SQL

The Query Language

R & G - Chapter 5

Query Execution

Declarative Query (SQL) ‘ We start from here

Query Optimization and
Execution

(Relational) Operators

File and Access Methods

Buffer Management

Disk Space Management

SQL: THE query language

Developed @IBM Research in the 1970s

— System R project

— Vs. Berkeley’s Quel language (Ingres project)
Commercialized/Popularized in the 1980s

— IBM beaten to market by a startup called Oracle

Questioned repeatedly
— 90’s: OO-DBMS (0QL, etc.)
— 2000’s: XML (XQuery, Xpath, XSLT)
— 2010’s: NoSQL & MapReduce

SQL keeps re-emerging as the standard
— Even Hadoop, Spark etc. see lots of SQL
— May not be perfect, but it is useful

SQL Pros and Cons

Declarative!

— Say what you want, not how to get it
Implemented widely

— With varying levels of efficiency, completeness
Constrained

— Core SQL is not a Turing-complete language

— Extensions make it Turing complete
General-purpose and feature-rich

— many years of added features

— extensible: callouts to other languages, data sources

Relational Terminology

Database: Set of Relations

Relation (Table):
— Schema (description)
— Instance (data satisfying the schema)

Attribute (Column)
Tuple (Record, Row)

Also: schema of database is set of schemas of its relations

Relational Tables

e Schema is fixed:

— attribute names, atomic types

— students(name text, gpa float, dept text)
* Instance can change

— a multiset of “rows” (“tuples”)
— {(*Bob snob’, 3.3, 'Cs"),

(‘Bob Snob’, 3.3, 'cs"),
(‘Mary Contrary’, 3.8, 'CS')}

SQL Language

 Two sublanguages:

— DDL — Data Definition Language
e Define and modify schema

— DML — Data Manipulation Language
* Queries can be written intuitively.

« RDBMS responsible for efficient evaluation.

— Choose and run algorithms for declarative queries
* Choice of algorithm must not affect query answer.

Example Database

Sailors Boats
sid sname |rating |age bid |bname color
1 Fred 7/ 22 101 Nina red
2 Jim 2 39 102 |Pinta blue
3 Nancy |8 27 103 |Santa Maria |red
Reserves
sid bid day
1 102 9/12/2015
2 102 9/13/2015

The SQL DDL

_ sid | sname rating | age
CREATE TABLE Sailors () Fred » 9
sid INTEGER, e
sname CHAR(20), 2 Jim 2 39
rating INTEGER,
age REAL, 3 Nancy 8 27
PRIMARY KEY (sid));
CREATE TABLE Boats (.
bid INTEGER, bid | brarge color
bn?me CHAREZO%, 101 | Nina \ red
color CHAR(10),)
PRIMARY KEY (b1d)); 102 | Pinta | blue
103 Santa ﬂ(laria red

CREATE TABLE Reserves (
sid INTEGER,
bid INTEGER,

day DATE,

PRIMARY KEY (sid, bid, day), sid bid day
FOREIGN KEY (S'id) REFERENCES 1 102 9/12
sailors(sid), /
FOREIGN KEY (b'id) REFERENCES 2 102 9/13
Boats (bid));

The SQL DML

Sailors

sid sname |rating |age
1 Fred 7 22

2 Jim 2 39

3 Nancy |8 27

Find all 27-year-old sailors:
SELECT *
FROM Sailors AS S

WHERE S.age
To find just names and ratings, replace the first line:

= 27;

SELECT S.sname, S.rating
FROM Sailors AS S
WHERE S.age = 27;

SQL: DDL

DDL — Create Table

CREATE TABLE table_ nhame {column _name data_type

[DEFAULT default_expr] [column_constraint [, ...]] | table_constraint } [, ...

« Data Types (mySQL) include:
character(n) — fixed-length character string
character varying(n) — variable-length character string
binary(n), text(n), blob, mediumblob, mediumtext,

smallint, integer, bigint, numeric, real, double precision

date, time, timestamp, ...

serial - unique ID for indexing and cross reference
=>

http://dev.mysqgl.com/doc/refman/5.7/en/data-types.html

Constraints

Recall that the schema defines the legal instances of the
relations.

