
ACCESS METHODS FOR MULTIVERSION DATA

David Lomett Betty Salzberg *

Digital Equipment Corporation College of Computer Science

110 Spitbrook Road Northeastern University

Nashua, New Hampshire, 03062 Boston, Massachusetts 02115

ABSTRACT
We present an access method designed to provide a

single integrated index structure for a versioned times-
tamped database with a non-deletion policy. Histori-
cal data (superceded versions) is stored separately from
current data. Our access method is called the Time-
Split B-tree. It is an index structure based on Malcolm
Easton’s Write Once B-tree.

The Write Once B-tree was developed for data
stored entirely on a Write-Once Read-Many or WORM
optical disk. The Time-Split B-tree differs from the
Write Once B-tree in the following ways:

l Current data must be stored on an erasable random-
access device.

l Historical data may be stored on any random-access
device, inciuding WORMS, erasable optical disks,
and magnetic disks. The point is to use a faster
and more expensive device for the current data and
a slower cheaper device for the historical data.

l The splitting policies have been changed to reduce
redundancy in the structure-the option of pure
key splits as in B+-trees and a choice of split times
for time-based splits enable this performance en-
hancement.

l When data is migrated from the current to the his-
torical database, it is consolidated and appended
to the end of the historical database, allowing for
high space utilization in WORM disk sectors.

t This research was done at the Wang Institute of
Graduate Studies, Tyngsboro, Massachusetts

* This research was partially supported by NSF Re-
search Grant IRI-88-15707

Permission to copy without fee all or part of this material is granted provided that

the copies are not made or distributed for direct commercial advantage, the ACM

copyright notice and the title of the publication and its date appear, and notice is

given that copying is by permission of the Association for Computing Machinery.

To copy otherwise, or to republish, requires a fee and/or specific permission.

0 1989 ACM 0-89791-317-5/89/ooO5/0315 $1.50

1. INTRODUCTION

There are many database application areas where
a policy of non-deletion is required. These include fi-
nancial transactions, transcript archives in universities,
multiple version histories in engineering design, legal
records, medical records, and so forth. One usually
wants faster access to the most recent records while tol-
erating slower access to the older, historical records. It
would therefore be convenient to store the most recent
versions of records in one area, and keep this current
database small, while storing the historical part of the
database in a separate area, possibly on a slower more
archival medium.

We have developed an access method for just such
a situation. We assume that the current database is
stored on a random access erasable medium such as a
magnetic disk drive. The historical database may be
stored on any random access device, such as write-once
optical disks, erasable optical disks or magnetic disks.
A single unified index enables retrieval from both the
historical and the current database. Further, data is
written to the historical component sequentially, ap-
pended to the end of the historical database.

The current database, and all parts of the index
which refer to it, must be on an erasable medium for
two reasons. First, we must be able to change references
to data which migrate from the current to the historical
database. Second, we wish to be able to erase tempo-
rary data, such as that which is created by transactions
which abort.

We view the current database as one which changes
over time, with new data replacing older data. The his-
torical database, in contrast, merely grows as records
are added to it. No data is ever removed from the
historical database. It is thus possible to store the his-
torical database on a device such as a write-once optical
disk.

Currently available write-once optical disks have
high storage capacity, long life and reasonable access

315

time. They can be removed from the disk drive, en-
abling very inexpensive libraries to be created. These
are usually served by a robot, which can mount archived
disks on the disk drives. Further, as we shall show, the
two characteristics of currently available optical disks
which could limit their usefulness-slower seek times
and a smallest writable unit-are not so limiting with
our access method.

The first possibly limiting characteristic is the slow

seek time. Optical drives have longer seek times on av-
erage (by about a factor of three) than magnetic disk
drives. And if robot disk libraries are used, around 20
seconds are needed to mount a disk which is not al-
ready on line. But if these optical archiving systems
are used only for historical data, which is accessed less
often, these longer seek times may be tolerable, espe-
cially when viewed as a trade-off for cheaper storage.

