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ABSTRACT 
The Tzme-Splrt B-tree IS an Integrated index struc- 

ture for a versroned trmestamped database It gradually 
migrates data from a current database to an hrstorrcal 
database, records mrgratmg when nodes spbt Records 
valrd at the splrt trme are placed rn both an hrstorrcal node 
aud a current node This rmphes some redundancy Usmg 
both analysrs and srmulatron, we characterme the amount 
of redundancy, the space utrlreatron, and the record ad- 
drtron (insert or update) performance for a spectrum of 
different rates of msertron versus update Three splrt- 
tmg polrcres are studred whmh alter the condrtrons under 
whmh either trme splrts or key space splits are performed 

1. INTRODUCTION 

A growing area of mterest m the database community IS 
m the support of multrversroned data [LoSa, AhSn, JeMR, 
Ston] Multrversroned data, when updated, results m a 
new version of the data bemg created Because the old 
versron IS retained, several versrons of a record can exrst, 
each approprrate to some partmular trme 

There are many applmatrons where multrversroned data 
1s of mterest[McKe, SnAh, SeSh] These include finan- 
cral transactrons, umversrty transcrrpts, engmeermg de- 
srgn, legal and medmal records, etc One usually wants 
faster access to the current records while toleratmg slower 
access to the hrstormal records It 1s thus useful to keep 
the current database small and keep rt on a hrgh perfor- 
mance medrum The hrstor~calpart can then be stored m 
a separate area, possrbly on a slower medium In [LoSa], 
we developed the Tzme-Splrt B-tree for these applrcatrons 

A Trme-Splrt B-tree (TSB-tree) has a single unified m- 
dex for retrreval from both the lustormal and the current 
database Data 1s wrrtten to the hrstorrcal database by 
appendmg at Its end Thus, while a non-volatile write 
many/read many (WMRM) medrum 1s reqmred for the 
current database, e g magnetrc drsk, rt 1s possrble to effi- 
ciently exploit a write-once/read-many (WORM) medrum 
for the lustorrcal database, e g optical drsk 
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There are two types of node sphttmg In both cases, 
an index term descrrbmg the split 1s posted to the parent 
index node 

Key Splitting: As wrth Bt-trees, records with keys 
greater than or equal to the split key go to a new current 
node, records wrth keys less than the spbt key remam m 
the orrgmal node 

Time Splitting: Records valid before the split trme 
go to a new hrstormal node, records valid at or after the 
split time remam m the orrgmal current node Records 
valid both before and after the split trme have copies m 
both hrstormal and current nodes 

Different pohcres can be adopted for choosmg splrt 
times and for choosmg whether to split by trme or by 
key or by key and time simultaneously These polmy 
chomes affect the performance characterrstms of the struc- 
ture This IS explamed m the next section 

Time splrttmg introduces redundancy Records that 
exist across the split trme need to appear m both resultrng 
nodes The benefit of the redundancy IS that a snapshot 
of the database as of some tnne has locality, 1 e , a node 
m the database contains all records m a given kev range 
valid m a grven trme range Each node forms a rectangular 
partrtron of the key-trme space as illustrated m Frgure 1 
The disadvantage IS that long-lived records have many 
copres 

In this paper, we both analyze and srmulote the per- 
formance of the TSB-tree We provide asymptotm per- 
formance results under two assumptrons 

Uniform Growth Assumption: A new record IS 
equally likely to be between anv two exrstmg records 
Hence, the probabrlrty that a record 1s Inserted into a node 
IS proportronal to the number of records with unique keys 
111 the node 

Equal Probability Assumption. Each record 
with a unrque key 1s eqnall~ hkcly to be updated 

The two n~sumptrons above do not rmplv that our 
results apply only to umformly dlstrrbuted keys, even 
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Figure 1 Hlstorlcal and current nodes form a rectan- 
gular partltlon of the key-and-time space The shaded 
rectangles represent nodes In the hlstorlcal database 

though our simulation employed umformly distributed 
keys When analysmg index-based access methods, the 
purpose of a umform chstributlon IS to reahze the umform 
growth assumption 

We use a form of frmge analysis [EZGMW, BYLa] 
This computes a closure on node probabihties and pro- 
duces asymptotic performance results directly The sim- 
ulation entwls multiple trials, each trial adding 50,000 
records Node probab&ties are determined by actual 
count of each type of node The simulation confirms the 
analysis and extends our results to nodes whose Sizes are 
too large to analyze and to a split pohcy that did not 
succumb to analysis 

Our base case split pohcy for multiversioned data IS 
the write-once B-tree (WOB-tree) of Easton [East] The 
additional spht pohcies of the TSB-tree exploit the fact 
that current data IS stored on a WMRM medium, unlike 
the WOB-tree’s WORM medium The impact of this &f- 
ferencc, and of the additional spht pohc~s IS shown to be 
substantial 

Both the analysis and the simulation are parameterired 
m terms of the percentage of updates versus msertions 
The results that are presented graphically characterize the 
performance of the multiversioned index methods under 
a wide spectrum of msertion versus update rates Three 
split policies are studed and compared 

The next section reviews the design of the TSB-tree In 
section 3, we introduce the fringe analysis model Section 
4 describes our simulation model Performance results 
are presented in section 5 Fmally, in section 6, WC briefly 
discuss additional issues, e g sphttmg pohcy for index 
nodes, and draw some conclusions 

2. THE TIME-SPLIT B-TREE 

2.1 Description of TSB-tree Nodes 

The leaves of the TSB-tree, like the Bt-tree, contwn all 
the data records Each record contains a key, some data, 
and the commit time of the transaction that inserted It 

There may be many versions of the same record In the 
same leaf node That 19, an update of a record is treated 

as an insertion of a new version with the same key but 
different timestamp Snmlarly, an lndey term of the TSB- 
tree contains a key, a timestamp and a pointer to a node 

on a lower level of the tree 

2.2 Record Addition in the TSB-tree 

To add a record (insert or update) to a TSB-tree, a 
search process 1s followed to find the correct leaf If there 
1s room, the new record 1s placed in that leaf If there 1s uo 
room, a “split” takes place, a new leaf node 1s allocated, 
and a new index term 1s posted to the parent Similarly, if 
index nodes are full, they too are split We discuss index 
node splitting briefly in section 6 What follows applies 
to data nodes. 