Data types are a way to limit the kind of data that can be
stored in a table, but they are often insufficient.

— e.g., prices must be positive values
— uniqueness, referential integrity, etc.

Can specify constraints on individual columns or on
tables.

Constraints

Integrity Constraints

IC conditions that every legal instance of a relation must
satisfy.
— Inserts/deletes/updates that violate ICs are disallowed.
— Can ensure application semantics (e.g., sid is a key),
— ...0r prevent inconsistencies (e.g., sname has to be a string,
age must be < 200)

Types of IC’s: Domain constraints, primary key
constraints, foreign key constraints, general constraints.

— Domain constraints: Field values must be of right type.
Always enforced.

— Primary key and foreign key constraints: coming right up.

Where do ICs come from?

Semantics of the real world!
Note:
— We can check IC violation in a DB instance

— We can NEVER infer that an IC is true by looking at an
instance.

* An ICis a statement about all possible instances!

— From example, we know name is not a key, but the
assertion that sid is a key is given to us.

Key and foreign key ICs are the most common
More general ICs supported too.

Primary Keys

A set of fields is a superkey if:

— No two distinct tuples can have same values in all these
fields

A set of fields is a key for a relation if it is minimal:
— Itis a superkey
— No subset of the fields is a superkey

what if >1 key for a relation?

— One of the keys is chosen (by DBA) to be the primary key.
Other keys are called candidate keys.

For example:

— sid is a key for Students.

— What about name?

— The set {sid, gpa} is a superkey.

Primary and Candidate Keys ©

e Possibly many candidate keys (specified using UNIQUE),
one of which is chosen as the primary key.

— Keys must be used carefully!

Not good either!

/

CREATE TABLE Enrolledl CREATE TABLE Enrolled2
(s1d CHAR(20), (s1d CHAR(20),
cid CHAR(20), cid CHAR(20),
grade CHAR(2), grade CHAR(2),

PRIMARY KEY (sid,cid)) PRIMARY KEY (sid),
UNIQUE (cid, grade))

“For a given student and course, there is a single grade.”

Foreign Keys, Referential Integrity ©

* Foreign key: a “logical pointer”
— Set of fields in a tuple in one relation
that refer’ to a tuple in another relation.

— Reference to primary key of the other relation.

* All foreign key constraints enforced?
— referential integrity!
— i.e., no dangling references.

—

Foreign Keys in SQL o
* For example, only students listed in the Students relation
should be allowed to enroll for courses.
— sid is a foreign key referring to Students:
4 CREATE TABLE Enrolled)
(s1id CHAR(20), cid CHAR(20), grade CHAR(2),
PRIMARY KEY (sid,cid),
\ FOREIGN KEY (sid) REFERENCES Students(sid));
: Enro11eg Students
sid cid grade : :
53666 [CarnaticlOl| C ; sid | name Togin age | gpd
53666 |Reggae203 B 53666|Jones |jones@cs 18 | 3.4
53650 |Topologyll2| A 53688 |Smith |smith@eecs| 18 | 3.2
53666 |Historyl05 B 53650(Smith|smith@math| 19 | 3.8
o

AAAAAd
rriri

-

Enforcing Referential Integrity ©

e sidin Enrolled: foreign key referencing Students.
* Scenarios:

— Insert Enrolled tuple with non-existent student id?

— Delete a Students tuple?
e Also delete Enrolled tuples that refer to it? (CASCADE)
e Disallow if referred to? (NO ACTION)

e Set sid in referring Enrolled tups to a default value? (SET
DEFAULT)

e Set sid in referring Enrolled tuples to null, denoting
‘unknown’ or “inapplicable’. (SET NULL)

e Similar issues arise if primary key of Students tuple is
updated.