Second, as with magnetic drives, when a sector or
block is written, an error-correcting code is appended to
the sector. On a write-once device, this error-correcting
code is burned into the disk. Thus, even when a small
amount of data is written, the rest of the sector is unus-
able. This implies that small incremental changes such
as updating an index entry will waste a large amount
of space. Each such increment must occupy an en-
tire sector, typically about one kilobyte (1024 bytes).
However, since we only append data to the historical
database after it has been organized and consolidated
in the current database, we shall be able to write data
to the optical disk in units which nearly approximate
the sector size.

In this paper, we describe a system for multiver-
sion data which utilizes storage space and access time
most efficiently. It takes advantage of the best aspects
of two storage mediums: cheap, sturdy, possibly non-
erasable, but slow-access optical disk storage, and more
expensive but faster-access magnetic disk storage. Re-
cent data is stored on magnetic disk where it can be up-
dated quickly, while older data is incrementally moved
to the slower optical disk as it matures.

This system can be also be used for any multiver-
sion database, even if the historical part of the database
is also stored on a magnetic disk. That is, while pro-
viding a method for efficient use of currently available
storage mediums, the system is not restricted to these
mediums. We only require that both the current and
the historical database be stored on random-access de-
vices. The current database must be stored on an
erasable medium to permit it to be flexibly updated
and reorganized. The historical portion of the database
may be stored on a write-once medium.

Data in the historical database is never deleted.
Data in the current database may be deleted, allowing
for non-permanent current entries, such as those made
by non-committed transactions.

POSTGRES [Ston] has done pioneering work in
this area. We attack this problem using a variation of

Figure 1. Stepwise constant data. The account balance remains

constant between transactions.

the “Write Once B-tree” [East] . We call this variation
the Time-Split B-tree.

Using the classification of time sequence semantics
of [SeSh], we assume that we are dealing with step-wise
constant data. Account balances or employee salaries
exhibit this behavior as illustrated in Figure 1. To find
the balance of an account at a given time T, we look
at the last entry made before T. We assume that the
balance is constant until another update is made.

In addition, we assume that we have what [McKe,
SnAh] call a rollback database. This means that records
are stamped with the transaction commit time rather
than with the effective time for the information.

The rest of this paper is organized as follows. In
section 2,.we give an explanation of the Write-Once B-
tree. The Write-Once B-tree is for data stored entirely
on a write-once optical disk. In section 3, we outline the
design of the Time-Split B-tree, our new structure. The
Time-Split B-tree is for data which is partitioned into
an historical component, possibly stored on a write-
once medium, and a current component, stored on an
erasable medium. In section 4, we describe the features
of Time-Split B-trees which support database transac-
tion processing. In section 5, we present our conclu-
sions.

2. THE WOBT

Several index structures have been suggested for
write-once optical disks [Vitt, Chri, Rath, SaTa, East].
For our purposes, to obtain a single version of a record
by time and key, to be able to access snapshots of the
database, to retrieve all versions of a given record, we
believe that Write Once B-trees [East, Salz (section
8.5)] are an excellent foundation for the access method
that we have in mind.

The Write-Once B-tree, or WOBT, is a modifica-
tion of the B+-tree which can be implemented com-
pletely on a write-once medium. Basically, WOBTs do
node splitting on a time basis as well as on a key space
basis. This way, the most recent versions of records are
kept in a small number of nodes, enabling search in the

316

50 1 100 I 50 I 100 I 100

key 4 c c c

pointer

Figure a. A WOBT index node. Entries are in insertion order.

The same key may occur several times.

50 I I II I t
50 Joe 60 Pete 70 Mar 70 Sue

Now insert 90 Alice

50 JOB 1 60 Pete] 70 Mard 70 Sue
w

50 Joe 60 Pete I
current database (the database of all versions of records
which are valid at the current time) to be efficient.

2.1 Description of WOBT Nodes

We first describe how WOBTs can be used to pro-
vide single.-version B+-tree functionality on a write-
once medium. That is, we show how to store and re-
trieve the most recent versions of each record.

