
1.1

CAS CS 460/660
Introduction to Database Systems

Query Optimization

1.2

Review

■  Implementation of Relational Operations as Iterators
➹  Focus largely on External algorithms (sorting/hashing)

■  Choices depend on indexes, memory, stats,…
■  Joins

➹  Blocked nested loops:
§  simple, exploits extra memory

➹  Indexed nested loops:
§  best if 1 rel small and one indexed

➹  Sort/Merge Join
§  good with small amount of memory, bad with duplicates

➹  Hash Join
§  fast (enough memory), bad with skewed data
§  Relatively easy to parallelize

■  Sort and Hash-Based Aggs and DupElim

1.3

Query Optimization Overview

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND
 R.bid=100 AND S.rating>5

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

■  Query can be converted to relational algebra
■  Rel. Algebra converted to tree, joins as branches
■  Each operator has implementation choices
■  Operators can also be applied in different order!

πsname(σ(bid=100 ∧ rating > 5) (Reserves ▹◃ Sailors))

1.4

Iterator Interface (pull from the top)
■  Recall:

• Relational operators at nodes support uniform
iterator interface:

Open(), get_next(), close()

• Unary Ops – On Open() call Open() on child.

• Binary Ops – call Open() on left child then on
right.

• By convention, outer is on left.

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Alternative is pipelining (i.e. a “push”-based approach).

Can combine push & pull using special operators.

1.5

Query Optimization Overview (cont)

■  Logical Plan: Tree of R.A. ops
■  Physical Plan: Tree of R.A. ops, with choice of algorithm for each

operator.

■  Two main issues:
➹  For a given query, what plans are considered?

§  Algorithm to search plan space for cheapest (estimated) plan.
➹  How is the cost of a plan estimated?

■  Ideally: Want to find best plan.

■  Reality: Avoid worst plans!

1.6

Cost-based Query Sub-System

 Query Parser

Query Optimizer

Plan Generator Plan Cost Estimator

Query Plan Evaluator

Catalog Manager

Usually there is a
heuristics-based
rewriting step before
the cost-based steps.

Schema Statistics

Select *
From Blah B
Where B.blah = blah

Queries

1.7

Schema for Examples

■  As seen in previous lectures…
■  Reserves:

➹  Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.
➹  Let’s say there are 100 boats.

■  Sailors:
➹  Each tuple is 50 bytes long, 80 tuples per page, 500 pages.
➹  Let’s say there are 10 different ratings.

■  Assume we have 5 pages in our buffer pool.

Sailors (sid: integer, sname: string, rating: integer, age: real)

Reserves (sid: integer, bid: integer, day: dates, rname: string)

1.8

Motivating Example

■  Cost: 500+500*1000 I/Os
■  By no means the worst plan!
■  Misses several opportunities: selections

could have been `pushed’ earlier, no
use is made of any available indexes,
etc.

■  Goal of optimization: To find more
efficient plans that compute the same
answer.

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND
 R.bid=100 AND S.rating>5

Sailors Reserves

sid=sid

bid=100 rating > 5

sname

(Page-Oriented
 Nested loops)

(On-the-fly)

(On-the-fly) Plan:

1.9

500,500 IOs

Alternative Plans – Push Selects  
(No Indexes)

Sailors Reserves

sid=sid

bid=100 rating > 5

sname

(Page-Oriented
 Nested loops)

(On-the-fly)

(On-the-fly)

Sailors

Reserves

sid=sid

rating > 5

sname

(Page-Oriented
 Nested loops)

(On-the-fly)

(On-the-fly)

bid=100 (On-the-fly)

250,500 IOs

1.10

Alternative Plans – Push Selects  
(No Indexes)

Sailors

Reserves

sid=sid

rating > 5

sname

(Page-Oriented
 Nested loops)

(On-the-fly)

(On-the-fly)

bid=100 (On-the-fly)

Sailors Reserves

sid=sid

bid = 100

sname

(Page-Oriented
 Nested loops)

(On-the-fly)

rating > 5
(On-the-fly) (On-the-fly)

250,500 IOs
250,500 IOs

1.11

Sailors

Reserves

sid=sid

rating > 5

sname

(Page-Oriented
 Nested loops)

(On-the-fly)

(On-the-fly)

bid=100 (On-the-fly)

6000 IOs

Sailors

Reserves

sid=sid

rating > 5

sname

(Page-Oriented
 Nested loops)

(On-the-fly)

(On-the-fly)

bid=100

(On-the-fly)

250,500 IOs

Alternative Plans – Push Selects
(No Indexes)

1.12

Sailors Reserves

sid=sid

rating > 5

sname

(Page-Oriented
 Nested loops)

(On-the-fly)

bid=100
(Scan &
Write to
temp T2) (On-the-fly)

