SQL I

The Query Language

R & G - Chapter 5

Based on Slides from UC Berkeley and
book.



Query Execution

Declarative Query (SQL) ‘ We start from here

Query Optimization and
Execution

(Relational) Operators

File and Access Methods

Buffer Management

Disk Space Management




NULL Values: Truth table

TRUE TRUE TRUE TRUE TRUE
TRUE FALSE TRUE FALSE FALSE

TRUE Unknown TRUE Unknown Unknown
FALSE TRUE TRUE FALSE FALSE
FALSE FALSE FALSE FALSE TRUE
FALSE Unknown Unknown FALSE Unknown
Unknown TRUE TRUE  Unknown Unknown
Unknown FALSE Unknown FALSE Unknown

Unknown Unknown Unknown Unknown Unknown



NULLSs

bname bcity assets

Given:

Downtown | Boston oM
branch2= Perry Horse 1.7M

Mianus Horse AM
Kenmore |Boston NULL

Aggregate operations:
returns SUM

SELECT SUM(assets) / -l-i_-l-l-\;l

FROM branch2

NULL is ignored
Same for AVG, MIN, MAX

But.... COUNT(assets) retunrs 4!

Let branch3 an empty relation
Then: SELECT SUM(assets)

FROM branch3 returns  NULL
but COUNT(<empty rel>) =0



Joins

SELECT (column_Tist)
FROM table_name
[INNER | NATURAL | {LEFT | RIGHT | FuLL} | {OUTER}]
JOIN table_name
ON qualification_Ilist
WHERE ...

e TNNER is default

SELECT sname FROM sailors S JOIN reserves R ON S.sid=R.sid;

SELECT sname FROM sailors S NATURAL JOIN reserves R
WHERE R.bid = 102;




Inner Joins

SELECT s.sid, s.sname, r.bid
FROM Sailors s, Reserves r
WHERE s.sid = r.sid Both are

equivalent!

SELECT s.sid, s.sname, r.bid
FROM Sailors s INNER JOIN Reserves r
ON s.sid = r.sid



Left Outer Join

* Returns all matched rows, plus all unmatched rows from
the table on the left of the join clause

— (use nulls in fields of non-matching tuples)

SELECT s.si1d, s.sname, r.bid
FROM Sailors s LEFT OUTER JOIN
Reserves r
ON s.si1id = r.sid;

* Returns all sailors & bid for boat in any of their reservations
— Note: no match for s.sid? r.sid IS NULL!



SELECT s.sid, s.sname, r.bid
FROM Sailors s LEFT OUTER JOIN Reserves r

ON s.sid = r.sid;

sid |sname |rating |age sid |bid day
22 |Dustin | 7 45.0 72 1101 110/10/96
31 |Lubber| 8 55.5 95 1103 [11/12/96
95 |Bob 3 63.5
s.sid s.name |r.bid

22 | Dustin 101

95 |Bob 103

31 |Lubber <1— NULL




Right Outer Join

 Returns all matched rows, plus all unmatched rows from
the table on the right of the join clause

— (use nulls in fields of non-matching tuples)

SELECT s.si1d, b.bid, b.bname
FROM Reserves r RIGHT OUTER JOIN
Boats b
ON r.bid = b.bid;

e Returns all boats & information on which ones are reserved
— Note: no match for b.bid? r.bid IS NULL!



Full Outer Join

Full Outer Join returns all (matched or unmatched) rows
from the tables on both sides of the join clause

SELECT r.sid, b.bid, b.bname
FROM Reserves? r FULL OUTER JOIN
BoatsZ2 b
ON r.bid = b.bid;

Returns all boats & all information on reservations
No match for r.bid?

— b.bid IS NULL AND b.bname is NULL

No match for b.bid?