The leaf nodes of the WOBT, like the B+-tree, con-
tain the records. Nodes are logical constructions which
may be implemented with a sequence of consecutive
sectors on an optical disk. The records are in insertion
order, with possibly many versions of the same record
in the same leaf node. That is, an update on a record
is treated like an insertion of a new version. The key
will be the same as on the old version, which remains
in the database. If the record size is smaller than the
sector size, there is exactly one newly inserted record
in a sector of a leaf node, even if there is room for more
than one record in a sector. This is due to the fact that
the sector is the smallest writable unit. That is, when
a new record is added to the database, it cannot use
less than one sector of space. However, when nodes are
split, several records will be copied into the new nodes
at the same time, so the copied-over records can be con-
solidated. Thus a typical data node has several records
per sector for the first few sectors, then one record per
sector for rest of the node.

Similarly, the contents of an index node in a WOBT
are in insertion order. The same key may occur twice,
with the first occurrence in the node being the earli-
est occurrence as illustrated in Figure 2. Since new
index entries are made one at a time, and a sector is
the smallest writable unit, there may be only one new
index entry in a sector. When index nodes are split,
the copied index entries are condensed in the new in-
dex nodes, just as when data nodes are split, copied
records are condensed in the new data nodes. Thus,
the older index entries in an index node are packed
together filling the sector space while the new index
entries are placed one to a sector, wasting most of the
sector space.

70 Sue 90 Alice I I

Figure 9. Splitting data nodes by key value and current time

in a WOBT. The old node remains in the data base. Two new data

nodes and two new index entries are written.

2.2 Search for Current Data

To find the most recent version of a record, begin
at the current root of the WOBT. Find the key-and-
pointer pair such that the key is the largest one which
does not exceed the search key, and the pair is the last
one listed in that node with that key. Follow the pointer
down the tree. Repeat this process in each WOBT node
visited until a leaf is reached. For a given key, exactly
one path from the root to the leaf will be followed. If
the record is in the database, the latest version is the
one listed last in the leaf node.

2.3 Insertion in the WOBT

Insertion in the WOBT is very similar to insertion
in the B+-tree. The search process is followed to find
the correct leaf for insertion. If there is room, the new
record is inserted in the next available sector in that
leaf. If there is no room, a “split” takes place and new
leaf nodes are allocated and one or more new index
terms are posted to the parent. Similarly, if index nodes
are full, they too are split.

To “split” a WOBT leaf node or index node we
have two choices. We may split by key value and cur-
rent time or by current time only. In both cases, only
the most recent versions of records or index entries are
copied to the new nodes.

When the split is by key value (and current time),
we create two new nodes. The two new addresses and
the old key value and new split value are placed in the
next available space in the parent node. Splitting data
nodes by key value and current time is illustrated in
Figure 3. The split value for the key determines which
records go in which of the two new nodes. Since only

317

50 I,/
4

II

60 Joe I60 Pete 160 Mad 90 Sue 1

Now insert 90 Alice

60 Mad90 Alice1

Figure 4. A pure time split in the WOBT. There are not enough

current records to make two new nodes. The split is by current time.

current versions of records are copied, this is also a split
with respect to current time.

If there have been many updates, the number of
current versions may be so small that we may choose
to split only by current time. In this case only one
new node is constructed, consisting only of the current
versions. This is a “split” entirely by time, not by key
value. This type of split is illustrated in Figure 4.

We make two observations. First, records are re-
peated or copied several times. A version which lasts
a long time has many copies in the database. Second,
since we follow the same algorithm for splitting index
nodes, the WOBT is a DAG, not a tree. Both the
old and the new index nodes may contain copies of the
same pointers.

2.4 New Root Nodes

As with the B+-tree, sometimes the root node itself
must be split. When a root splits in the WOBT, the
new root refers to the old root. If the split has been
by time only, both entries in the new root node will
have the lowest possible key value, with the first entry
pointing to the old root and the second pointing to the
most recent versions of the entries from the old root.

If it has been a split by both time and keyspace,
the new root has three entries: one with the lowest
key value pointing to the old root, one with the lowest
key value pointing to the most recent entries from the
old root less than the split key, and one with the split
key pointing to the rest of the most recent entries from
the old root. Since this is all on optical disk, a list
of successive addresses for the root nodes must also be
kept.