Foreign keys actions

CREATE TABLE Enrolled

(sid CHAR(20), cid CHAR(20), grade CHAR(2),

PRIMARY KEY (sid,cid),

FOREIGN KEY (sid) REFERENCES Students(sid)
ON DELETE NO ACTION);

VS

FOREIGN KEY (sid) REFERENCES Students(sid)
ON DELETE CASCADE);
VS

FOREIGN KEY (sid) REFERENCES Students(sid)
ON DELETE SET NULL);

General Constraints

Useful when more CREATE TABLE Sailors

general ICs than (sid INTEGER,
keys are involved. sname CHAR(10),

rating INTEGER,
Can use queries to age REAL ,

express constraint. PRIMARY KEY (sid),
CHECK (rating >=1

Checked on insert AND rating <= 10))

or update.
Constraints can be ~ CREATE TABLE Reserves

q (sname CHAR(10),
named. bid INTEGER, @
day DATE,

PRIMARY KEY (bid,day)
CONSTRAINT noInterlakeRes
CHECK ('Interlake| k>

(SELECT b.bname
FROM Boats b

WHERE b.bid = bid)))

Constraints Over Multiple

Relations
CREATE(TQEEE Sal:ﬁEZER Number of boats
sname CHAR(10), plus number of
rating INTEGER, sailors is < 100
age REAL,
PRIMARY KEY (sid),
CHECK
((SELECT COUNT (s.si1d) FROM Sailors s)
+

(SELECT COUNT (b.bid) FROM Boats b)
< 100)

Constral

Awkward and wrong!

— Only checks sailors!

ASSERTION is the right
solution; not associated
with either table.

nts Over Multiple -
Relations

CREATE TABLE Sailors Number of boats
(sid INTEGER, lus number of
sname CHAR(10), P . _
rating INTEGER, sailors is < 100
age REAL ,
PRIMARY KEY (sid),
CHECK
((SELECT COUNT (s.sid) FROM Sailors s)
+
(SELECT COUNT (b.bid) FROM Boats b)
< 100)

— Unfortunately, not
supported in many
DBMS.

— Triggers are another
solution.

CREATE ASSERTION smallcClub

CHECK

((SELECT COUNT (S.sid) FROM Sailors S)
+
(SELECT COUNT (B.bid) FROM Boats B)

< 100)

Other DDL Statements

Alter Table

— use to add/remove columns, constraints, rename
things ...

Drop Table

— Compare to “Delete * From Table” next
Create/Drop View

Create/Drop Index

Grant/Revoke privileges

— SQL has an authorization model for saying who
can read/modify/delete etc. data and who can
grant and revoke privileges!

SQL: Modification Commands

Deletion: DELETE FROM <relation>
[WHERE <predicate>]

Example:

1. DELETE FROM account
-- deletes all tuples in account

2. DELETE FROM account
WHERE bname IN (SELECT bname
FROM branch
WHERE bcity = ‘Bkin’)
-- deletes all accounts from Brooklyn branch

account(bname, acct_no, balance)

DELETE

 Delete the record of all accounts with balances
below the average at the bank.

DELETE FROM account
WHERE balance < (SELECT AVG(balance)
FROM account)

— Problem: as we delete tuples from deposit, the
average balance changes

— Solution used in SQL:

— 1. First, compute avg balance and find all tuples
to delete

— 2. Next, delete all tuples found above (without
recomputing avg or retesting the tuples)

SQL: Modification Commands

Insertion: INSERT INTO <relation> values (.., .., ...)
or INSERT INTO <relation>(att1, .., attn)
values(..., ..., ...)
or INSERT INTO <relation> <query expression>

account(bname, acct_no, balance)
Examples:

INSERT INTO account VALUES (‘Perry’, A-768, 1200)

or INSERT INTO account(bname, acct_no, balance)
VALUES (‘Perry’, A-768, 1200)

INSERT INTO account
SELECT bname, Ino, 200
FROM loan
WHERE bname = ‘Kenmore’

gives free $200 savings account for each loan holder at Kenmore

SQL: Modification Commands

Update: UPDATE <relation>
SET <attribute> = <expression>
WHERE <predicate>

Ex. UPDATE account
SET balance = balance * 1.06
WHERE balance > 10000

UPDATE account
SET balance = balance * 1.05
WHERE balance <= 10000

Alternative: UPDATE account
SET balance =
(CASE
WHEN balance <= 10000 THEN balance*1.05
ELSE balance*1.06
END)

Single Relation Queries

SQL DML 1: Basic Single-Table Queries

« SELECT [DISTINCT] <column expression list>
FROM <single table>

[WHERE <predicate>]

[GROUP BY <column 1ist>

[HAVING <predicate>]