There are key splits, time splits, and combmations of 
the two A key split IS hke a split m a Bt-tree The middle 
key of the node is used as the split key The considerations 
mvolved in performing a time split are more comphcated 

2.3 Time Splitting 

Time splitting m a TSB-tree 1s derived from the time- 
splitting used m the WOB-tree [East] The WOB-tree 
does not have separate hrstorical and current databases 
and has a more rigid splitting pohcy forced by non- 
erasabdity h particular, whenever a WOB-tree node 
needs sphttmg, a time split must be performed Some- 
times a key split also occurs For the time split, the 
spilt time IS always the current time A time split oc- 
curs whether or not the sphttmg reduces the number of 
records m the resulting current nodes 

When we split by time m the TSB-tree, we may split 
by any convenient time AFTER the last time split In 
this case, the “older” versions of records are written into 
a node m the lnstoncal database while the newer vcrslons 
are kept m the current database The versions of records 
that are valid across the split time must be present in 
both historical and current data bases 

This redundancy makes It possible for records vahd at a 
common time to be clustered m a small number of nodes 
Without such redundancy, regardless of what strategy 1s 
chosen for storing a long-lived record, some time based 
queries will be inefficient as the long-hved record cannot 
be stored near all records whose lifetimes overlap with it 
WC gve some examples of time splitting m Figure 2 

2.4 Splitting Criteria 

Current data being on a WMRM me&urn permits us 
to vary the split policy in the TSB-tree so as to improve 
Its performance, 1 e reduce its cost A number of factors 
contribute to the cost of the method Two m~portant Ones 
are 

Space Cost: the cost of space for current and his- 
torical databases 

Expansion Cost. the cost per (version of) record 
added, m disk accesses, to expand the file 

The kmd of split chosen ~111 depend on node contents 
If a node contams only current data, all of It must remain 
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Figure 2 Time-Split B-tree time splits 

m the current database Time spllttmg will be useless 
Key space splitting must be done (With the WOB-tree, 
time splitting always occurs, even when no current space 
1s saved ) If a node contams only repeated updates of 
a single record, all data 1s associated mth the same key 
value and so cannot be key spht l’lme splitting must be 
done 

These boundary condltlons suggest that the more lus- 
torical data 1s m a node, the more hkely It 1s that time 
splitting will be most effective The time sphttmg sweeps 
historical data out of the current database The more cur- 
rent data there 15, the more likely key space sphttmg will 
be most effective The key splitting grows the index to 
the current database and does not Introduce redundancy 

2.5 Splitting Policies 

This paper explores the consequences of the chfferent 
forms of sphttmg, and the condltlons under winch they 
are employed We start with the sphttmg pohcy used 
for the WOB-tree, then Introduce two addltlonal pohcles 
with the intention of Improving the performance or stor- 
age utilization 

2. performs a kev spht whenever two thirds or mare 
of the overflowing node consists of current data (This 
two thirds threshold 1s one of any number that might be 
employed We use it consistently with all our splitting 
pohcies See the discussion in section 6 ) 

The WOB-tree IS constrained to use this spllttmg pol- 
icy because of its write-once medium The write-many 
medium of the current database in the TSB-tree permits 
a more flexible choice In particular, it permits us to re- 
duce the amount of redundancy and hence the Size of the 
historical database The WOB-tree uses the current spht- 
tmg node as the historical node, in effect migrating it to 
the historical database Smcc it cannot be shrunk, there 
1s no way for the WOB-tree exploit more flexible splitting 
policies 

2.5.2 Time-of-Last-Update Policy 

Suppose a number of msertlons are done after the last 
update Choosing the split time to be the time of the 
last update (not the last msertion) avoids carrying these 
trading msertions In the historical node because they do 
not live across the split time The contents of the resulting 
current node are not changed by this chcnce of spht time, 
and remain at the mlmmum, 1 e it contams only current 
data, and no historical data 

The TSB-tree using the time-of-last-update (TLU) pol- 
ICY 

1. always performs a time split unless there 1s no 
historical data, and uses the time of last update as the 
splitting time 

2. performs a key split whenever two thirds or more 
of the overflowing node comusts of current data 

Some of the current data may still persist across the 
split time But a wise choice of spht time reduces the 
number of records that cross the split time boundary 

If the split time 1s pushed back past updates as well 
as msertions, some historical data ~111 end up in the cur- 
rent database This may Al result In a smaller amount 
of redundant data overall az more data may be removed 
from the historical node than may be added to the cur- 
rent node But now, we are malung a trade-off between 
amount of redundant data, and current database size We 
do not pursue this extension here 

2.5.3 Isolated-Key-Split Policy 

The preceding sphttmg policies always require that a 
time split be performed whenever a node overflows, un- 
less there IS NO historical data that can be removed from 
the node Sometimes, there 1s very httle hlstorlcal data 

that cau be removed from an overflowing current node 
Expansion cost can be redncrd If we do not force the crc- 
atlon of another historical node in these cases Further, 
redundancy 1s reduced as there are fewer spht times for 
versions to hve across Hence, fewer redundant copies of 
the data are generated 

2.5.1 Write-Once B-tree Policy 

The WOB-tree pohcy (WOB) IS the pohcy used m the 
WOB-tree A TSB-tree usmg WOB pohcy when a data 
node overflows 

1. always performs a time spht, and uses the CUR- 
RENT time as the splittmg time (The sphttmg node can- 
not be re-written in the WOB-tree, so tlus 1s done regard- 
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If we do only a key split under the same circumstances 
that we drd a key split plus a time spht previously, we 
do not Increase the space for the current database ml- 
tlally, and only modestly eventually However, we dra- 
matlcally reduce the number of time splits We call this 
the Isolated-key-spht pohcy (IKS) A TSB-tree followmg 
the IKS pohcy 