2.5 Using the WOBT as a Rollback Database

The previous description of WOBTs when they
provided single-version B+-tree functionality, did not
require that time be stored in the database. If we are
to use WOBTs to support rollback databases, we need
to provide each newly inserted record with a timestamp
indicating the commit time of the transaction that in-
serted it. When a node split occurs, the current time
must be used to timestamp the new index terms.

With a WOBT providing a rollback database, we
can find the state of the database as it was at any given
time in the past. We can find the records with a given
key valid at a given point in time. We can find all past
versions of a given record. Let us look at how these
temporal queries are supported by the WOBT.

To find the record with a given key I< valid at time
T, begin with the current root node. Ignore all entries
with timestamp greater than T, then follow the algo-
rithm for latest version of a record. That is, ignoring
all entries with timestamps greater than T, look for
the largest key smaller than or equal to K in the node.
Then find the last key-and-pointer entry with that key
value in the node, and so on. Follow the pointer down
to the next level of the WOBT. Repeat the same search
pattern in every node visited. You are guaranteed to
find the record in question, if it exists, in one path down
the WOBT, just as in the search for a current record
by key.

The current root node will have one pointer stored
with the lowest key value (minus infinity) and the low-
est time value. This is inserted into the initial root.
The splitting and updating process assures its propa-
gation to subsequent roots, and the pointer in the cur-
rent root will point to the previous root, if there is one.
The search path may take us through successively older
roots, but this is handled by the search algorithm with-
out making special cases.

To obtain a snapshot of the database at any given
past time T, begin at the root as usual. Ignore all
entries with timestamps after T. Then working down
the WOBT, obtain the last entries in each index node
for each key before or at T, and finally, the last copies
of each record before or at T.

To find all previous versions of a given record,
backward pointers in leaf nodes to the nodes they were
split from are suggested. Begin at the leaf node con-
taining the record. Follow the backwards pointers until
a leaf node is encountered which contains no earlier
version of the record. There will be several optical-disk
seeks. But also several versions of the record are likely
to be in each node accessed.

2.6 Conclusions on the WOBT

Search algorithms for many typical temporal queries
are simple on the WOBT. This is an elegant, clean
structure. Time-domain splitting concentrates the cur-
rent data in a small number of nodes. However, this

318

160 JoeT ~2 1 70 PeteT = 3 1 60 MW T=lI

Now insert 90 Alice

9O~ary~zr 90 AliceT=6 I

Figure 6. Data node split entirely by key. Timestamp in index

entry is the same ae the previous index entry timestamp.

means that many records have redundant copies in the
database.

Further, storing a WOBT solely on a write-once
medium means that new entries must use entire sectors,
possibly wasting a great deal of space. Also, temporary
data, such as that created by uncommitted transac-
tions, cannot be discarded if a write-once medium is
used.

On the other hand, using the WOBT solely on
magnetic disk loses the advantages of less expensive
per-byte storage cost, permanence, reliability and porta-
bility available with optical disks. One solution is to
store current data on magnetic disk and migrate older
permanent data to optical disk. The Time-Split B-tree
has been developed to provide this solution.

3. THE TIME-SPLIT B-TREE

The Time-Split B-tree is a variant of the WOBT
which will migrate data incrementally from a magnetic
disk to an optical disk. In this section we shall explain
how we change the basic WOBT structure, and then,
in section 4, we show how this new structure can be
used to support transaction processing.

We modify the split algorithm of the WOBT in
several ways. First, we only split nodes which are on
the magnetic disk. There are again time splits and key
splits. But the key splits on magnetic disk are more
like those in B+-trees since we need not keep the old
node intact. The records with keys smaller than the
split value stay in the old node. Those with keys larger
or equal to the split value go in the one new node.

When we split by time, we no longer need to split
by the current time. We may split by any convenient
time. In this case, the “older” records are migrated
to the optical disk and the newer records are kept on

the magnetic disk. Migration occurs incrementally, one
node at a time, only when nodes are time-split. In spite
of the changes in the splitting policy, the search process
is exactly the same as in the WOBT.

