SQL

The Query Language

R & G - Chapter 5

Based on Slides from UC Berkeley and
book.

Query Execution

Declarative Query (SQL) ‘ We start from here

Query Optimization and
Execution

(Relational) Operators

File and Access Methods

Buffer Management

Disk Space Management

GROUP BY

SELECT [DISTINCT] AVG(S.gpa), S.dept
FROM students S

[WHERE]

GROUP BY S. dept
[HAVING]
[ORDER BY 1 :

Partition table into groups with same GROUP BY column values
— Can group by a list of columns

Produce an aggregate result per group
— Cardinality of output = # of distinct group values

Note: can put grouping columns in SELECT list

— For aggregate queries, SELECT list can contain aggs and GROUP BY
columns only!

— What would it mean if we said SELECT S.name, AVG(S.gpa) above??

HAVING

« SELECT [DISTINCT] AVG(S.gpa), S.dept
FROM students S
[WHERE]
GROUP BY S.dept
HAVING COUNT(*) > 5
[ORDER BY 1 ;

 The HAVING predicate is applied after grouping and aggregation
— Hence can contain anything that could go in the SELECT list
— That is, aggs or GROUP BY columns

* HAVING can only be used in aggregate queries

* |t’s an optional clause

Putting it all together

« SELECT S.dept, AVG(S.gpa), COUNT(*)
FROM students S
WHERE S.gender = 'F'
GROUP BY S.dept
HAVING COUNT(*) > 2
ORDER BY S.dept ;

Conceptual SQL Evaluation ®©

SELECT S.dept, AVG(S.gpa),
COUNT (*)
FROM students S
WHERE S.gender = 'F'
GROUP BY S.dept
HAVING COUNT(*) > 2
ORDER BY S.dept ;

Project away columns ..
:) Eliminate
(just keep those used in Juvlicates
SELECT, GBY, HAVING) P

Apply selections @ @ Eliminate
(eliminate rows) groups
Relation

Multi-relation Queries

Querying Multiple Relations

e SELECT S.snhame
FROM Sailors S, Reserves R
WHERE S.sid = R.sid AND R.bid = 102

Sailors Reserves

sid sname |rating | age sid bid day
1 Popeye |10 22 1 102 9/12
2 OliveOyl |11 39 2 102 9/13
3 Garfield |1 27 1 101 10/01
4 Bob 5 19

Querying Multiple Relations

SELECT S.snhame
FROM Sailors S, Reserves R

e Cartesian product

(1,101, 10/1)— X X X X
(2,102, 9/13) X X X X
(1, 102, 9/12) X X X X

l | | |
Popeye OliveOyl Garfield Bob

Meaning (Semantics) of SQL Queries

SELECT Xqye@q1, Xqe@y, wy Xpsdy Almost never the
FROM Ry AS Xy, R, AS X5, .., R, AS X, | fastestway to
WHERE ConditionS(Xl,..., Xn) compute it!
Answer = {}

for x, inR; do
for x,inR, do

forx,inR_ do
if Conditions(x,X,,)
then Answer = Answer U
{(x;.a4, X4.2,, .oy X,.00)}
return Answer

Note: thisis a
multiset union

Join Queries

« SELECT [DISTINCT] <column expression list>
FROM <tablel [AS t1], ... , tableN [AS tn]>
WHERE <predicate>]

GROUP BY <column 1ist>]

HAVING <predicate>]

ORDER BY <column 1ist>] ;

Query Semantics

SELECT [DISTINCT] target-list
FROM relation-1l1ist
WHERE qualification

* FROM: compute cross product of tables.

* WHERE: Check conditions, discard tuples that fail.
e SELECT: Specify desired fields in output.

e DISTINCT (optional): eliminate duplicate rows.

* Note: this is likely a terribly inefficient strategy!
— Query optimizer will find more efficient plans.

Conceptual SQL Evaluation ®

SELECT [DISTINCT] target-list
FROM relation-list

WHERE qualification

GROUP BY grouping-list
HAVING group-qualification

Project away columns ..

:) Eliminate
(just keep those used in Juvlicates
SELECT, GBY, HAVING) P

Apply selections @ @ Eliminate
(eliminate rows) groups
cross-product

. . 14
Find sailors who have reserved at
least one boat

SELECT S.sid
FROM Sailors AS S, Reserves AS R
WHERE S.si1d = R.sid

Will DISTINCT make a difference here?

About Range Variables

* Needed when ambiguity could arise.

— e.g., same table used multiple times in FROM (“self-join”)

SELECT X.shame, X.age, y.shame, y.age
FROM Sailors AS x, Sailors AS y
WHERE x.age > y.age

Sailors
sid sname |rating | age
1 Popeye |10 22
2 OliveOyl |11 39
3 Garfield |1 27
4 Bob 5 19

Arithmetic Expressions

SELECT S.age, S.age-5 AS agel, 2*S.age AS age’
FROM Sailors AS S
WHERE S.sname = 'Popeye'

SELECT Sl.sname AS namel, S2.sname AS nameZ
FROM Sailors AS S1, Sailors AS S2
WHERE 2*Sl.rating = S2.rating - 1

String Comparisons

SELECT S.shame
FROM Sailors s
WHERE S.sname LIKE 'P_p%'

stands for any one character and '%' stands for 0 or more
arbitrary characters.

Most DBMSs now support standard regex as well (incl. PostgreSQL)

. . 18
Find sid of sailors who’'ve reserved
a red or green boat

SELECT R.sid

FROM Boats B, Reserves R

WHERE R.bi1d=B.bid AND
(B.color="red"' OR
B.color="green')

.. Or.

SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND
B.color="red'
UNION ALL
SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.Co1or='green'

Find sid of sailors who’ve reserved °
a red AND a green boat

SELECT R.sid

FROM Boats B,Reserves R

WHERE R.bid=B.bid AND
(B.color="red' AND B.color="green')

Find sid of sailors who've reserved g
a red AND a green boat

SETT R.s1d
FROM Boats—B Reserye
WHERE R.bi1d=B~t7d AND
3—coTor="red' AND B.color="green')

Find sid of sailors who've reserved g
a red AND a green boat

SELECT S.s1d
FROM Sailors S, Boats B, Reserves R
WHERE S.si1d=R.sid

AND R.b1d=B.b1d

AND B.color="red'
INTERSECT
SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid

AND R.bi1d=B.b1id

AND B.color="green'

Find sid of sailors who’ve reserved ¢
a red AND a green boat

e Could use a self-join:

SELECT R1l.s1d
FROM Boats Bl, Reserves R1,
Boats B2, Reserves RZ
WHERE R1l.si1d=R2.s1id
AND R1.bi1d=Bl.b1id
AND R2.bi1d=B2.b1d
AND (Bl.color="'red' AND B2.color='green')

Find sids of sailors who have not °
reserved a boat

SELECT S.sid
FROM Sailors S

EXCEPT
SELECT S.sid

FROM Sailors S, Reserves R
WHERE S.s1d=R.s1d

Nested Queries: IN

Names of sailors who've reserved boat #102

SELECT S.shnhame

FROM Sailors S

WHERE S.sid IN
(SELECT R.s1d
FROM Reserves R
WHERE R.b1d=102)

Nested Queries: NOT 1IN

Names of sailors who’ve not reserved boat #103

SELECT S.shnhame

FROM Sailors S

WHERE S.sid NOT IN
(SELECT R.s1d
FROM Reserves R
WHERE R.b1d=103)

&
Nested Queries with Correlation

Names of sailors who've reserved boat #102

SELECT S.shnhame
FROM Sailors S
WHERE EXISTS
(SELECT
FROM Reserves R
WHERE R.b1d=102
AND S.s1d=R.s1d)

Subquery must be recomputed for each Sailors tuple.
 Think of subquery as a function call that runs a query

More on Set-Comparison
Operators

e We have seen: IN, EXISTS
e canalso have: NOT IN, NOT EXISTS
* Other forms: <op> ANY, <op> ALL

Find sailors whose rating is greater than that of some sailor called
‘Popeye’

SELECT
FROM Sailors S
WHERE S.rating > ANY
(SELECT S2.rating
FROM Sailors S2
WHERE S2.sname='Popeye')

A Tougher Query

Find sailors who’ve reserved ALL boats
(relational division: no “counterexample boats”)

‘SELECT S.snhame
FROM Sailors S

.

" WHERE NOT EXISTS)
(SELECT B.bid

\ FROM Boats B Y,

s WHERE _NOT EXISTS N

(SELECT R.bid
FROM Reserves R
WHERE R.bid=B.bid AND R.sid=S.Sidz

A Tougher Query

Find sailors who've reserved ALL boats

(here we use set difference: from all the boats remove the
ones that Sailor S has reserved. If empty, then S is good)

‘SELECT S.snhame
FROM Sailors S

.

'WHERE NOT EXISTS

((SELECT B.bid
FROM Boats B)

\

4 EXCEPT

(SELECT R.bid

FROM Reserves R
WHERE R.sid=S.sid))

VAN

A Tougher Query

Find sailors who've reserved ALL boats

(here we use count aggregates: count the total number of
boats and the number of boats reserved by S)

SELECT S.snhame
FROM Sailors S

WHERE (SELECT COUNT(B.b1d)

FROM Boats B) =

\.
(

(SELECT COUNT (DISTINCT R.bid)
FROM Reserves R
WHERE R.s1d=S.si1d)

N

ARGMAX?

* The Sailor with the highest rating
— What about ties for highest?

SELECT MAX(S.rating)
FROM Sailors S; -- 0K

SELECT S.*, MAX(S.rating)
FROM Sailors S; -- Not OK

ARGMAX?

* The Sailor with the highest rating
— What about ties for highest?

SELECT *
FROM Sailors S
WHERE S.rating >= ALL

(SELECT S2.rating

SELECT *
FROM Sailors S
WHERE S.rating =

(SELECT MAX(S2.rating)

FROM Sailors S2) FROM Sailors S2)
SELECT ¥
FROM Sailors S

LIMIT 1;

ORDER BY rating DESC

NULL Values

Field values are sometimes unknown or inapplicable
— SQL provides a special value null for such situations.

The presence of null complicates many issues. E.g.:

— Special syntax “IS NULL” and “IS NOT NULL”

— Assume rating IS NULL. Consider predicate “rating>8".
e True? False?
* What about AND, OR and NOT connectives?
e SUM?

— We need a 3-valued logic (true, false and unknown).

— Meaning of constructs must be defined carefully. (e.g., WHERE
clause eliminates rows that don’t evaluate to true.)

— New operators (in particular, outer joins) possible/needed.

NULL Values: Truth table

TRUE TRUE TRUE TRUE TRUE
TRUE FALSE TRUE FALSE FALSE

TRUE Unknown TRUE Unknown Unknown
FALSE TRUE TRUE FALSE FALSE
FALSE FALSE FALSE FALSE TRUE
FALSE Unknown Unknown FALSE Unknown
Unknown TRUE TRUE Unknown Unknown
Unknown FALSE Unknown FALSE Unknown

Unknown Unknown Unknown Unknown Unknown