1. performs a time split only when not doing a key 
split, and uses the time of last update as the spllttlng 
time 

2. performs a key split whenever two thirds or more 
of the splitting node consists of current data 

The number of key sphts 1s slightly greater with IKS 
than with the other pohcles When current nodes also 
contain hlstorlcal data, some key sphts will occur at an 
earlier time than if that hlstorlcal data had been swept 
into the historical database during prior splits Thus, 
while a node does not key split unless 2/3 of its records 
are current, it may be prevented from filling up with as 
much current data because of the presence of hlstormal 
data 

2.6 Notation 

In the remainder of the paper, we make use of the fol- 
lowmg notation to denote the quantities of interest In our 
performance study 

R total non-redundant records 
RR, total current records 
Rh lustorrcal records (rncludrng redundant) 
red total redundant records 
K total drstmct keys 
N total number of nodes 
NC number of current nodes 
Nh number of hlstorrcal nodes 
k number of dtstrnct keys rn a data node 
T number of records m a data node 
1 msertlons after last update In data node 
b current data node capacity (records) 

P probabrhty of update 

L probablllty of lnsertlon (q = 1 - p) 

3. FRINGE ANALYSIS 

We give an analysrs of the TSB-tree for TLU and WOB 
pohcres like that made for B-trees m [BYLa, EZGMW] 
We characterize (or type) data nodes by their number of 
records, number of old versions (equivalently, the number 
of updates) and number of msertrons since the last update 
Since there IS a fimte record capacity m each data node, 
the number of types of data nodes 1s finite 

We model a TSB-tree wrth a vector Indexed by the 
node types The sequence of random (vector) variables 

-Y(R) = (a(R), a(W, , G.(R)) 

where z,(R) IS the random varrable representing the num- 
ber of distinct keys m all current data nodes of type z after 
R records have been added to the database, 1s a Markov 
charn That is, X(R) depends only on X(R - l), not on 

(42 0) (43 1) (4 3 0) (4 4 4) 
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Figure 3 Node transhon diagram 
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the previous history of the process The study of trees 
by tlus Markov cham model of the (keys rn the) leaves 1s 
called frtnge analysts, where the leaves are the “fringe” of 
the tree 

3.1 Transition Diagram 

Figure 3 IS a diagram of the transitions for the TLU 
and the WOB pollcles when b = 5 The current node 
types are mdrcated by three-tuples (7, k, I) The smallest 
number of records and keys at stable state m this case 1s 
T = k = [5/31 = 2 

When a record is added to the database, rt is an update 
wtth probabrlrty p and an rnsertron with probabrlrty q 
Figure 3 mdrcates this with arrows labeled by p for update 
and 4 for rnsertron For example, a node (3,2,0), with 
r = 3, k = 2 and 1 = 0 has 3 records, 2 distinct keys (that 
is, one of the records IS an old version of another record rn 
the same node), and the last record added was the update 
(the number of rnsertrons since the last update is zero) 
If a record in a node of type (3,2,0) is updated, a node 
of type (4,2,0) results If a record 1s inserted (with a new 
key), a node of type (4,3,1) results 

When a spht occurs, because a record IS added to a 
full node (of type (b, k, 1)), the followrng occurs One new 
current node IS created rf k 1s 2 or 3 and the new record 1s 
an update, or rf k is 2 and the new record is an insertron 
This IS a “pure” time split Otherwise (when there are at 
least 4 = 2[b/3j drstrnct keys mclndrng the new record), 
two new current nodes are created Thus mvolves a key 
sp11t Except when there are no lustorlcal versions 111 a 
full node with the TLU pobcy, an hrstorrcal node 1s always 
created in node sphttmg 

For TLU and WOB, this characterizes the splitting pro- 
cess For IKS, the number of updates for each record IS 
needed-this causes an explosion of node types Thus, 
IKS 1s studied only via srmulatron 

3.2 Transition Equations 

Transltlons from one type of node to another occur 
whenever a record 1s added With umform growth, rt 
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IS equally hkely that keys of new records wrll fall in anv 
interval between exrstrng keys Each current data node 
owns a number of znteruals equal to the number of keys 
rn the node, k We let fn(r,k,l) be the probabdrty that 
an interval lies rn a node of type (T, k,l) when R new 
records have been added to the database Thts 1s also the 
probabrlrty that an znqertxon or an update (that IS, any 
new record) will hit a node of thus type 

3.2.1 Non-Split Transitions 

First, we treat transrtrons to node types that cannot be 
created by a split 

Non-Split Transition Equation 

(K + l)fn(T, k, 1) = p[(K + l)fn-I(“, k, 1) 
-kh-.-1(T,k, 1) + d;kju(T - 1, k, *)] 

+q[KjR-l(T, k, 1) - kfR--l(T, k, 1) 

+&kfu(r - 1, k - 1,l - 1)] 

The left hand srde of thus transrtlon equatron IS the 
number of intervals rn nodes of type (T, k,l) after R 
records have been added to the database This IS the 
total number of Intervals, (K + l), one more than the to- 
tal number of drstrnct keys, multrplred by the probablhty 
that an interval IS rn nodes of thus type 

The right hand side of the equation has two muJor 
terms The first maJor term, wrth factor p, computes the 
change when the last record added 1s an update In thrs 
case, the total number of intervals before the last record 
1s added does not change Thus the expected number of 
rntervals in nodes of type (T, k,l) IS (K + l)fn-~(~, k,l) 
before the transitron 

If the last record updated IS rn a node of type (T, k, l), 
then kfn-l(r, k,l) intervals of thus type are lost because 
one node of that type IS elrmrnated 