[ORDER BY <column 1ist>] ;

Basic Single-Table Queries

e SELECT [DISTINCT] <column expression list>
FROM <single table>

WHERE <predicate>]

GROUP BY <column list>

[HAVING <predicate>]

[ORDER BY <column list>] ;

e Simplest version is straightforward
— Produce all tuples in the table that satisfy the predicate
— Output the expressions in the SELECT list
— Expression can be a column reference, or an arithmetic expression over
column refs

Basic Single-Table Queries

e SELECT S.name, S.gpa
FROM students S
WHERE S.dept = 'CS’

* Simplest version is straightforward
— Produce all tuples in the table that satisfy the predicate
— Output the expressions in the SELECT list
— Expression can be a column reference, or an arithmetic expression over
column refs

Basic Single-Table Queries

« SELECT DISTINCT S.name, S.gpa
FROM students S
WHERE S.dept = 'CS’;

* DISTINCT flag specifies removal of duplicates before output

ORDER BY

SELECT DISTINCT S.name, S.gpa, S.age*2 as al2
FROM students S

WHERE S.dept = 'CS’

ORDER BY S.gpa, S.name, aZ;

ORDER BY clause specifies output to be sorted
— Lexicographic ordering
Obviously must refer to columns in the output

— Note the AS clause for naming output columns

ORDER BY

« SELECT DISTINCT S.name, S.gpa
FROM students S
WHERE S.dept = 'CS’
ORDER BY S.gpa DESC, S.name ASC;

 Ascending order by default, but can be overridden
— DESC flag for descending, ASC for ascending
— Can mix and match, lexicographically

Aggregates

SELECT AVG(S.gpa)
FROM students S
WHERE S.dept = 'CS’

Before producing output, compute a summary (a.k.a. an aggregate)
of some arithmetic expression

Produces 1 row of output
— with one column in this case

Other aggregates: SUM, COUNT, MAX, MIN
Note: can use DISTINCT inside the agg function

— SELECT COUNT(DISTINCT S.name) FROM Students S
— vs. SELECT DISTINCT COUNT (S.name) FROM Students S;

DELETE

» Delete the record of all accounts with
balances below the average at the bank.

DELETE FROM account
WHERE balance < (SELECT AVG(balance)
FROM account)

— Problem: as we delete tuples from deposit, the
average balance changes

Solution used in SQL:

— 1. First, compute avg balance and find all
tuples to delete

— 2. Next, delete all tuples found above
(without recomputing avg or retesting the
tuples)

GROUP BY

SELECT [DISTINCT] AVG(S.gpa), S.dept
FROM students S

[WHERE <predicate>]

GROUP BY S. dept
[HAVING <predicate>]
[ORDER BY <column 1ist>] ;

Partition table into groups with same GROUP BY column values
— Can group by a list of columns

Produce an aggregate result per group
— Cardinality of output = # of distinct group values

Note: can put grouping columns in SELECT list

— For aggregate queries, SELECT list can contain aggs and GROUP BY
columns only!

— What would it mean if we said SELECT S.name, AVG(S.gpa) above??

HAVING

« SELECT [DISTINCT] AVG(S.gpa), S.dept
FROM students S
[WHERE <predicate>]
GROUP BY S.dept
HAVING COUNT(*) > 5
[ORDER BY <column 1ist>] ;

 The HAVING predicate is applied after grouping and aggregation
— Hence can contain anything that could go in the SELECT list
— That is, aggs or GROUP BY columns

* HAVING can only be used in aggregate queries

* |t’s an optional clause

Putting it all together

« SELECT S.dept, AVG(S.gpa), COUNT(*)
FROM students S
WHERE S.gender = 'F'
GROUP BY S.dept
HAVING COUNT(*) > 2
ORDER BY S.dept ;

Conceptual SQL Evaluation o

SELECT S.dept, AVG(S.gpa),
COUNT (*)
FROM students S
WHERE S.gender = 'F'
GROUP BY S.dept
HAVING COUNT(*) > 2
ORDER BY S.dept ;

Project away columns ..
:) Eliminate
(just keep those used in Juvlicates
SELECT, GBY, HAVING) P

Apply selections @ @ Eliminate
(eliminate rows) groups
Relation

