
1.1

CAS CS 460/660
Introduction to Database Systems

Recovery

1.2

Review: The ACID properties

■  Atomicity: All actions in the Xact happen, or none
happen.

■  Consistency: If each Xact is consistent, and the DB
starts consistent, it ends up consistent.

■  Isolation: Execution of one Xact is isolated from
that of other Xacts.

■  Durability: If a Xact commits, its effects persist.
■ Question: which ones does the Recovery Manager

help with?

Atomicity & Durability (and
also used for Consistency-related
rollbacks)

1.3

Motivation

■  Atomicity:
➹  Transactions may abort (“Rollback”).

■  Durability:
➹ What if DBMS stops running? (Causes?)

crash!❖  Desired state after system
restarts:

–  T1 & T3 should be durable.
–  T2, T4 & T5 should be

aborted (effects not seen).

T1
T2
T3
T4
T5

Abort
Commit

Commit

1.4

Big Ideas

■  Write Ahead Logging (WAL)
➹  save it on stable storage!
➹  and how it interacts with the buffer manager

■  ARIES Recovery algorithm
➹  “Repeats History” in order to simplify the logic of recovery.
➹ Must handle arbitrary failures

§ Even during recovery!

1.5

Assumptions

■  Concurrency control is in effect.

➹ Strict 2PL, in particular.

■  Updates are happening “in place”.

➹ i.e. data is overwritten on (deleted from) the
actual page copies (not private copies).

1.6

Buffer Management Plays a Key Role

One possible approach – Force/No Steal:
•  Force – make sure that every updated page is

written to disk before commit.
–  Provides durability without REDO logging.
–  But, can cause poor performance.

•  No Steal – don’t allow buffer-pool frames with
uncommited updates to overwrite committed data
on disk.
–  Useful for ensuring atomicity without UNDO logging.
–  But can cause poor performance.

1.7

Preferred Policy: Steal/No-Force

■  This combination is most complicated but allows for highest
flexibility/performance.

■  NO FORCE (complicates enforcing Durability)
➹ What if system crashes before a modified page written by a committed

transaction makes it to disk?

➹ Write as little as possible, in a convenient place, at commit time, to support
REDOing modifications.

■  STEAL (complicates enforcing Atomicity)
➹ What if the Xact that performed udpates aborts?

➹ What if system crashes before Xact is finished?

➹ Must remember the old value of P (to support UNDOing the write to page P).

1.8

Buffer Management summary

Force

No Force

No Steal Steal

Slowest

Fastest

Performance
Implications

Force

No Force

No Steal Steal

No REDO
No UNDO UNDO

No REDO

 UNDO
REDO

No UNDO
REDO

Logging/Recovery
Implications

1.9

Basic Idea: Logging

■  Record REDO and UNDO information, for every update, in a log.
➹  Sequential writes to log (put it on a separate disk).

➹ Minimal info (diff) written to log, so multiple updates fit in a single log
page.

■  Log: An ordered list of REDO/UNDO actions
➹  Log record contains:

<XID, pageID, offset, length, old data, new data>
➹  and additional control info (which we’ll see soon).

1.10

Write-Ahead Logging (WAL)
■  The Write-Ahead Logging Protocol:

1) Must force the log record for an update before the corresponding data
page gets to disk.

2) Must force all log records for a Xact before commit. (transaction is not
committed until all of its log records including its “commit” record are
on the stable log.)

■  #1 (with UNDO info) helps guarantee Atomicity.

■  #2 (with REDO info) helps guarantee Durability.

■  This allows us to implement Steal/No-Force

■  We’ll look at the ARIES algorithms from IBM.

1.11

WAL & the Log

■  Each log record has a unique Log
Sequence Number (LSN).
➹  LSNs always increasing.

■  Each data page contains a pageLSN.
➹  The LSN of the most recent log record

for an update to that page.

■  System keeps track of flushedLSN.
➹ max LSN flushed to stable log so far.

