

•  FDs are a generalization of keys.

1.7

Example: Constraints on Entity Set

■  Consider relation obtained from Hourly_Emps:

 Hourly_Emps (ssn, name, lot, rating, wage_per_hr, hrs_per_wk)

➹ We sometimes denote a relation schema by listing the attributes: e.g.,
SNLRWH

➹ This is really the set of attributes {S,N,L,R,W,H}.

➹ Sometimes, we refer to the set of all attributes of a relation by using
the relation name. e.g., “Hourly_Emps” for SNLRWH

■  What are some FDs on Hourly_Emps (Given)?

ssn is the key: S → SNLRWH
rating determines wage_per_hr: R → W
lot determines lot: L → L (“trivial” dependnency)

1.8

Redundancy Problems Due to R → W

■  Update anomaly: Can we modify W in only the 1st tuple of SNLRWH?

■  Insertion anomaly: What if we want to insert an employee and don’t
know the hourly wage for his or her rating? (or we get it wrong?)

■  Deletion anomaly: If we delete all employees with rating 5, we lose the
information about the wage for rating 5!

Hourly_Emps

S N L R W H
123-22-3666 Attishoo 48 8 10 40
231-31-5368 Smiley 22 8 10 30
131-24-3650 Smethurst 35 5 7 30
434-26-3751 Guldu 35 5 7 32
612-67-4134 Madayan 35 8 10 40

1.9

Detecting Reduncancy

Hourly_Emps

Q: Why is R → W problematic, but S →W not?

S N L R W H
123-22-3666 Attishoo 48 8 10 40
231-31-5368 Smiley 22 8 10 30
131-24-3650 Smethurst 35 5 7 30
434-26-3751 Guldu 35 5 7 32
612-67-4134 Madayan 35 8 10 40

1.10

Taming Schema Redundancy

■  Integrity constraints, in particular functional dependencies, can be
used to identify schemas with such problems and to suggest
refinements.

■  Main refinement technique: decomposition
➹  replacing ABCD with, say, AB and BCD, or ACD and ABD.

■  Decomposition should be used judiciously:
➹  Is there reason to decompose a relation?

➹ What problems (if any) does the decomposition cause?

1.11

Decomposing a Relation

■  Redundancy can be removed by “chopping” the relation into
pieces.

■  FD’s are used to drive this process.
R → W is causing the problems, so decompose SNLRWH into what

relations?

Hourly_Emps2

Wages

S N L R H
123-22-3666 Attishoo 48 8 40
231-31-5368 Smiley 22 8 30
131-24-3650 Smethurst 35 5 30
434-26-3751 Guldu 35 5 32
612-67-4134 Madayan 35 8 40

R W
8 10
5 7

1.12

Reasoning About FDs

■  Given some FDs, we can usually infer additional FDs:
title → studio, star implies title → studio and title → star

title → studio and title → star implies title → studio, star

title → studio, studio → star implies title → star

But,

 title, star → studio does NOT necessarily imply that
 title → studio or that star → studio

■  An FD f is implied by a set of FDs F if f holds whenever all FDs in F
hold.

■  F+ = closure of F is the set of all FDs that are implied by F. (includes
“trivial dependencies”)

1.13

Rules of Inference

■  Armstrong’s Axioms (X, Y, Z are sets of attributes):
➹  Reflexivity: If Y ⊆ X, then X → Y
➹  Augmentation: If X → Y, then XZ → YZ for any Z
➹  Transitivity: If X → Y and Y → Z, then X → Z

■  These are sound and complete inference rules for FDs!
➹  i.e., using AA you can compute all the FDs in F+ and only these FDs.

■  Some additional rules (that follow from AA):
➹  Union: If X → Y and X → Z, then X → YZ
➹  Decomposition: If X → YZ, then X → Y and X → Z

1.14

Example

■  Contracts(cid,sid,jid,did,pid,qty,value), and:
➹  C is the key: C → CSJDPQV

➹  Job purchases each part using single contract: JP → C

➹  Dept purchases at most 1 part from a supplier: SD → P

■  Problem: Prove that SDJ is a key for Contracts
•  JP → C, C → CSJDPQV imply JP → CSJDPQV

(by transitivity) (shows that JP is a key)

•  SD → P implies SDJ → JP (by augmentation)

•  SDJ → JP, JP → CSJDPQV imply SDJ → CSJDPQV

•  (by transitivity) thus SDJ is a key.

Q: can you now infer that SD → CSDPQV (i.e., drop J on
both sides)?

No! FD inference is not like arithmetic multiplication.

1.15

Attribute Closure

■  Size of F+ is exponential in # attributes in R;
➹  Computing it can be expensive.