— r.sid is NULL



Constraints (revisited)



Constraints Over Multiple

Relations
CREATE(TQEEE Sal:ﬁEZER Number of boats
sname CHAR(10), plus number of
rating INTEGER, sailors is < 100
age REAL,
PRIMARY KEY (sid),
CHECK
( (SELECT COUNT (s.si1d) FROM Sailors s)
+

(SELECT COUNT (b.bid) FROM Boats b)
< 100 ))



Constral

nts Over Multiple
Relations

CREATE TABLE Sailors Number of boats
( sid INTEGER,
Awkward and wrong! sname CHAR(10), p|L.JS nu.mber of
— Only checks sailors! rating INTEGER, sailors is < 100
age REAL,
PRIMARY KEY (sid),

ASSERTION is the right
solution; not associated
with either table.

— Unfortunately, not
supported in many
DBMS.

— Triggers are another
solution.

CREATE ASSERTION smallcClub
CHECK
( (SELECT COUNT (S.sid) FROM Sailors S)
+
(SELECT COUNT (B.bid) FROM Boats B)
< 100 )




Views



Views: Named Queries

CREATE VIEW view_hame
AS select_statement

Makes development simpler
Often used for security
Not “materialized”

CREATE VIEW Redcount
AS SELECT b.bid, COUNT(*) AS scount
FROM Boats b, Reserves?2 r
WHERE r.bid = b.bid AND b.color = 'red'
GROUP BY b.bid




Views Instead of Relations in

Queries

CREATE VIEW Redcount
AS SELECT b.bid, COUNT(*) AS scount
FROM Boats b, Reserves2 r
WHERE r.bid = b.bid AND b.color = 'red’
GROUP BY b.bid

bid

scount

102

Redcount

SELECT bname, scount

FROM Redcount r, Boats2 b

WHERE r.bid = b.bid AND scount < 10




Views

create view vs INTO

(1) SELECT bname, bcity (2) CREATE VIEW branch2 AS
FROM branch Vs SELECT bname, bcity
INTO branch?2 FROM branch

(1) creates new table that gets stored on disk
(2) creates “virtual table” (materialized when needed)

Therefore: changes in branch are seen in the view version of branch2 (2)
but not for the (1) case.



Subqueries in FROM

Like a “view create on the fly”

SELECT bname, scount
FROM Boats?2 b,
" (SELECT b.bid, COUNT(*) A
FROM Boats b, Reserves2 r
WHERE r.bid=b.bid AND b.color="red’
\GROUP BY b.bi1d) AS Reds(bid, scount) )
WHERE Reds.bid=b.bi1d AND scount < 10




Common Table Expressions: WITH

 Another “view creation on the fly” syntax

WITH Reds(bid, scount) AS

" (SELECT b.bid, COUNT(*)
FROM Boats b, Reserves2 r

\GROUP BY b.bid)

~

WHERE r.bid=b.bid AND b.color="red'

J

SELECT bname, scount
FROM Boads2 b, Reds
WHERE Reds.bid=b.bid AND scount < 10



Find the rating for which the average age of sailors
IS the minimum over all ratings -

SELECT Temp.rating, Temp.avgage
FROM (SELECT S.rating, AVG(S.age) AS avgage,
FROM Sailors S
GROUP BY S.rating) AS Temp
WHERE Temp.avgage = (SELECT MIN(Temp.avgage)
FROM Temp)




SQL: Modification Commands

Deletion: DELETE FROM <relation>
[WHERE <predicate>]

Example:

1. DELETE FROM account
-- deletes all tuples in account

2. DELETE FROM account
WHERE bname IN (SELECT bname
FROM branch
WHERE bcity = ‘Bkin’)
-- deletes all accounts from Brooklyn branch



SQL: Modification Commands

View Updates:

Suppose we have a view:
CREATE VIEW branch-loan AS
SELECT bname, Ino
FROM loan

And we insert: INSERT INTO branch-loan VALUES( “Perry”, L-308)

Then, the system will insert a new tuple ( “Perry”, L-308, NULL) into loan



SQL: Modification Commands
What about...