3.1 Data Node Splitting

Suppose that in a given data node, each record
has only one version. This means that all changes have
been insertions of new records, with new keys. There
have been no updates of existing records. It does not
make sense to make a time split in this case. In this
case, we make a keyspace split. The timestamp in the
new index entry is the same as the timestamp of the
previous index entry referring to the old data node.
This is illustrated in Figure 5.

In case there have been a number of updates to
existing records so that several versions of some of the
records are in the node, we may make a time split, but
with a twist. Instead of always splitting with respect
to the current time, we split by a time T, depending
on the actual timestamp values in the records in the
node. Then the node with the older timestamp values
is migrated to the historical database, while the node
with the new values remains in the current database.
Note that migration is one node at a time.

The time-split rule is as follows: If a split is made
with timestamp T,

TIME-SPLIT RULE

1. All entries with time less than T go in the
old node.

2. All entries with time greater or equal to T go
in the new node.

3. For each key used in some entry, the entry
with the largest time smaller than or equal to T must
be in the new node. That is, the version valid at the
split time must be in the new node.

This forces some redundancy, as all records which
persist through the split time have copies in both nodes.
However, this feature makes it possible for records valid
at the same time to be clustered in a small number
of nodes. If one does not have redundancy, long-lived
records can only be stored in one place. No matter what
strategy is chosen for storing such a long-lived record
without redundancy, some snapshot queries will be in-
efficient. Also, as we shall see, the ability to choose the
split time permits optimization choices to be made. We
give some examples of data-node time splits in Figure
6.

319

50 T=l 1

v

60 Joe T= 1 60 Pete T = 2 60 Mary T= 4

Now insert 90 Alice.
Choose T = 4 as the split time

v
If T = 5 is chosen as the split time, the new nodes are:

50 T=l , 50 T=5 ,
II

I I

60 Joe T = 1 60 Pete T = 2 60 Mary T=4

historical node
‘I

I 60 Mary T = 4 90 Alice T = 6

current node

Figure 6. Time-Split B-tree time splits. If T=4 is chosen there

is no redundancy in this example. If T=5 is chosen, the record with

“Mary” is in both the historical and current nodes.

3.2 Deciding Whether to Split by Time or by
Key

The question to be answered is the criteria by which
we decide whether to do a key space split or a time split.
One object of a storage system is to try to minimize
the total space consumed. A second one is to minimize
storage for the current version, which is subject to up-
dating, has the highest expectancy of reads, and will be
stored on the more costly write-many magnetic disk.

If total space minimization is the only goal, data
node splitting by key space would always be favored.
If current version space minimization is the only goal,
time splitting would always be used. What we want is
a storage system that does a good job for both of these
requirements, and one that can be parameterized so as
to be responsive to an adjustable cost function. One
possible cost function is

CS = SpaceM x CM + space0 x CO

where C’S is the total storage cost, CM is the cost for
storage on the magnetic disk and CO is the cost for

storage on the optical disk. The goal, in splitting, is to
minimize the cost function.

At the same time, the kind of split used depends
on the what is in the node to be split. As noted above,
if only insertion has occurred in a full node requiring
splitting, there is no reason to do time splitting. All
data is relevant to the current version and hence must
remain in the current node. Thus, time splitting by
itself is useless. Key space splitting must be done.

On the other hand, if only repeated updating of
a single record has occurred in a full node requiring
splitting, there is no reason to do keyspace splitting.
All data is associated with the same key value and so
cannot be split. Thus keyspace splitting is useless and
time splitting must be done.

These boundary conditions determine the kind of
splitting that should be used. The more out-of-date
(historical) data is on a node, the more likely it is that
time splitting should be used while the less historical
data there is (or the more current data there is), the
more likely it is that key space splitting should be used.
Let us examine some more consequences of the different
splitting forms.

3.3 Time Splitting

Time splitting results in redundancy. If time split-
ting is chosen, a further decision has to be made about
what time value to use for the split. The WOBT always
used the current time as the value of the split because
the old node had already been written on the optical
disk. With magnetic disks, this restrictive approach
can be overcome. Any convenient time more recent
than the last time split for the node can be chosen as
the split value.

