CAS CS 460/660
Introduction to Database Systems

Recovery

Review: The ACID properties

m All actions in the Xact happen, or none
happen.

= If each Xact is consistent, and the DB
starts consistent, it ends up consistent.

] Execution of one Xact is isolated from
that of other Xacts.

m If a Xact commits, its effects persist.

B Question: which ones does the
help with?
Atomicity & Durability (and
also used for Consistency-related
rolibacks)

1.2

Motivation

Atomicity:

v" Transactions may abort (“Rollback™).
Durability:

v+ What if DBMS stops running? (Causes?)

« Desired state after system
restarts: T1 . Commit
T1 & T3 should be durable. To Abort
T2, T4 & T5 should be T3 Commit
aborted (effects not seen). T4"
15 '

1.3

Big Ideas

B Write Ahead Logging (WAL)
¥ save it on stable storage!
¥ and how it interacts with the buffer manager

B ARIES Recovery algorithm
v “Repeats History” in order to simplify the logic of recovery.
¥" Must handle arbitrary failures

= Even during recovery!

1.4

Assumptions

B Concurrency control is in effect.
v Strict 2PL, in particular.
B Updates are happening “in place”.

v'i.e. data is overwritten on (deleted from) the
actual page copies (not private copies).

1.5

Buffer Management Plays a Key Role

— make sure that every updated page is
written to disk before commit.

— Provides durability without REDO logging.
— But, can cause poor performance.

— don’ t allow buffer-pool frames with
uncommited updates to overwrite committed data
on disk.

— Useful for ensuring atomicity without UNDO logging.
— But can cause poor performance.

1.6

Preferred Policy: Steal/No-Force

B This combination is most complicated but allows for highest
flexibility/performance.

O (complicates enforcing Durability)

v What if system crashes before a modified page written by a committed
transaction makes it to disk?

v+ Write as little as possible, in a convenient place, at commit time, to support
ing modifications.

] (complicates enforcing Atomicity)
v What if the Xact that performed udpates aborts?
v What if system crashes before Xact is finished?
+" Must remember the old value of P (to support ing the write to page P).

1.7

Buffer Management summary

No Steal Steal No Steal Steal
No Force No Force N(:Qléggo

No UNDO| UNDO
No REDO No REDO

Force | S|lowest Force

Performance Logging/Recovery
Implications Implications

1.8

Basic Idea: Logging

B Record REDO and UNDO information, for every update, in a /og.
v Sequential writes to log (put it on a separate disk).

+* Minimal info (diff) written to log, so multiple updates fit in a single log
page.
B Log: An ordered list of REDO/UNDO actions

¥ Log record contains:

<XID, pagelD, offset, length, old data, new data>

v* and additional control info (which we’ |l see soon).

1.9

Write-Ahead Logging (WAL)

The Write-Ahead Logging Protocol:

1) Must the for an update the corresponding
gets to disk.

2) Must for a Xact (transaction is not
committed until all of its log records including its “commit” record are
on the stable log.)

#1 (with UNDO info) helps guarantee Atomicity.
#2 (with REDO info) helps guarantee Durability.
This allows us to implement Steal/No-Force

We’ Il look at the ARIES algorithms from IBM.,

RPN IINNIINNIIN IS

WAL & the Log @ RAW

LSNs pageLSNs flushedLSN

B Each log record has a unique Log
+* LSNs always increasing. Log records
: flushed to disk
B Each contains a

v+ The LSN of the most recent log record
for an update to that page.

B System keeps track of

+* max LSN flushed to stable log so far.
flushed LS

=7

] For a page "i" to

be written must flush log at pageLSN,

least to the point where:

pageLSN; = flushedLSN Pagei

Log Records

LogRecord fields:

LSN
prevLSN

XID

type
/ pagelD
length
offset
before-image
\ after-image

for
update
records
only

/\

prevLSN is the LSN of the previous log
record written by this transaction (i.e.,
the records of an Xact form a linked list
backwards in time)

Possible log record types:

B Update, Commit, Abort

B Checkpoint (for log maintainence)

B Compensation Log Records (CLRs)
v for UNDO actions

B End (end of commit or abort —
bookkeeping only means clean-up is
finished)

Other Log-Related State (in

memory)
B Two in-memory tables:

One entry per currently active transaction.
= entry removed when Xact commits or aborts

Contains: (i.e., transactionld),
(running/committing/aborting),
(most recent LSN written by Xact)

One entry per dirty page currently in buffer pool.

Contains -- the LSN of the log record that
first caused the page to be dirty.