■  WAL (rule 1): For a page “i” to

 be written must flush log at

 least to the point where:

pageLSNi ≤ flushedLSN

LSNs

DB

pageLSNs
RAM

flushedLSN

Log records
flushed to disk

“Log tail”
 in RAM

flushedLSN

pageLSNi

Pagei

1.12

Log Records

prevLSN is the LSN of the previous log
record written by this transaction (i.e.,
the records of an Xact form a linked list
backwards in time)

Possible log record types:

■  Update, Commit, Abort

■  Checkpoint (for log maintainence)

■  Compensation Log Records (CLRs)
➹  for UNDO actions

■  End (end of commit or abort –
bookkeeping only means clean-up is
finished)

LSN
prevLSN
XID
type

length
pageID

offset
before-image
after-image

LogRecord fields:

for
update
records
only

1.13

Other Log-Related State (in
memory)

■ Two in-memory tables:

■ Transaction Table

One entry per currently active transaction.
§ entry removed when Xact commits or aborts

Contains: XID (i.e., transactionId),
 status (running/committing/aborting),
 lastLSN (most recent LSN written by Xact)

■ Dirty Page Table

One entry per dirty page currently in buffer pool.

Contains recLSN -- the LSN of the log record that
first caused the page to be dirty.

1.14

Normal Execution of an Xact
■  Assume:

➹ Strict 2PL concurrency control
➹  STEAL, NO-FORCE buffer management, with WAL.
➹ Disk writes are atomic (i.e., all-or-nothing)

■  Transaction is a series of reads & writes, followed by commit or
abort.
➹  Update TransTable on transaction start/end
➹  For each update operation:

§  create log record with LSN l = ++MaxLSN and
 prevLSN = TransTable[XID].lastLSN;

§ update TransTable[XID].lastLSN = l
§  if modified page NOT in DirtyPageTable,

then add it with recLSN = l
➹ When buffer manager replaces a dirty page, remove its entry from the

DPT

1.15

Transaction Commit
■ Write commit record into log.

■ Flush all log records up to and including the Xact’s
commit record to log disk.

➹ WAL Rule #2: Ensure flushedLSN ≥ lastLSN.
§ Force log out up to lastLSN if necessary

➹ Note that log flushes are sequential, synchronous
writes to disk and many log records per log page.
§  so, cheaper than forcing out the updated data and index

pages.

■ Commit() returns.

■ Write end record to log.

1.16

Simple Transaction Abort

■  For now, consider an explicit abort of a Xact.
➹  No crash involved.

■  We want to “play back” the log in reverse order, UNDOing
updates.
➹ Write an Abort log record before starting to rollback operations.
➹  Get lastLSN of Xact from Transaction table.
➹  Can follow chain of log records backward via the prevLSN field.
➹  For each update encountered:

§ Write a “CLR” (compensation log record) for
each undone operation.

§ Undo the operation (using before image from
log record).

1.17

Abort, cont.

■  To perform UNDO, must have a lock on data!
➹  No problem (we’re doing Strict 2PL)!

■  Before restoring old value of a page, write a CLR:
➹  You continue logging while you UNDO!!

➹  CLR has one extra field: undonextLSN

§  Points to the next LSN to undo (i.e. the prevLSN of the record we’re
currently undoing).

➹  CLRs are never Undone (but they might be Redone when repeating
history: guarantees Atomicity!)

■  At end of UNDO, write an “end” log record.

1.18

Abort Example (no crash)

2
U
p
d

5
U
p
d

6
U
p
d

7
U
p
d

8
U
p
d

9
A
b
t

10
U
p
d

11
U
p
d

12
C
lr
5’

13
C
o
m

14
C
lr
2’

15
E
n
d

3
U
p
d

4
U
p
d

1
C
h
k

undoNextLSN

prevLSN

1.19

Checkpointing

■  Conceptually, keep log around for all time. Obviously this has
performance/implemenation problems…

■  Periodically, the DBMS creates a checkpoint, in order to minimize the
time taken to recover in the event of a system crash. Write to log:
➹  begin_checkpoint record: Indicates when chkpt began.