CREATE VIEW depos-account AS
SELECT cname, bname, balance
FROM depositor as d, account as a
WHERE d.acct_no = a.acct_no

INSERT INTO depos-account VALUES( “Smith”, “Perry”, 500)

How many relations we need to update?

Many systems disallow



Discretionary Access Control

GRANT privileges ON object TO users
[WITH GRANT OPTION]

Object can be a Database, Table or a View

Privileges can be:
— Select
— Insert
— Delete

— References (cols) — allow to create a foreign key that references the specified
column(s)

— All
Can later be REVOKED

Users can be single users or groups
See R&G Chapter 17 for more details.



Embedded SQL



Writing Applications with SQL

 SQL is not a general purpose programming language.
— + Tailored for data retrieval and manipulation

— + Relatively easy to optimize and parallelize

 Awkward to write entire apps in SQL

* Options:
— Make the query language “Turing complete”
* Avoids the “impedance mismatch”
* makes “simple” relational language complex

— Allow SQL to be embedded in regular programming
languages.



Cursors

Can declare a cursor on a relation or query

Can open a cursor

Can repeatedly fetch a tuple (moving the cursor)

Special return value when all tuples have been retrieved.

ORDER BY allows control over the order tuples are
returned.

— Fields in ORDER BY clause must also appear in SELECT
clause.

LIMIT controls the number of rows returned (good fit w/
ORDER BY)

Can also modify/delete tuple pointed to by a cursor
— A “non-relational” way to get a handle to a particular tuple



Database APIs

* Alibrary with database calls (API)
— special objects/methods

— passes SQL strings from language, presents result sets in a
language-friendly way

— ODBC a C/C++ standard started on Windows

— JDBC a Java equivalent

— Most scripting languages have similar things

— E.g. in Python there’s the “psycopg2” driver

 ODBC/JDBC try to be DBMS-neutral
— at least try to hide distinctions across different DBMSs



Summary

e Relational model has well-defined query semantics

* SQL provides functionality close to basic relational model

— (some differences in duplicate handling, null values, set
operators, ...)

e Typically, many ways to write a query

— DBMS figures out a fast way to execute a query, regardless
of how it is written.



Triggers (Active database)

Trigger: A procedure that starts automatically if
specified changes occur to the DBMS

Analog to a "daemon' that monitors a database
for certain events to occur

Three parts:
- Event (activates the trigger)

— Condition (tests whether the triggers should run)
[Optional]

— Action (what happens if the trigger runs)

Semantics:

— When event occurs, and condition is satisfied, the
action is performed.



Triggers — Event,Condition,Action
* Events could be :

BEFORE |AFTER INSERT |UPDATE |DELETE ON <tableName>

€.8.. BEFORE INSERT ON Professor

* Condition is SQL expression or even an SQL
query (query with non-empty result
means TRUE)

e Action can be many different choices :

— SQL statements, body of PSM, and even DDL and
transaction-oriented statements like commit .



Example Trigger

Assume our DB has a relation schema :
Professor (pNum, pName, salary)
We want to write a trigger that :

Ensures that any new professor
inserted has salary >= 60000



Example Trigger

CREATE TRIGGER minSalary BEFORE INSERT ON Professor
for what context °?
BEGIN

check for violation here ?

END;



Example Trigger

CREATE TRIGGER minSalary BEFORE INSERT ON Professor
FOR EACH ROW
BEGIN
Violation of Minimum Professor Salary?