If the last record updated IS rn a node wrth one less 
record and the same number of keys, then a gain rn mter- 
vnls of type (T, k, 2) occurs The fuctor 6( mdrcates that 
this subterm IS present only when 1 IS zero (Note that 
1 will be zero when the last record added IS an update ) 
The * rn this term rndrcates a weld card desrgnatrng any 
number of rnsertrons once the last update, since a new 
update changes I to zero Thus 

f~-I(T - 1, k, *) = c ~R-I(T - 1, k,t) 

The second maJor term, wrth factor q, computes the 
change when the lust record added 1s an insertron (u new 
key) In this case, there was one less interval rn the 
database before the new record was added The loss rf 
the msertion hits a node of type (T, k, 1) IS the sume as rn 
the case of an update 

When the lust record rs an lnsertron Into a node with 
one less record, one less key and one less insertron after 
the last update, a garn ~111 occur The factor 61 indicates 
that this subterm is absentwhen 1 IS zero because 11s zero 
only when the last addrtron IS an update 

Assume that a steady state probabdrty vector 1s at- 
tamed, 1 e , thut 

jn(T, k, 1) = jn-l(T, k, 1) 

At steady state, therefore, If 1 IS zero, we drop the sub- 
scrrpt for f and obtain 

f(T,k 1) = pkf(’ - ‘, k, ‘) 1 
1-p+k 

At steady state for non-zero 1, we have 

f(T, k, 1) = 
qkf(T - 1, k - 1,l - 1) 

I-p+k 

3.2.2 Transitions Involving Splits 

We now turn to the more comphcated case, where the 
node type can also be created from a spht of an overfull 
node This case only occurs for nodes where 

[b/3] 5 T = k = 1 < 2[b/3] 

This IS so because all splits sweep hrstorrcal duta from 
the current database We let &,,t,, lndrcate that u term 1s 
zero when r = [b/3], the mrmmum number of records rn 
a current node st steady state Then, u record addrtron 
~111 result rn a transitron as described below 

Split Transition Equation 

(K + l)fn(r, T, T) = (non-split equation terms) 

+p[Tfw(b, 7, *) + &unTfn--l(b, 73 - 1, t) 

+Tfn-l(b, 2T + 1, *) + 2rfn-l(b, 27, *)] 

+q[Tfiu(b,r - 1, *) + 6n,,nTf&t(b, 2T - 2, t) 

+rfn-l(b, 2T, +) + 2rfn-l(b, 21’ - 1, *)] 

Nodes that can be generated by sphttrng can also be 
generated as a result of normal record addrtron where the 
node does not splrt Hence the non-sphttrng equatron 
terms are also present here 

A record update or msertlon to a full node wrth less 
than 2 [b/31 - 1 keys splrts into one historrcal node and one 
new current node An update to a full node wrth eractly 
2[b/31 - 1 keys has the same effect Otherwrse two new 
current nodes and one hrstorrcal node are created at splrt 
time 

Briefly, let us consider sphttlng In the updnte case Up- 
dates occur with probabrhtv p, and hence the term pre- 
fixed with the factor p describes the update case 

First, if the new record lands rn a full node where the 
full node has the same number of keys as the resultrng 
node, thus represents a trme spht The expected garn 111 
intervals of type (T,T,T), where T = k, IS ~fn-l(b,T,+) 

For a full node with 2~ - 1 drstrnct keys, a key splrt 
results This creates two new current nodes for updates, 
as long ds 2~ - 1 2 2[b/31 (That is, except when T = 
[b/3] ) One of the new nodes will have T keys and the 
other will have T - 1 So the expected gain rn the number 
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of Intervals will be rfn-l(b, 27 - 1, t) The reasoning for 
2~ + 1 keys IS similar If there IS a full node with 2r keys, 
an update will cause two new current nodes of this type 
to be creatrd, with an expected gain of 2~f~--l(b, 27, *) 

We omit the smlllar arguments for the insert case 
To obtnm the steady state transition equations, we 

again ehmmate the subscrlpt and assume ~R(T, k,l) = 
fn-l(~, k, I) The result IS quite complicated and we do 
not display it here We use these transition equations to 
create a mntrlx whose eigenvector for the largest eigen- 
value IS the vector of probatnhtles f(~, k, I) at steady state 
Multiple applications of the transition matrix to an arbi- 
trnry vector (non-zero) yields a sequence of vectors which 
converge (experimentally) to the elgenvector 

3 3 Using the steady state solution to estimate 
space utilization 

The steady state solution depends on the value of p, 
the percent of updates From the steady state solution, 
we can derive the number of current records, the number 
of lustorlcal records, the number of redundant records, 
and the number of nodes of each type, for a given number 
of records R added to the database 

The number of total keys 1s K = qR The number of 
keys m nodes of type (T, k,l) IS Kf(T,k,l) or the total 
number of keys times the probablhty that a key (or an 
interval) 1s m a node of this type To find the number of 
nodes of a type, we divide by k To find the total number 
of nodes In the current database, we sum these numbers 
over all current node types That IS, 

Slrmlarly, to find the number of current records, we use 

These results apply for both TLU and WOB pohcles 
and are used to derive current space utlhzatlon 

To derive the number of hlstorlcal nodes for TLU, note 
that one lustorlcal node 1s created at each split of a full 
node except when it IS an msertlon into a node of type 
(b, b, b) That is, the number of hlstorlcal nodes IS 

N$T’LU] = R (pf(h h b) + c f(4 kv 9) \ 
(b,k t)#(b b b) ’ 

The formula for the WOB policy 1s simpler 

NtJWOBl = R( c f(b, k, 1,) 
(0 1) 

This 1s the expectation of landmg m a node which wdl 
cause a split when R records have been added to the 
database 

When a record In a full node 13 updated, b records 
migrate to the hlstorlcal node Only the new update 

IS stored non-redundantly, only m the current database 
This 1s true for both TLU and WOB pohcles 

For TLU, the number of records migrating to the his- 
torlcal node after an Insertion to a full node IS b-l- 1 For 
WOB, there are still b records when there is an msertlon 
Thus 

R,,[TLU] = R (pf(h h b)b 

+ c f(b,k,I)(pb+s(b-[-1))) 
and 

R,,[WOB] = Rb( c f(b, k, 1)) = b x N~[WOB] 