■  If we just want to check if a given FD X →Y is in F+, then:

 1) Compute the attribute closure of X (denoted X+) wrt F
•  X+ = Set of all attributes A such that X → A is in F+

§  initialize X+ := X

§  Repeat until no change:

 if U → V in F such that U is in X+, then add V to X+

 2) Check if Y is in X+

■  Can also be used to find the keys of a relation.

§  If all attributes of R are in X+ then X is a superkey for R.

§ Q: How to check if X is a “candidate key”?

1.16

Attribute Closure (example)

■  R = {A, B, C, D, E}

■  F = { B →CD, D → E, B → A, E → C, AD →B }

■  Is B → E in F+ ?

 B+ = B
B+ = BCD

B+ = BCDA

B+ = BCDAE … Yes! B is a key for R too!

■  Is D a key for R?
D+ = D

D+ = DE

D+ = DEC

 … Nope!

•  Is AD a key for R?
AD+ = AD
 AD+ = ABD and B is a key, so
Yes!

•  Is AD a candidate key
for R?
A+ = A
 A not a key, nor is D so Yes!

•  Is ADE a candidate key
for R?

 No! AD is a key, so ADE is a
superkey, but not a cand. key

1.17

Normal Forms

■  Question: is any refinement needed??!

■  If a relation is in a normal form (BCNF, 3NF etc.):
➹  we know that certain problems are avoided/minimized.

➹  helps decide whether decomposing a relation is useful.

➹  NFs are syntactic rules (don’t need to understand app)

■  Role of FDs in detecting redundancy:
➹  Consider a relation R with 3 attributes, ABC.

§  No (non-trivial) FDs hold: There is no redundancy here.

§  Given A → B: If A is not a key, then several tuples could have the same A
value, and if so, they’ll all have the same B value!

■  1st Normal Form – all attributes are atomic (i.e., “flat tables”)

■  1st ⊃2nd (of historical interest) ⊃ 3rd ⊃ Boyce-Codd ⊃ …

1.18

Normal Forms

1.19

Boyce-Codd Normal Form (BCNF)
■  Reln R with FDs F is in BCNF if, for all X → A in F+

➹  A ∈ X (called a trivial FD), or

➹  X is a superkey for R.

■  In other words: “R is in BCNF if the only non-trivial FDs over R are key
constraints.”

■  If R in BCNF, then every field of every tuple records information that cannot
be inferred using FDs alone.

➹ Say we are told that FD X → A holds for this example relation:

•  Can you guess the value of the
missing attribute?

• Yes, so relation is not in BCNF

X Y A

x y1 a
x y2 ?

1.20

Boyce-Codd Normal Form -
Alternative Formulation

“The key, the whole key, and
nothing but the key”

1.21

Decomposition of a Relation Scheme
■  If a relation is not in a desired normal form, it can be decomposed into

multiple relations that each are in that normal form.

■  Suppose that relation R contains attributes A1 ... An. A decomposition
of R consists of replacing R by two or more relations such that:
➹  Each new relation scheme contains a subset of the attributes of R, and

➹  Every attribute of R appears as an attribute of at least one of the new
relations.

1.22

 Example

■ SNLRWH has FDs S → SNLRWH and R → W

■ Q: Is this relation in BCNF?

Hourly_Emps

No, The second FD causes a violation;
W values repeatedly associated with R values.

S N L R W H
123-22-3666 Attishoo 48 8 10 40
231-31-5368 Smiley 22 8 10 30
131-24-3650 Smethurst 35 5 7 30
434-26-3751 Guldu 35 5 7 32
612-67-4134 Madayan 35 8 10 40

1.23

Decomposing a Relation
■  Easiest fix is to create a relation RW to store these associations,

and to remove W from the main schema:

• Decompositions should be used only when needed.
– Q: potential problems of decomposition?

• Q: Are both of these relations now in BCNF?

Hourly_Emps2

Wages

S N L R H
123-22-3666 Attishoo 48 8 40
231-31-5368 Smiley 22 8 30
131-24-3650 Smethurst 35 5 30
434-26-3751 Guldu 35 5 32
612-67-4134 Madayan 35 8 40

R W
8 10
5 7

1.24

Refining an ER Diagram

■  1st diagram becomes:
Workers(S,N,L,D,Si)
Departments(D,M,B)

➹ Lots associated with
workers.