END;



Example Trigger

CREATE TRIGGER minSalary BEFORE INSERT ON Professor
FOR EACH ROW
BEGIN

IF (:new.salary < 60000)

THEN RAISE APPLICATION ERROR (-20004, ‘Violation
of Minimum Professor Salary );

END IEF7;

END;



Example trigger

CREATE TRIGGER minSalary BEFORE INSERT ON Professor
FOR EACH ROW

DECLARE temp int; -— dummy variable not needed
BEGIN
IF (:new.salary < 60000)
THEN RAISE APPLICATION ERROR (-20004, ‘Violation
of Minimum Professor Salary’);
END IF;
temp := 10; -— to illustrate declared variables
END;

runy;



Details of Trigger Example

BEFORE INSERT ON Professor
— This trigger is checked before the tuple is inserted

FOR EACH ROW

— specifies that trigger is performed for each row
inserted

new
— refers to the new tuple inserted

If (:new.salary < 60000)

— then an application error is raised and hence the
row is not inserted; otherwise the row is inserted.

Use error code: -20004;
— this is in the valid range



Example Trigger Using Condition

CREATE TRIGGER minSalary BEFORE INSERT ON Professor
FOR EACH ROW
WHEN (new.salary < 60000)

BEGIN
RAISE APPLICATION ERROR (-20004, ‘Violation of
Minimum Professor Salary );

END;

run;

e Conditions can refer to old/new values of tuples modified by the
statement activating the trigger.



Triggers: REFERENCING

CREATE TRIGGER minSalary BEFORE INSERT ON Professor
REFERENCING NEW as newTuple
FOR EACH ROW

WHEN (newTuple.salary < 60000)

BEGIN
RAISE APPLICATION ERROR (-20004, ‘Violation
of Minimum Professor Salary );

END;

ruany



Example Trigger

CREATE TRIGGER minSalary
BEFORE UPDATE ON Professor

REFERENCING OLD AS oldTuple NEW as newTuple
FOR EACH ROW
WHEN (newTuple.salary < oldTuple.salary)
BEGIN

RAISE_APPLICA’TION_ERROR (=20004, ‘Salary

Decreasing !! ),
END;

run,

* Ensure that salary does not decrease



Triggers (Active database)

Trigger: A procedure that starts automatically if
specified changes occur to the DBMS

Analog to a "daemon' that monitors a database
for certain events to occur

Three parts:
- Event (activates the trigger)

— Condition (tests whether the triggers should run)
[Optional]

— Action (what happens if the trigger runs)

Semantics:

— When event occurs, and condition is satisfied, the
action is performed.



Another Trigger Example (SQL:99)

CREATE TRIGGER youngSailorUpdate
AFTER INSERT ON SAILORS
REFERENCING NEW TABLE AS NewsSailors
FOR EACH STATEMENT
INSERT
INTO YoungSailors(sid, name, age, rating)
SELECT sid, name, age, rating
FROM NewSailors N
WHERE N.age <=18



Row vs Statement Level Trigger

Row level: activated once per modified tuple
Statement level: activate once per SQL statement

Row level triggers can access new data,
statement level triggers cannot always do that
(depends on DBMS).

Statement level triggers will be more efficient if
we do not need to make row-specific decisions



When to use BEFORE/AFTER

e Based on efficiency considerations or semantics.

* Suppose we perform statement-level after insert,
then all the rows are inserted first,

then if the condition fails,
and all the inserted rows must be “rolled back”

* Not very efficient !!



Combining multiple events into one
trigger

CREATE TRIGGER salaryRestrictions
AFTER INSERT OR UPDATE ON Professor
FOR EACH ROW

BEGIN

IF (INSERTING AND :new.salary < 60000) THEN
RAISE APPLICATION ERROR (-20004, 'below min
salary'); END IF;

IF (UPDATING AND :new.salary < :o0ld.salary) THEN
RAISE APPLICATION ERROR (-20004, ‘Salary
Decreasing !!'"); END IF;

END;



Summary : Trigger Syntax

CREATE TRIGGER <triggerName>
BEFORE | AFTER INSERT | DELETE | UPDATE
[OF <columnList>] ON <tableName>|<viewName>
[REFERENCING [OLD AS <oldName>] [NEW AS <newName>] ]
[FOR EACH ROW] (default is “FOR EACH STATEMENT)
[WHEN (<condition>) ]
<PSM body>;