(WJ) 

Last, we derive the number of redundant records If the 
new record added to a full node 1s an update, we expect 
k - 1 redundant records m the new historical node If 
this record XI an msertion, we expect k - I- 1 redundant 
records m the hlstorlcal node for TLU and k redundant 
records for WOB The total number of redundant records 
for the TLU pohcy IS 

red[TLU] = R (pf(h h b)(b - 1) 

+ c f(b,k,I)(p(k-l)+q(k-1-l))) (hW#(hhb) 
and the number of redundant records for the WOB policy 
IS 

Te4WOBl = R( c f(4 k, Wk - 1) + e(k))) 

Numbers of hlstorlcal and redundant records m a spht 
when b = 5 are given In the bottom of the diagram m 
Figure 3 We use ratios of the expressions m this section 
to obtain hlstorlcal space utillzatlon, percent of records 
which are redundant and so forth Note that the factor 
of R ~111 cancel out In these ratios, that IS, space utiliza- 
tlon at steady state 1s mdependent of the total number of 
records 

4. SIMULATION 

4.1 Simulation Goals 

Our intent In simulatmg the TSB-tree 1s to 

1. confirm the steady state analytic results of the 
fringe analysis for the cases that were susceptible to anal- 
VSlS, 

2. provide extrapolations of the analytic results to 
node Sizes that could not be readdy handled by the anal- 
ysls simply because of a Size explosion, 

3 explore Interesting sphttlng policies that proved 
difficult or impossible to analyze effectively In partlru- 
lar, frmge analysis was not employed with the IKS policy 
because of the explosion in node types and transltlons 
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4.2 The Simulation Program 

The detailed srmulatlon effort resulted m a parameter- 
rsed skeletal rmplementatron of the TSB-tree Nodes are 
represented by vectors of records or Index entrres, trmes- 
tamped approprrately All the logic to support the spht- 
tmg pohcres described rn section 2 5 IS mcluded Statrstr- 
cal mformatron IS accumulated during the executron trials 
of the TSB-tree model rmplementatron 

The skeletal rmplementatron IS drrven by a program 
that generates random keys to be mserted or updated 
Insertrons are drawn from a uniform drstrrbutron of keys 
The updates are, with equal probabrlrty to any one of the 
already exrstmg keys The probabrhty p that a record 
IS bemg updated can be varred between zero and almost 
lOO%, I e from all Inserts to almost all updates Whether 
a particular record addrtron 1s an insert or an update 1s 
determined by whether another random number between 
zero and one IS less than p or greater than p 

A trial execution of the TSB-tree model rmplementa- 
tron mvolves choosrng the (1) split polmy (one of WOB, 
TLU, or IKS), (II) update probabrlrty p, (111) total number 
of record addrtrons R, (IV) key split threshold Tk = k/b 
at whrch key sphttrng IS to occur, and (v) node srze b 

The performance mformatron reported for each run In- 
cludes several forms of utrlizatron, redundancy, record ad- 
drtron cost, and frequency of node types These are de- 
scribed m the next section 

5. PERFORMANCE RESULTS 

5 1 Introduction 

We report asymptotrc results Fringe analysrs produces 
this drrectly The frrnge analysrs algorrthm 1s executed 
until closure for each of Its trral runs The detarled srm- 
ulatron confirms and extends the frmge analysis Each 
srmulatron trial made 50,000 record addrtrons m an effort 
to provrde a reasonable fit wrth the analysrs 

Both the analysrs and srmulatrons had drfficultres reach- 
mg steady state behavror for very hrgh update fractrons, 
1 e greater than 90% Except for these values, the results 
for srmulatron and analysrs are the same to wrthm 01 for 
all quantrties 

5.2 Single version current utilization 

Srngle versron utrlrzatron utrlrzatron tells us how effec- 
tive our splrt polrcy 1s m mmimrzmg the space for the 
current database The current database 1s stored on a 
wrote-many medrum wrth cost per byte that IS a factor of 
about ten times more expensive than space for the his- 
torrcal database on the wrote-once medmm The smgle 
versron current utrlrsatron U,,, is grven by 

U,,, = K/(Nc x b) 

The graph rn Frgure 4 plots U.., for the full range of up- 
date probabrlrtres, for nodes of srze 11, and for the three 
spht polmres The results for multrple node srzes are tab- 
ulated m Table 1 rn the appendrx 

What the figure and table both show for the three drf- 
ferent split pobcres IS that, as p rncreazes, U,,, declmes 
The end pomts for U,,, are explarned as follows 

04 
b - 11 records per node m 

03 
and a 

02 
TLU 

I IKS m 
01 

I 
001 

01 02 03 04 05 OS 07 08 09 10 

p - percent updates 

Fgure 4 Smgle version current utdlzatlon 

All Insertions [p = 01: All pohcres behave as a 
regular B-tree behaves wrth respect to U,., Generally, 
this utrhsatron falls somewhat as node srse b increases In 
the hmrt, as b Increases, we expect U,,, = In 2 = 0 693 

Almost All Updates [p = 991: The maxrmum 
utrlizatron, U rre--mnm, becomes the key splrttmg thresh- 
old For most of our results, this threshold was set to 
666 Hence, we expect U..,, at high update rates, to be 

near U rsc--mncln 2 = 0 666ln2 = 0 46, and indeed that IS 
what we see We experrmented wrth thresholds of 0 5 and 
0 833, and these cases yrelded the antmrpated results, 1 e 
0 346 and 0 577 

U,., declmes somewhat wrth mcreasrng node size Thus 
1s a well known phenomenon When a full node splits, Its 
contents, PLUS the one addrtronal record bemg added, 
are divided between the two resulting nodes The effect 
of this one extra record IS srgmficant at small node sizes 
but vamshes as nodes become large 