➹  end_checkpoint record: Contains current Xact table and dirty page table.
This is a `fuzzy checkpoint’:

§  Other Xacts continue to run; so these tables accurate only as of the
time of the begin_checkpoint record.

§  No attempt to force dirty pages to disk; effectiveness of checkpoint
limited by oldest unwritten change to a dirty page.

➹  Store LSN of most recent chkpt record in a safe place (master record).

1.20

The Big Picture: What’s Stored Where

DB

Data pages
 each
 with a
 pageLSN

Xact Table
 lastLSN
 status

Dirty Page Table

 recLSN

flushedLSN

RAM

prevLSN
XID
type

length
pageID

offset
before-image
after-image

LogRecords

LOG

master record
LSN of

most recent
checkpoint

1.21

Crash Recovery: Big Picture

❖  Start from a checkpoint
(found via master record).

❖  Three phases. Need to:
1. Analysis - update structures:

– Trans Table: which Xacts
were active at time of crash.

– Dirty Page Table: which
pages might have been dirty
in the buffer pool at time of
crash.

2. REDO all actions.
(repeat history)

3. UNDO effects of failed Xacts.

Oldest log
rec. of Xact
active at
crash
Smallest
recLSN in
dirty page
table after
Analysis

Last chkpt

CRASH

A R U

1.22

Recovery: The Analysis Phase
■  Re-establish knowledge of state at checkpoint.

➹  via transaction table and dirty page table stored in the checkpoint

■  Scan log forward from checkpoint.
➹  End record: Remove Xact from Xact table.

➹  All Other records: Add Xact to Xact table, set lastLSN=LSN, change Xact
status on commit/abort.

➹  also, for Update records: If page P not in Dirty Page Table, Add P to DPT,
set its recLSN=LSN.

■  At end of Analysis…
➹  transaction table says which xacts were active at time of crash.

➹  DPT says which dirty pages might not have made it to disk

1.23

Phase 2: The REDO Phase

■  We repeat History to reconstruct state at crash:
➹  Reapply all updates (even of aborted Xacts!), redo CLRs.

■  Scan forward from log rec containing smallest recLSN in DPT.

 Q: why start here?

■  For each update log record or CLR with a given LSN, REDO the action
unless:
➹  Affected page is not in the Dirty Page Table, or

➹  Affected page is in D.P.T., but has recLSN > LSN, or

➹  pageLSN (in DB) ≥ LSN. (this last case requires I/O)

■  To REDO an action:
➹  Reapply logged action.

➹  Set pageLSN to LSN. No additional logging, no forcing!

1.24

Phase 3: The UNDO Phase

ToUndo={lastLSNs of all Xacts in the Trans Table}

Repeat:
➹  Choose (and remove) largest LSN among ToUndo.

➹  If this LSN is a CLR and undonextLSN==NULL

§ Write an End record to the log for this Xact.
➹  If this LSN is a CLR, and undonextLSN != NULL

§ Add undonextLSN to ToUndo
§  (note we don’t do any updates to data pages to UNDO CLRs. Why?)

➹  Else this LSN is an update. Undo the update, write a CLR, add prevLSN
to ToUndo.

Until ToUndo is empty.

1.25

Example of Recovery – (up to crash)

begin_checkpoint
 end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10, UndoNxt=Null
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

 00
 05
 10
 20
 30
 40
 45
 50
 60

Xact Table
 lastLSN
 status

Dirty Page Table
 recLSN

flushedLSN

ToUndo

RAM

1.26

Example (cont.):Analysis & Redo

Trans lastLSN Stat

begin_checkpoint
 end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10, UndoNxt=Null
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG
 00
 05
 10
 20
 30
 40
 45
 50
 60

Xact Table

Dirty Page Table

Redo starts at LSN 10;
in this case, reads P5, P3, and
P1 from disk, redoes ops if
pageLSN < LSN