■  Suppose all workers in
a dept are assigned the same
lot: D → L

■  Redundancy; fixed by:
Workers2(S,N,D,Si)
Dept_Lots(D,L)
Departments(D,M,B)

■  Can fine-tune this:
Workers2(S,N,D,Si)
Departments(D,M,B,L)

lot
dname

budget did

since
name

Works_In Departments Employees

ssn

lot

dname

budget

did

since
name

Works_In Departments Employees

ssn

Before:

After:

1.25

Decomposing a Relation
■  Easiest fix is to create a relation RW to store these associations,

and to remove W from the main schema:

• Decompositions should be used only when needed.
– Q: potential problems of decomposition?

• Q: Are both of these relations now in BCNF?

Hourly_Emps2

Wages

S N L R H
123-22-3666 Attishoo 48 8 40
231-31-5368 Smiley 22 8 30
131-24-3650 Smethurst 35 5 30
434-26-3751 Guldu 35 5 32
612-67-4134 Madayan 35 8 40

R W
8 10
5 7

1.26

Problems with Decompositions
■  There are three potential problems to consider:

1) May be impossible to reconstruct the original relation! (Lossiness)

§ Fortunately, not in the SNLRWH example.
2) Dependency checking may require joins.

§ Fortunately, not in the SNLRWH example.
3) Some queries become more expensive.

§ e.g., How much does Guldu earn?

Lossiness (#1) cannot be allowed

#2 and #3 are design tradeoffs: Must consider these
issues vs. redundancy.

1.27

(Review) Rel Alg Operator: Join ()
■  Joins are compound operators involving cross product, selection,

and (sometimes) projection.

■  Most common type of join is a “natural join” (often just called “join”).
R S conceptually is:
➹ Compute R X S
➹ Select rows where attributes that appear in both relations have

equal values
➹ Project all unique attributes and one copy of each of the common

ones.

■  Note: Usually done much more efficiently than this.
■  Useful for putting “normalized” relations back together.

1.28

Natural Join Example

R1
S1

R1 S1 =

sid sname rating age bid day
22 dustin 7 45.0 101 10/10/96
58 rusty 10 35.0 103 11/12/96

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid bid day
22 101 10/10/96
58 103 11/12/96

1.29

Lossless Decomposition (example)

=


S N L R H
123-22-3666 Attishoo 48 8 40
231-31-5368 Smiley 22 8 30
131-24-3650 Smethurst 35 5 30
434-26-3751 Guldu 35 5 32
612-67-4134 Madayan 35 8 40

R W
8 10
5 7

S N L R W H
123-22-3666 Attishoo 48 8 10 40
231-31-5368 Smiley 22 8 10 30
131-24-3650 Smethurst 35 5 7 30
434-26-3751 Guldu 35 5 7 32
612-67-4134 Madayan 35 8 10 40

1.30

Lossy Decomposition (example)

A → B; C → B

A B C
1 2 3
4 5 6
7 2 8

A B
1 2
4 5
7 2

B C
2 3
5 6
2 8

A B C
1 2 3
4 5 6
7 2 8
1 2 8
7 2 3

= A B
1 2
4 5
7 2

B C
2 3
5 6
2 8

1.31

 Lossless Decomposition

■  Decomposition of R into X and Y is lossless-join w.r.t. a set of FDs F if,
for every instance r that satisfies F:
 (r) (r) = r

■ The decomposition of R into X and Y is lossless with
respect to F if and only if F+ contains:

 X ∩ Y → X, or
 X ∩ Y → Y

in previous example: decomposing ABC into AB and BC is lossy, because

intersection (i.e., “B”) is not a key of either resulting relation.
■ Useful result: If W → Z holds over R and W ∩ Z is

empty, then decomposition of R into R-Z and WZ is
lossless.

π X π Y

1.32

Lossless Decomposition (example)

A → B; C → B

But, now we can’t check A → B without doing a join!

 =

A B C
1 2 3
4 5 6
7 2 8

A C
1 3
4 6
7 8

B C
2 3
5 6
2 8

A C
1 3
4 6
7 8

B C
2 3
5 6
2 8

A B C
1 2 3
4 5 6
7 2 8

1.33

Dependency Preserving
Decomposition

■  Dependency preserving decomposition (Intuitive):

➹ If R is decomposed into X, Y and Z, and we
enforce the FDs that hold individually on X, on Y
and on Z, then all FDs that were given to hold
on R must also hold. (Avoids Problem #2 on
our list.)

■  The projection of F on attribute set X (denoted FX) is the set of FDs

U → V in F+ (closure of F , not just F) such that all of the attributes on
both sides of the f.d. are in X.

➹  That is: U and V are subsets of X

1.34

Dependency Preserving Decompositions
(Contd.)

■  Decomposition of R into X and Y is dependency preserving if
 (FX ∪ FY) + = F +

➹  i.e., if we consider only dependencies in the closure F + that can be checked in X
without considering Y, and in Y without considering X, these imply all
dependencies in F +.