6000 IOs

Sailors

Reserves

sid=sid

rating > 5

sname

(Page-Oriented
 Nested loops)

(On-the-fly)

(On-the-fly)

bid=100

(On-the-fly)

Alternative Plans – Push Selects
(No Indexes)

4250 IOs
1000 + 500+ 250 + (10 * 250)

1.13

Reserves Sailors

sid=sid

bid=100

sname

(Page-Oriented
 Nested loops)

(On-the-fly)

rating>5
(Scan &
Write to
temp T2) (On-the-fly)

Alternative Plans – Push Selects
(No Indexes)

4010 IOs
500 + 1000 +10 +(250 *10)

Sailors Reserves

sid=sid

rating > 5

sname

(Page-Oriented
 Nested loops)

(On-the-fly)

bid=100
(Scan &
Write to
temp T2) (On-the-fly)

4250 IOs

1.14

Alternative Plans 1  
(No Indexes)

■ Main difference:
Sort Merge Join

■  With 5 buffers, cost of plan:
➹  Scan Reserves (1000) + write temp T1 (10 pages, if we

have 100 boats, uniform distribution).
➹  Scan Sailors (500) + write temp T2 (250 pages, if have 10 ratings).
➹  Sort T1 (2*2*10), sort T2 (2*4*250), merge (10+250)
➹  Total: 4060 page I/Os. (note: T2 sort takes 4 passes with B=5)

■  If use BNL join, join = 10+4*250, total cost = 2770.
■  Can also `push’ projections, but must be careful!

➹  T1 has only sid, T2 only sid, sname:
➹  T1 fits in 3 pgs, cost of BNL under 250 pgs, total < 2000.

Reserves Sailors

sid=sid

bid=100

sname (On-the-fly)

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

(Sort-Merge Join)

1.15

Alt Plan 2: Indexes

■  With clustered hash index on bid of
Reserves, we get 100,000/100 =
1000 tuples on 1000/100 = 10 pages.

■  INL with outer not materialized.

❖  Decision not to push rating>5 before the join is based on
 availability of sid index on Sailors.
❖  Cost: Selection of Reserves tuples (10 I/Os); then, for each,
 must get matching Sailors tuple (1000*1.2); total 1210 I/Os.

❖  Join column sid is a key for Sailors.
At most one matching tuple, unclustered index on sid OK.

–  Projecting out unnecessary fields
from outer doesn’t help.

(On-the-fly)

(Use hash
Index, do
not write
to temp)

Reserves

Sailors

sid=sid

bid=100

sname

rating > 5

(Index Nested Loops,
with pipelining)

(On-the-fly)

1.16

What is needed for optimization?

■  Iterator Interface
■  Cost Estimation
■  Statistics and Catalogs
■  Size Estimation and Reduction Factors

1.17

Query Blocks: Units of Optimization

■  An SQL query is parsed into a collection of query blocks, and these are
optimized one block at a time.

■  Inner blocks are usually treated as subroutines
■  Computed:

➹  once per query (for uncorrelated sub-queries)
➹  or once per outer tuple (for correlated sub-queries)

SELECT S.sname
FROM Sailors S
WHERE S.age IN
 (SELECT MAX (S2.age)
 FROM Sailors S2
 GROUP BY S2.rating)

Nested block

Outer block

1.18

Translating SQL to Relational Algebra
SELECT S.sid, MIN (R.day)
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = “red”
AND S.rating = (SELECT MAX (S2.rating) FROM Sailors S2)
GROUP BY S.sid
HAVING COUNT (*) >= 2

For each sailor with the highest rating (over all sailors), and at least two
reservations for red boats, find the sailor id and the earliest date on which the
sailor has a reservation for a red boat.

1.19

Translating SQL to Relational Algebra

SELECT S.sid, MIN (R.day)
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = “red”
AND S.rating = (SELECT MAX (S2.rating) FROM Sailors S2)
GROUP BY S.sid
HAVING COUNT (*) >= 2

π S.sid, MIN(R.day)

(HAVING COUNT(*)>2 (
 GROUP BY S.Sid (
 B.color = “red” ∧S.rating = (Sailors Reserves Boats)))) σ

Inner Block

val

1.20

Relational Algebra Equivalences

■  Allow us to choose different operator orders and to `push’ selections and
projections ahead of joins.

■  Selections:
(Cascade)() () () σ σ σ c cn c cn R R 1 1 ∧ ∧ ≡

€

σ c1 σ c2 R()()≡ σ c2 σ c1 R()() (Commute)

❖  Projections:

€

πa1 R()≡ πa1 ... πan R()()() (Cascade)

These two mean we can do joins in any order.

(if an includes an-1 includes… a1)

❖  Joins: R (S T) (R S) T (Associative)

(R S) (S R) (Commute)