Trans lastLSN Stat

T1 10 r

Trans lastLSN Stat

T1 10 r

T2 20 r

Trans lastLSN Stat

T1 30 a

T2 20 r

Trans lastLSN Stat

T1 40 a

T2 20 r

Trans lastLSN Stat

T2 20 r

Trans lastLSN Stat

T2 20 r

T3 50 r

Trans lastLSN Status

T2 60 r

T3 50 r

PageId recLSN PageId recLSN

P5 10

PageId recLSN

P5 10

P3 20

PageId recLSN

P5 10

P3 20

P1 50

1.27

Ex (cont.): Undo & Crash During Restart!

begin_checkpoint,
 end_checkpoint
update: T1 writes P5;Prvl=null
update T2 writes P3; Prvl = null
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1; PrvL=null
update: T2 writes P5; PrvL=20
CRASH, RESTART
CLR: Undo T2 LSN 60; UndoNxtLSN=20
CLR: Undo T3 LSN 50;UndoNxtLSN=null
T3 end
CRASH, RESTART
CLR: Undo T2 LSN 20;UndoNxtLSN=null
 T2 end

00
05

 10
 20
 30

40
45

 50
 60

 70
80
85

 90
100

After Analysis/Redo:
ToUndo: 50 & 60
ToUndo:
50 & 20
ToUndo:
20
After Analysis/Redo:
ToUndo: 70
ToUndo:
20

ToUndo:
Finished!

1.28

begin_checkpoint,
 end_checkpoint
update: T1 writes P5;Prvl=null
update T2 writes P3; Prvl = null
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1; PrvL=null
update: T2 writes P5; PrvL=20
CRASH, RESTART
CLR: Undo T2 LSN 60; UndoNxtLSN=20
CLR: Undo T3 LSN 50;UndoNxtLSN=null
T3 end
CRASH, RESTART
CLR: Undo T2 LSN 20;UndoNxtLSN=null
 T2 end

00
05

 10
 20
 30

40
45

 50
 60

 70
80
85

 90
100

After Analysis/Redo:
ToUndo: 50 & 60
ToUndo:
50 & 20
ToUndo:
20
After Analysis/Redo:
ToUndo: 70
ToUndo:
20

ToUndo:
Finished!

1.29

Additional Crash Issues

■  What happens if system crashes during Analysis? During
REDO?
➹  The logged action is reapplied

➹  The pageLSN on the page is set to LSN of the redone log record

■  At the end of REDO, write end records for all transactions with
status C (why?)

■  How to reduce the amount of work in Analysis?
➹  Take frequent checkpoints.

1.30

■  How do you limit the amount of work in REDO?
➹  Frequent checkpoints plus

➹  Flush data pages to disk asynchronously in the background (during
normal operation and recovery).

§  Buffer manager can do this to unpinned, dirty pages.

■  How do you limit the amount of work in UNDO?
➹  Avoid long-running Xacts.

Additional Crash Issues

1.31

Summary of Logging/Recovery

■  Transactions support the ACID properties.

■  Recovery Manager guarantees Atomicity & Durability.

■  Use Write Ahead Longing (WAL) to allow STEAL/NO-FORCE
buffer manager without sacrificing correctness.

■  LSNs identify log records; linked into backwards chains per
transaction (via prevLSN).

■  pageLSN allows comparison of data page and log records.

1.32

Summary, Cont.

■  Checkpointing: A quick way to limit the amount of log to scan
on recovery.

■  Aries recovery works in 3 phases:
➹  Analysis: Forward from checkpoint. Rebuild transaction and dirty

page tables.

➹  Redo: Forward from oldest recLSN, repeating history for all
transactions.

➹  Undo: Backward from end to first LSN of oldest Xact alive at crash.
Rollback all transactions not completed as of the time of the crash.

■  Redo “repeats history”: Simplifies the logic!

■  Upon Undo, write CLRs. Nesting structure of CLRS avoids having
to “undo undo operations”.

1.33

Database Architecture

DB Programmer
User DBA

DML Precompiler Query Optimizer
DDL Interpreter

Query Evaluator

Buffer Manager

File Manager

Data

Statistics

Indices

Schema

DDL CommandsQuery
Code w/ embedded queries

Transaction Manager
Recovery Manager

Metadata

Integrity Constraints
Secondary Storage

Storage Manager

Query Processor