1.13

Normal Execution of an Xact

B Assume:
v concurrency control
¥ STEAL, NO-FORCE buffer management, with
+* Disk writes are atomic (i.e., all-or-nothing)
B Transaction is a series of & , followed by or

+* Update TransTable on transaction start/end
v For each update operation:

= create log record with LSN £ = ++MaxLSN and
prevLSN = TransTable[XID].lastLSN;

= update TransTable[XID].lastLSN = ¢

= if modified page NOT in DirtyPageTable,
then add it with recLSN = £

v \ISVFP_I(_en buffer manager replaces a dirty page, remove its entry from the

Transaction Commit
H Write record into log.

® Flush all log records up to and including the Xact’ s
to log disk.

+"WAL Rule #2: Ensure
= Force log out up to lastLSN if necessary

v"Note that log flushes are sequential, synchronous
writes to disk and many log records per log page.

= 50, cheaper than forcing out the updated data and index
pages.

B Commit() returns.
W Write record to log.

1.15

Simple Transaction Abort

B For now, consider an explicit abort of a Xact.
+* No crash involved.

B We want to “play back” the log in reverse order, UNDQing
updates.

v+ Write an
v Get of Xact from Transaction table.
v Can follow chain of log records backward via the field.
v For each update encountered:
= Write a “C1. 2”7 (compensation log record) for

each undone operation.

= Undo the operation (using before image from
log record).

Abort, cont. & &

Y R
S O
Y% Y
S

B To perform UNDO, must have a lock on data!
v+ No problem (we’ re doing Strict 2PL)!

B Before restoring old value of a page, write a CLR:
¥ You continue logging while you UNDO!!
+* CLR has one extra field:

= Points to the next LSN to undo (i.e. the prevLSN of the record we’ re
currently undoing).

v CLRs are Undone (but they might be Redone when repeating
history: guarantees Atomicity!)

B At end of UNDO, write an “end” log record.

Abort Example (no crash)

23456738 9101112131415
UUUUUUUAUUCCCE
PpPppPpPpPPbppliroln
dddddddtdd5Sm2 d

prevLSN

undoNextLSN

Checkpointing

B Conceptually, keep log around for all time. Obviously this has
performance/implemenation problems...

B Periodically, the DBMS creates a , in order to minimize the
time taken to recover in the event of a system crash. Write to log:
v record: Indicates when chkpt began.

v record: Contains current Xact table and dirty page table.
This is a :

= QOther Xacts continue to run; so these tables accurate only as of the
time of the record.

= No attempt to force dirty pages to disk; effectiveness of checkpoint
limited by oldest unwritten change to a dirty page.

v Store LSN of most recent chkpt record in a safe place (record).

The Big Picture: What’ s Stored Where

LOG > ‘ | RAM

LogRecords S———
prevLSN Xact T?aZ’!I?SN
XID
type each status
pagelD with a
length pageLSN Dirty Page Table
offset recLSN
before-image
after-image LSN of flushedLSN

most recent
checkpoint

1.20

Crash Recovery: Big Picture

Oldest log
rec. of Xact
active at
crash

n
=

Smallest

recLSN in 2
dirty page -
table after -
Analysis

« Start from a
(found via record).

« Three phases. Need to:
1. Analysis - update structures:

— Trans Table: which Xacts
were active at time of crash.

— Dirty Page Table: which
pages might have been dirty
in the buffer pool at time of
crash.

all actions.
(repeat history)
3. UNDO effects of failed Xacts.

1.21

Recovery: The Analysis Phase

B Re-establish knowledge of state at checkpoint.
¥ via stored in the checkpoint

B Scan log forward from checkpoint.

v record: Remove Xact from Xact table.

¥ All Add Xact to Xact table, set , change Xact
status on

¥ also, for records: If page P not in Dirty Page Table, Add P to DPT,
set its

B At end of Analysis...

¥* transaction table says which xacts were active at time of crash.
+* DPT says which dirty pages might not have made it to disk

1.22

Phase 2: The REDO Phase

m We to reconstruct state at crash:
v+ Reapply =// updates (even of aborted Xacts!), redo CLRs.

W Scan forward from log rec containing smallest in DPT.
Q: why start here?

B For each update log record or CLR with a given , REDO the action
unless:

v Affected page is not in the Dirty Page Table, or

v Affected page is in D.P.T., but has or
v (in DB) = (this last case requires I/0)
m To an action:

v+ Reapply logged action.
v Set to . No additional logging, no forcing!