MySQL Triggers

mysql> delimiter //

mysql> CREATE TRIGGER upd_check BEFORE UPDATE ON
account

-> FOR EACH ROW
-> BEGIN
-> |[F NEW.amount < 0 THEN
-> SET NEW.amount =0;
->  ELSEIF NEW.amount > 100 THEN
-> SET NEW.amount = 100;
-> END IF;
-> END;//
mysql> delimiter ;



CREATE TABLE employees_audit (
id INT AUTO_INCREMENT PRIMARY KEY,
employeeNumber INT NOT NULL,
lastname VARCHAR(50) NOT NULL,
changedat DATETIME DEFAULT NULL,
action VARCHAR(50) DEFAULT NULL

)' DELIMITER $$
CREATE TRIGGER before_employee update
BEFORE UPDATE ON employees
FOR EACH ROW
BEGIN
INSERT INTO employees_audit
SET action = 'update’,
employeeNumber = OLD.employeeNumber,
lastname = OLD.lastname,
changedat = NOW();
ENDSS
DELIMITER ;



Constraints versus Triggers

* Constraints are useful for database consistency
— Use IC when sufficient
— More opportunity for optimization
— Not restricted into insert/delete/update

* Triggers are flexible and powerful
— Alerters
— Event logging for auditing
— Security enforcement
— Analysis of table accesses (statistics)
— Workflow and business intelligence ...

e But can be hard to understand ......
— Several triggers  (Arbitrary order = unpredictable !?)
— Chain triggers (When to stop ?)
— Recursive triggers (Termination?)



Database Application Development



Example Query

From within a host language, find the names and cities of customers
with more than the variable amount dollars in some account.

« Specify the query in SQL and declare a cursor for it
EXEC SQL

declare c cursor for
select customer-name, customer-city
from depositor, customer, account
where depositor.customer-name = customer.customer-
name

and depositor account-number = account.account-
number

and account.balance > :amount

END-EXEC



EXEC SQL open ¢ END-EXEC C u rSO r —_—

Every fetch call, will get the values
of the current tuple and will advance the pointer

A while loop to get all the tuples

Also, you can move up/down, go to the start, go to end, etc..

Finally, you can update/modify a tuple through a cursor



JDBC

« Part of Java, very easy to use

« Java comes with a JDBC-to-ODBC bridge

— S0 JDBC code can talk to any ODBC data
source

— E.g. look in your Windows Control Panel for
ODBC drivers!

 JDBC tutorial online

— http://developer.java.sun.com/developer/Books/
JDBCTutorial/



JDBC Basics: Connections

« A Connection is an object representing a login to a
database

// GET CONNECTION

Connection con;

try {

con = DriverManager.getConnection (

"Jdbc:odbc:bankDB",
userName, password) ;

} catch (Exception e){ System.out.println(e); }

* Eventually you close the connection
// CLOSE CONNECTION
try { con.close(); }
catch (Exception e) { System.out.println(e); }



JDBC Basics: Statements

* You need a Statement object for each SQL
statement

/| CREATE STATEMENT
Statement stmt;

try {
stmt = con.createStatement();

} catch (Exception e){
System.out.printin(e);

}

Soon we’ |l say stmt.executeQuery(“select ...”);



JDBC Basics: ResultSet

« A ResultSet object serves as a cursor for the statement’ s results
(stmt.executeQuery())

// EXECUTE QUERY
ResultSet results;
try {
results = stmt.executeQuery (
"select * from branch")
} catch (Exception e) {

System.out.println(e),; }
*  Obvious handy methods:
— results.next() advances cursor to next tuple

« Returns “false” when the cursor slides off the table
(beginning or end)
— “scrollable” cursors:
* results.previous(), results.relative(int), results.absolute(int),
results.first(), results.last(), results.béforeFirst(),
results.afterLast()