■  Important to consider F + in this definition:
➹  ABC, A → B, B → C, C → A, decomposed into AB and BC.
➹  Is this dependency preserving? Is C → A preserved?????

§  note: F + contains F ∪ {A → C, B → A, C → B}, so…

■  FAB contains A →B and B → A; FBC contains B → C and C → B
■  So, (FAB ∪ FBC)

+ contains C → A

1.35

Decomposition into BCNF
■  Consider relation R with FDs F.

 If X → Y violates BCNF, decompose R into R - Y and XY
 (guaranteed to be lossless).

➹  Repeated application of this idea will give us a collection of relations that are in
BCNF; lossless join decomposition, and guaranteed to terminate.

➹  e.g., CSJDPQV, key C, JP → C, SD → P, J → S

➹  {contractid, supplierid, projectid,deptid,partid, qty, value}
➹  To deal with SD → P, decompose into SDP, CSJDQV.

➹  To deal with J → S, decompose CSJDQV into JS and CJDQV

➹  So we end up with: SDP, JS, and CJDQV

■  Note: several dependencies may cause violation of BCNF. The order in
which we fix them could lead to very different sets of relations!

1.36

BCNF and Dependency Preservation

■  In general, there may not be a dependency preserving decomposition into
BCNF.
➹  e.g., CSZ, CS → Z, Z → C
➹  Can’t decompose while preserving 1st FD; not in BCNF.

■  Similarly, decomposition of CSJDPQV into SDP, JS and CJDQV is not
dependency preserving (w.r.t. the FDs JP → C, SD → P and J → S).

■  {contractid, supplierid, projectid,deptid,partid, qty, value}
➹  However, it is a lossless join decomposition.
➹  In this case, adding JPC to the collection of relations gives us a dependency

preserving decomposition.
§  but JPC tuples are stored only for checking the f.d. (Redundancy!)

1.37

Third Normal Form (3NF)

■  Reln R with FDs F is in 3NF if, for all X → A in F+
A ∈ X (called a trivial FD), or

X is a superkey of R, or

A is part of some candidate key (not superkey!) for R. (sometimes stated as “A
is prime”)

■  Minimality of a key is crucial in third condition above!

■  If R is in BCNF, obviously in 3NF.

■  If R is in 3NF, some redundancy is possible. It is a compromise, used when
BCNF not achievable (e.g., no ``good’’ decomp, or performance
considerations).
➹  Lossless-join, dependency-preserving decomposition of R into a collection of

3NF relations always possible.

1.38

Decomposition into 3NF

■  Obviously, the algorithm for lossless join decomp into BCNF can be used to
obtain a lossless join decomp into 3NF (typically, can stop earlier) but does
not ensure dependency preservation.

■  To ensure dependency preservation, one idea:
➹  If X → Y is not preserved, add relation XY.

Problem is that XY may violate 3NF! e.g., consider the addition of CJP to
`preserve’ JP → C. What if we also have J → C ?

■  Refinement: Instead of the given set of FDs F, use a minimal cover for F.

1.39

Minimal Cover for a Set of FDs

■  Minimal cover G for a set of FDs F:
➹  Closure of F = closure of G.
➹  Right hand side of each FD in G is a single attribute.
➹  If we modify G by deleting an FD or by deleting attributes from an FD in G, the

closure changes.

■  Intuitively, every FD in G is needed, and ``as small as possible’’ in order
to get the same closure as F.

■  e.g., A → B, ABCD → E, EF → GH, ACDF → EG has the following
minimal cover:
➹  A → B, ACD → E, EF → G and EF → H

■  M.C. implies 3NF, Lossless-Join, Dep. Pres. Decomp!!!
➹  (more in book)

1.40

Assertions

■  How to test if and FD is satisfied?

■  ASSERTIONS:

CREATE ASSERTION assertion_name CHECK predicate

Example:

CREATE ASSERTION SmallClub
CHECK ((SELECT COUNT(S.sid) FROM Sailors S) +
 (SELECT COUNT(B.bid) FROM Boats B) < 100)

1.41

Assertions

Constraint: A customer with a loan should have an account with at
least 1000 dollars.

create assertion balance_constraint check
 (not exists (select * from loan L
 where not exists (select *

 from borrower B, depositor D, account A
 where L.loan_no = B.loan_no

 and B.cname = D.cname
 and D.account_no = A.account_no
 and A.balance >= 1000))

1.42

Another example

customer(customer_name, customer_street, customer_city)

Constraint: Customer city is always not null.
Can enforce it with an assertion:

Create Assertion CityCheck Check
(NOT EXISTS (
 Select *
 From customer
 Where customer_city is null));