WOB and TLU produce identical results for U,., Both 
perform key splrttmg under rdentrcal srtuations The re- 
sults for IKS are comparable at the extremes of p’s range, 
but are up to about five percent less m the mid-range 
p Thus five percent utrlrzatron declrne for IKS makes as 
much as a 10% drfference m the space reqmred for the 
current database Thus IS the penalty for not sweepmg 
hrstorrcal data from the current database when a node is 
key split 

5.3 Redundancy 

The TSB-tree must copy versrons of records that persrst 
across the times used for time spbttmg We are mterested 
m the fractron of records m the database that are duph- 
cates This fraction redundant F,.,A IS given by 

F,.,n = red/R 

The superrorrty of the IKS pohcy m reducing redundancy, 
and hence lrmrtrng the size of the hrstormal database, 1s 
clearly demonstrated m Figure 5 Only at very hrgh up- 
date fractions do the three polrcres converge to produce 
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Figure 5 Fraction redundant 

the same redundancy The redundancy for lower update 
fractions IS dramatlcally lower with the IKS pohcy The 
WOB pohcy 1s by far the worst, demonstratmg the lun- 
ltmg effect of the write-once medium At high update 
fractions, the time of last update optlmlzatlon does not 
help much, smce the last record addition to a node IS al- 
most surely an update 

We can explam the results at the end points of the 
update fraction range, and hence understand the overall 
trends 

Ali Insertions: Fred 1s zero for TLU and IKS M 
no time splits are done For WOB, F+=,f IS about 1 4 In 
WOB, all current nodes were generated by a combined 
time and key-spbt Hence, each current node, on average, 
has left a half a node of lustorlcal data In Its predecessor 
That. predecessor has llkewlse left behmd a half a node of 
data In its predecessor Hence, belund every current node 
there IS l/2 + l/4 + = 1 node of lustoncal data Each 
current node contwns, on average, U,,, of current data 
Hence the fraction of redundant data 1s l/UIVe Tins 1s 
independent of node Size except as node Size affects US,, 
slightly (V,., drops to 693 as node Size Increases) 

Almost All Updates: All methods converge when 
p 1s large The lund of sphttmg performed by all the poll- 
cles 1s largely pure time sphts at these p values Further, 
the lack of msertlons makes time-of-last-update the cur- 
rent time Hence, the pollcles produce approximately the 
same number of redundant records At each time spht, 
no more than U rrc-lnnz of data IS current and hence be- 
comes redundant The records added between time splits 
1s not less than 1 - U ,*.--mar Thus, Fted 1s bounded 
by U,.r--mnr/(l - u,V.c-,noe) In fact, F,,,i was close to 
V,,,/(t - V.,,) except for very high key spht thresholds 
Redundancy can increase wlthout bound aa the key spht 
threshold approaches 100% Trmls with higher thresholds 
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Figure 6 Smgle version total uthzation 

confirmed this 
Table 2 provides data for a variety of node Sizes and 

split pohcles The notable thmg IS the impact of mcreas- 
mg node Size on redundancy We do not fully understand 
this However, the most Important factor for redundancy 
m node6 with large numbers of records is the split thresh- 
old, not the node Size 

The TLU policy approaches the redundancy of the 
WOB pohcy as node size Increases The number of 
records represented by traihng inserts remains approxl- 
mately constant per node as b Increases, and hence be- 
comes an mcreasmgly smaller fraction of the records of 
the node These are the records that do not need to be 
stored redundantly across a time spht 

5.4 Single version total utilisation 

Single version total utlllzatlon relates the cost of car- 
rying multiple veraons, in terms of total space consumed 
by these retained versions, to the storage needs for sm- 
gle version data This quantity 1s affected by the fraction 
of updates, well as how effectively the method utilizes 
storage and avoids redundancy The single version total 
utilization is 

U,et = K/(N x b) 

We graph our results for the three split pohcles for node 
Size of 11 In Figure 6, with the results for other node sizes 
tabulated m Table 3 What we see IS that Un.t tends to 
zero aa the update fraction Increases because the current 
data becomes an ever smaller part of the total database 
At low update factors (mostly Inserts), the ab1ht.y to per- 
form isolated key sphts clearly shows an advantage m 
holding down the size of the hlstorlcal data base The 
dramatic difference between WOB and TLU pollcles re- 
sults from time spllttmg frequently being ineffective TLU 
avoids the time split With WOB, the time split occurs 
regardless 

Smgle version total utlllzatlon declmes as node size In- 
creases due to the increase in redundancy as node size 
increases The change IS dramatic only for small node 
sizes Larger nodes with the same split threshold have 
similar total utilizations 
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Figure 7 Multiple versron utrlrzatron 

5.5 Multiple Version Utilization expand[TLU] = (2 x trmesphts + 2 x keysplrts 

Multiple version utrlrzatron, U,,,., measures how effec- 
trvely the TSB-tree, together wrth the particular split pol- 
icy, support multrversron data This can be used to com- 
pare TSB-trees with other multrversron approaches It 
reflects the cost of mamtammg the integrated Index to 
the entire collectron of versions, and the cost of storing 
redundant copres of the versions so as to support “as-of’ 
queries Multrversron utrlrzatlon 1s given by 

+3 x trme&keysplrts)/R 

IKS: Like TLIJ, this pobcy reqmres two medra and 
hence pays the larger node spbttmg cost Here, however, 
combined time and keysplits do not occur Hence 

expand[IKS] = (2 x trmesphts + 2 x keysplrts)/R 

U,,,. = R/(N x b) 
The above expansion costs all decline with mcreasmg node 
size since the frequency of node sphttmg varies mversely 
with node size 

Once again, we use node size of 11 as the case that we 
graph m Frgure 7, wrth the remamder of the results tab- 
ulated m Table 4 

The results here are consrstent with our expectations 
in comparmg the three splrt pollcres The WOB pohcy 
results m very substantrai redundancy m the low update 
fraction cases, more than doublmg the number of copres 
for these cases Note how well the IKS polrcy drd At low 
update fractions, the utrlrzatron was comparable to having 
stored all the versrons rn a B+tree, without stormg any 
versrons redundantly That rs, the redundant copies are 
being stored wrthout compromnung the storage ut~hza- 
tion of the TSB-tree At higher update fractrons, there 
1s too much redundancy for this to happen Hence, the 
multiversion utilization trails off 