1.23

Phase 3: The UNDO Phase

Repeat:
+* Choose (and remove) largest LSN among ToUndo.
v If this LSN is a and

= Write an record to the log for this Xact.
v If this LSN is a , and

= Add to

= (note we don‘t do any updates to data pages to UNDO CLRs. Why?)

¥ Else this LSN is an . Undo the update, write a CLR, add
to

Until is empty

1.24

Example of Recovery — (up to crash)

LSN . LOG
RAM 00 —-— begin_checkpoint
05 =~ end_checkpoint
Xact Table 10 = update: T1 writes P5
lastLSN 00—)
: 7
Dirty PazteatTL;Sble 30 -+ T1 abort:
ecL SN 40 - CLR: Undo T1 LSN 10, UndoNxt=Null
flushedLSN 45 <+ T1 End
50 = update: T3 writes P1
60 -

X

1.25

Example (cont.):Analysis & Redo

Xact Table

Trans

lastLSN

Status

T2

60

r

T3

50

r

Dirty Page Table

Pageld | recLSN
P5 10
P3 20
Pl 50

LSN

LOG

) 00
ﬂ05—-—
qm—
=) 20

qso-:-
=60+

begin_checkpoint
end_checkpoint
T1 writes P5

— update:
-'- update T2 writes P3
qso i- T1 abort-

~4o — CLR: Undo T1 LSN 10, YndoNxt=Null
‘45 - T1 End

update: T3 writes P1
update: T2 writes P5

Redo starts at LSN 10;

in this case, reads P5, P3, and
P1 from disk, redoes ops if
pageLSN < LSN

1.26

Ex (cont.): Undo & Crash During Restart!

00 — begin_checkpoint,
05 — end_checkpoint

After Analysis/Redo: 10 — update: T1 writes P5;Prvi=nul
20 - update T2 writes P3; Prvl = null

30 — T1 abort
40 -~ CLR: Undo T1 LSN 10
45 = T1 End

50 — update: T3 writes P1; PrvL=null
After Analysis/Redo: 60 = update: T2 writes P5; PrvL=20

X

After Analysis/Redo:

After Analysis/Redo:

00 — begin_checkpoint,

05 — end_checkpoint

10 - update: T1 writes P5;Prvi=null

20 - update T2 writes P3; Prvl = null

30 — T1 abort

40 — CLR: Undo T1 LSN 10

45 — T1 End

50 — update: T3 writes P1; PrvL=null

60 — update: T2 writes P5; PrvL=20

70 —- CLR: Undo T2 LSN 60; UndoNxtLSN=20
80 __ CLR: Undo T3 LSN 50;UndoNxtLSN=nul
85 — T3 end

X
90 —- CLR: Undo T2 LSN 20;UndoNxtLSN=nul

100 — T2 gnd

Additional Crash Issues

B What happens if system crashes during Analysis? During
REDO?

+* The logged action is reapplied
v* The pageLSN on the page is set to LSN of the redone log record

B At the end of REDO, write end records for all transactions with
status C (why?)

B How to reduce the amount of work in Analysis?
v Take frequent checkpoints.

1.29

Additional Crash Issues

B How do you limit the amount of work in REDO?
v Frequent checkpoints plus

v Flush data pages to disk asynchronously in the background (during
normal operation and recovery).

= Buffer manager can do this to unpinned, dirty pages.

B How do you limit the amount of work in UNDQO?
¥ Avoid long-running Xacts.

1.30

Summary of Logging/Recovery

Transactions support the ACID properties.
guarantees Atomicity & Durability.

Use Write Ahead Longing (WAL) to allow STEAL/NO-FORCE
buffer manager without sacrificing correctness.

LSNs identify log records; linked into backwards chains per
transaction (via prevLSN).

pageLSN allows comparison of data page and log records.

1.31

Summary, Cont.

L] A quick way to limit the amount of log to scan
on recovery.

B Aries recovery works in 3 phases:

v Forward from checkpoint. Rebuild transaction and dirty
page tables.

v Forward from oldest recLSN, repeating history for all
transactions.

v Backward from end to first LSN of oldest Xact alive at crash.
Rollback all transactions not completed as of the time of the crash.

B Redo “repeats history”: Simplifies the logic!

B Upon Undo, write CLRs. Nesting structure of CLRS avoids having
to “undo undo operations”.

1.32

DB Programmer

\

Database Architecture

Code w/ embedded queries

DML Precompiler Query Optimizer

Indices_ __
Statistics

User

Query

Query Evaluator

Data

1.33

Metadata

DDL Commands

DDL Interpreter

Integrity Constraints