CreateStatement cursor behavior

Two optional args to createStatement:

— createStatement (ResultSet.<TYPE>,

ResultSet.<CONCUR>)

— Corresponds to SQL cursor features
<TYPE> is one of
— TYPE_FORWARD_ONLY: can’ t move cursor backward

— TYPE_SCROLL_INSENSITIVE: can move backward, but doesn’ t show results
of any updates

— TYPE_SCROLL_SENSITIVE: can move backward, will show updates from this
statement

<CONCUR> is one of
— CONCUR_READ_ONLY: this statement doesn’ t allow updates
— CONCUR_UPDATABLE: this statement allows updates

Defaults:
— TYPE_FORWARD_ONLY and CONCUR_READ_ONLY



ResultSet Metadata

 Can find out stuff about the ResultSet schema via ResultSetMetaData

ResultSetMetaData rsmd =
results.getMetaDatal() ;

int numCols = rsmd.getColumnCount () ;
int 1, rowcount = 0;

// get column header info

for (i=1; 1 <= numCols; i++){
1f (1 > 1) buf.append(",");
buf.append(rsmd.getColumnlLabel (1)) ;

}

buf.append ("\n") ;
e Other ResultSetMetaData methods:

— getColumnType(i), isNullable(i), etc.



Getting Values in Current of Cursor

« getStrin
// break it off at 100 rows ma

while (results.next () && rowcount < 100) {
// Loop through each column, getting the
// column data and displaying

for (i=1l; 1 <= numCols; 1++) {

if (1 > 1) buf.append(","):
buf.append(results.getString (1)),

}

buf.append ("\n") ;

System.out.println (buf) ;

rowcount++;

}
« Similarly, getFloat, getint, etc.



Updating Current of Cursor

Update fields in current of cursor:

result.next () ;
result.updateInt (“assets", 10M);

Also updateString, updateFloat, etc.

Or can always submit a full SQL UPDATE
statement

— Via executeQuery()

The original statement must have been
CONCUR _UPDATABLE in either case!



Cleaning up Neatly

try A
// CLOSE RESULT SET
results.close () ;
// CLOSE STATEMENT
stmt.close () ;
// CLOSE CONNECTION
con.close () ;

} catch (Exception e) {

System.out.println(e);



Putting it Together (w/o try/catch)

Connection con =
DriverManager.getConnection (" jdbc:odbc:weblog" ,userName,passwor
d) ;

Statement stmt = con.createStatement|() ;
ResultSet results =

stmt.executeQuery ("select * from Sailors")
ResultSetMetaData rsmd = results.getMetaData() ;
int numCols = rsmd.getColumnCount(), 1i;
StringBuffer buf = new StringBuffer();

while (results.next() && rowcount < 100) {
for (i=1; i <= numCols; i++) {
if (i > 1) buf.append(",");
buf.append (results.getString(i)) ;
}
buf.append("\n") ;
}

results.close(); stmt.close(); con.close();



Similar deal for web scripting langs

« Common scenario today is to have a web
client

— A web form issues a query to the DB
— Results formatted as HTML

Many web scripting languages used
— |sp, asp, PHP, etc.

— most of these are similar, look a lot like jdbc
with HTML mixed in



E.g. PHP/Postgres

<?php Sconn = pg pconnect ("dbname=cowbook user=jmh\
password=secret");

if (!Sconn) {
echo "An error occured.\n";
exit;

}

Sresult = pg query ($conn, "SELECT * FROM Sailors");
if (!Sresult) {
echo "An error occured.\n"; exit;

= pg num rows ($result);
for ($i=0; $i < Snum; Si++) {
Sr = pg fetch row(S$Sresult, $i);
for ($J=0; $J < count(S$r); S$j++) {
echo "Sr[$j]l&nbsp;"
}

echo "<BR>";

2>