All polrcres have equal expansion costs when the update 
factor IS zero, 1 e only msertlons are performed This 1s 
so because all splits are pure key splrts (with WOB, the 
splrts are meffectrve time and key splrts), the number of 
splrts IS the same and the cost of the sphts are equal 

As the update factor increases, the cost for the WOB 
polrcy declmes with its decline m redundancy For TLU 
and IKS, expansron costs Increase modestly wrth rncreaz- 
mg update factor This 1s related to increased redundancy 
as update factor increases, resulting rn a larger number of 
splrts being required The TLU and IKS polrcles have 
higher expansion costs than WOB because the hrstorrcal 
node never needs wrrtrng with WOB Expansron costs for 
nodes of size 11 are plotted m Frgure 8, with selected 
values for a number of node sizes tabulated m Table 5 

This quantity 1s also sensitive to node size (especially 
for small nodes) because redundancy increases with node 
size Hence, U,,,, decreases wrth mcreasmg node size 

5.6 File Expansion Cost 

6. DISCUSSION 

There are a number of pomts worth drscussmg that 
have not fit converuently mto the results that we have 
reported above 

Storage IS not the only cost for supportmg access to 
data The performance of the record addltron process 1s 
also important Here we treate the cost, m disk accesses 
per record addrtron, of the effect of the different polrcres 
on file expansron This expansron cost 1s derived from the 
frequency of the varrous kmds of node sphttmg that the 
three policies entail 

6.1 Index Node Time-Sphtting 

Our farthful slmulatron of the TSB-tree access method 
revealed an unexpected attribute of the method We drd 
not believe that performmg time splrttrng of index nodes 
would be necessary We knew it would be difficult for 
the TSB-tree az Index terms rn an hrstorrcal node cannot 

We assume that an updated node needs to be written 
to drsk as a result of record addition Hence, we exclude 
the cost of wrrtmg one node Further, we neglect the cost 
of non-leaf splrts, which IS very small What 1s included IS 
the cost of writing the new nodes plus updatmg the index 
node that refers to these nodes 

WOB: A split does not require re-wrltrng the full 
node Rather, a new node (in the case of a pure time spbt) 
or two new node6 (m the case of a key and time split) are 
written, along with the parent index node Thus 

expand[WOB] = (timesplits + 2 x trme&keysplrts)/R 

TLU: This pohcy requires a separate medium for 
hrstorrcal data, and hence the current node cannot become 
the hrstorlcal node The orrgmal full node must be re- 
written Tlus policy can have three kinds of node splits 
Thus 
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Figure 8 Expansion cost In disk access 

refer to nodes m the current database smce those nodes 
can move 

We discovered the need for index node time spbttmg 
during trrals with a node size of five The problem 1s 
that small nodes soon degenerate to havrng only a single 
current entry and Its updates, all other entries having 
been removed by key spbttmg This makes further key 
splits rmposslble 

There arc basic two approaches to index node splrttmg 

1 Find a split trme at which hlstormal index terms 
can mrgrate to an hrstorlcal node without any current 
index terms endmg up there as well This mvolves findmg 
the oldest current index term and usmg Its time as the 
split trme Thus approach was adopted for the srmulatlon, 
though not wrthout havrng to deal wrth several subtle 
bugs m the splrttrng process 

2. Force the descendent nodes of the Index terms to 
split as of some time so that that time can be used as 
a spbt trme This mtroduces addrtronal redundancy, but 
might be useful for mrgratmg/archrvmg the TSB-tree data 
as of the time chosen We did not pursue thrs approach 

6.2 Other Key Split Thresholds 

Only the 2/3 threshold value was used for purposes 
of decrdmg whether to trme split or key split An In- 
teresting questron IS what happens when the threshold 
is varred The obvrous happens, m terms of drrectron of 
effect Increasmg the threshold makes key splrttmg less 
likely, hence mcreasrng U,., Because time splrttmg fre- 
quency 1s Increased, redundancy 1s Increased, and hence 
U,,,, and U,,t are decreased File expansron cost also 
Increases modestly Decreasmg the threshold has the op- 
posite effect 

What threshold to use depends on what cost function 
one 1s attempting to mrmmrze We discuss this below m 
the context of choosrng a spbttmg polrcy Srmrlar consrd- 
eratrons apply to the threshold value The 2/3 threshold 
appears to be a decent compromme wrth tolerable perfor- 
mance over the spectrum of update factors 

6.3 Some Conclusions 

The purpose of a performance study 1s to assist rn 
choosmg design poramrters so that users can optrnnae 
their applrcatron, with Its particular characterlstlcs Oue 
would bke for this task to be simple, by finding techmques 
that are umversally good regardless of application Un- 
fortunately, the spbttmg polrcres studied here do not lend 
themselves to universal mterpretntlons 

Obvrously, rf the entire TSB-tree must resrde on a 
WORM medium, then one must use the WOB pobcy 
The other polrcres are lmpossrble rn their vanilla form 
since they require that the full splittmg node be reused 
for current data The beauty of the WOB pobcy IS that It 
exploits the full node by transformmg rt into the hrstorlcal 
node This makes a virtue of the necessrty of the WORM 
medium However, on a WORM medrum, rt IS clumsy to 
manage the current data and its representation tends to 
be very wasteful of space 

If WMRM storage 1s avallable and should per byte 
WORM cost be more than a factor of ten less than 
WMRM storage cost, then using TLU may be mtercst- 

-3 U,,, IS always equal to the WOB pobcy’s result, 
and always better than IKS by a modest, but potentrally 
significant amount 

If WORM storage 1s less than a factor of ten cheaper 
than WMRM storage cost, then the IKS polrcy IS a good 
choice It gives up a modest amount of current utrllaatron 
to garn a substantial reductron m redundancy, and hence 
In the srze of the hrstorrcal database Its record addition 
cost IS modestly higher than WOB, but as good or better 
than TLU (or WOB when data must be migrated to the 
WORM medium) When the cost differential is less than 
ten, there 1s no update factor at which the TLU (WOB) 
storage cost IS less than the IKS storage cost 

Currently, It would appear that WORM devrces are 
about a factor of ten less costly than magnetic disk Thus, 
the choice of polmy 1s not clear 

References 

[AhSn] Ahn, I and Snodgrass, R , “Partttroned Storage 
for Temporal Databases,” Inform&on Systems, 13, 4, 
1988 pp 369-391 

[BYLa] Baeaa-Yates, R and Larson, P A , “Performance 
of Bt-trees wrth Part& Expansions,” IEEE Tram on 
Knowledge and Data Engmeenng, lr2, June 1989, pp 
258-257 

[East] Easton, M , “Key-Sequence Data Sets on Indebble 
Storage,” IBM J Res Develop ,303, May 1986, pp 230- 
241 

[EZGMW] Elsenbarth, B , Zlvmm, N , Gonnet, G , 
Mehlhorn, K and Wood, D , “The Theory of Frrnge Anal- 
yas and Its Appllcatron to 2-3 Trees and B-Trees,” In- 
form Contr , 55, 1982, pp 125-174 

[JeMR] Jensen, C S , Mark, L , and ROUSSO~OU~OS, 

N, “Incremental Implementatron Model for Relatronal 
Databases wrth Transaction Time,” Umversrty of Mary- 
land UMIACS-TR-89-63 CS-TR-2275 July, 1989 

362 



[LoSa] Lomet, D and Salzberg, B , “Access Methods 
for MultIversIon Data,” Proc ACM SICMOD, Portland, 
1989, pp 315-324 

[McKr] McKenzie, E , “Blbhography Temporal 
Databases,” SZGMOD Record, 15 2, Dee 1986, pp 40- 
52 

[SeSh] Segev, A and Shosham, A , “Logical Modelmg of 
Temporal Data,” Proc ACM SIGMOD, May 1987, pp 
454-466 

[SnAh] Snodgrass, R , and Ahn, I , “A Taxonomy of Time 
in Databases,” Proc ACM SIGMOD, March 1985, pp 
236-246 

[Ston] Stonebraker, M , “The Design of the POST- 
GRES Storage System,” Proc 13th VLDB Conference, 
Brighton, 1987, pp 289-300 

Appendix: Tables of Results 

Table 1 Single Version Current Utlhzatlon 

Policy Node 
Uodare Probablhty 

See 01 10 30 50 70 90 99 

WOB 5 74 70 61 55 51 48 47 

11 71 67 59 53 50 48 46 

17 70 67 58 52 49 48 47 

35 69 66 57 52 51 48 46 

Table 5 Expanston Cost per Record 

Policy Node 
Update ProbabMy 

Stze 31 10 30 50 70 90 99 

WOB 5 54 52 47 41 36 31 29 

11 25 24 22 20 18 16 15 

17 17 16 14 13 12 11 11 

35 OS 08 07 06 06 06 05 

TLU 5 55 59 63 52 60 58 57 

11 26 30 32 31 31 31 30 

17 17 21 21 21 21 21 21 

35 09 11 10 10 10 11 11 

IKS 5 54 55 56 57 58 57 56 

11 26 26 27 28 30 31 31 

17 17 17 17 19 20 21 21 

35 08 06 09 10 10 11 11 

Table 3 Smale Verston Total Uttllzatlon 

Policy Node 
Update PrObatMty 

Size 01 10 30 50 70 30 99 

WOB 5 37 35 30 '24 17 06 01 

11 35 34 29 23 15 06 01 

17 35 34 29 23 14 05 01 

35 35 33 29 22 14 05 01 

TLU 5 74 69 61 55 50 48 46 

11 71 67 59 53 50 46 47 

17 70 66 59 52 A9 47 46 

35 69 66 57 52 49 46 50 

TLU 5 72 55 36 26 17 06 01 

11 67 46 30 23 15 06 01 

17 64 41 29 23 15 05 01 

35 60 36 29 22 14 05 01 

IKS 5 73 65 57 53 50 48 47 

11 70 64 55 52 50 47 46 

17 69 63 54 52 49 47 45 

35 69 63 53 52 50 47 45 

IKS 5 73 65 50 35 21 07 01 

11 70 64 48 32 19 06 01 

17 69 63 47 31 16 06 01 

35 69 63 A7 30 17 05 01 

Table 2 Fraction of Records Redundant Table 4 MultIpIe Version Utllmatlon 

P0ky Node 
Update Probability 

Size 01 10 30 50 70 90 99 

WOB 5 137 122 96 76 61 49 43 

11 139 127 i 00 a5 79 73 71 

17 141 126 I 00 a7 a6 al 79 

35 1 42 i 28 1 00 90 93 90 68 

P0lky Node 
Update Probabhty 

Sac 01 10 30 50 70 90 99 

WOB 5 37 39 43 46 56 64 70 

11 35 37 42 46 50 56 59 

17 35 37 41 46 48 53 56 

35 35 37 41 44 47 51 53 

TLU 5 02 20 44 51 50 46 42 

11 06 J3 71 73 73 71 67 

17 08 61 62 a0 a2 al a0 

35 17 a9 92 a7 92 90 92 

TLU 5 72 61 51 51 56 65 70 

:1 67 51 43 46 51 56 60 

17 65 45 42 45 49 53 55 

35 60 40 41 41 47 51 52 

IKS 5 00 00 06 15 26 37 43 

11 00 00 09 27 4A 61 66 

17 00 00 10 32 51 70 77 

35 00 00 10 39 60 79 a5 

IKS 5 7A 72 71 70 69 70 69 

11 71 71 66 64 61 60 59 

17 70 70 66 62 59 57 56 

35 70 70 67 60 57 54 54 
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