As an example of using this flexibility, consider a
situation where there are a number of insertions which
were done after the last update of existing data. In this
case, choosing the split time to be the same time as the
last update avoids having to carry the final inserted
data in the historical node. Note that the contents of
the current version node are not affected by this choice
of time splitting value, and remain at the minimum,
i.e., only the current version data, and no historical
data, is stored in the current node.

This does not mean that there is no redundancy.
Some of the current data persisted across the split time.
Only if the current data had all been created at or after
the split time is redundancy avoided. Data created be-
fore the split time and persisting through the split time
is in both the historical node and the current node.

When the split time is pushed back past updates
in addition to insertions, some historical data must be
stored in the current version node. This can still result
in a smaller amount of redundant data overall as more
data may be removed from the historical node than
must be added to the current node. But now, we are
making a trade-off between minimizing the amount of

320

redundant data, and minimizing the space used by the
current database.

3.4 Size of Historical Node

In the choice of time value on which to split, we
have been treating the amount of data stored in the his-
torical node as an important consideration. Note that
in WOBTs, the historical node size is fixed, and the
data in a node which is to be split is indelibly written
there on the write-once optical disk. This is not the
situation with the Time-Split B-tree. Here, currently
updatable data is stored on magnetic disk. And the
node size for the optical disk can easily be set to be
different from the magnetic disk node size. Even more
to the point, the historical data can be appended to a
sequential file.

The index pointer to a historical node needs only
to record its address on the optical disk and its length.
While there might be some minimum granularity that
prevents us from matching precisely optical disk space
consumed with historical data size, it is possible to
come close. The risk of disastrously low optical disk
storage utilization is thus entirely removed.

3.5 Index Node Splitting

Index nodes can always be keyspace split. To do
this, since index nodes, unlike data nodes, reference
entities involving a range of key values as well as a range
of times, we must make a rule similar to the time-split
rule. That is, record versions in data nodes have one
key and span a time interval. Entries in index nodes
refer to lower-level time-split B-tree nodes which span
a keyspace interval as well as a time interval. We call a
keyspace interval spanned by a time-split B-tree node
a Key range. We therefore make the following rule:

Index Node Keyspace Split Rule
1. The split value may be any key value actually used
in an index entry in the node. This key value and a
copy of the time used for the previous reference to the
node to be split are posted to the parent index node.
2. References to key ranges where the upper bound for
keys is less than or equal to the split value go in the
new left node.
3. References to key ranges where the lower bound for
keys is greater than or equal to the split value go in the
new right node.
4. All others (which are guaranteed to be references
to the historical database) are copied to both nodes.
These reference key ranges which strictly include the
split value.

The references where the split value is strictly con-
tained in the key range are guaranteed to be historical
because key splits are successive refinements of the key
range over time. That is, the only case where a key

160
.

JOT T= 1 1 90 PeteT = 5 1120 Alice T=7

Add 110 S& and do a k& split:

5 OT-1 ,100 T=l I II
I I

760 JoefT=l ! 90 PcfcT=Jl

120 Alice T~7.71 110 Sue T=8 1

Now add 60 Ron and 90 Joan and do a time split

120 Alice T=7 110 Sue T=8

6ORonT=8 90 JoanT= 1 1
Now add 80 Mary and 70 Bill and do a key split.

80 Maw T=91 90 Joan T=8 1 I

Now do a keyspace in&x split (duplic&e needed to

locate Pete).

y-u

5 OT=l 50 T=8

time
b

Figure 7. Successive changes in a Time-Split B-tree index node.

At the end, a keyspace split is made, showing the key ranges and the

time ranges referenced.

321

50T=1 1 II II
I

current node ‘Agnes”

Now split the index node by time T=4.

50T=l , 50 Ts4 1 II
I I

historical \ /

Figure 13. A Time-Split B-tree index node where the time split

is entirely local. Only one index node migrates to the optical disk.

This can be done whenever there is a time before which all references

are to the historical database.

value is in an index entry X in the node to be split
(hence a lower bound for the range referred to by X),
and also is strictly contained in the key range referred
to by Y (another index entry in the same node), is when
the key range of Y was later affected by at least one
time split, followed by at least one keyspace split. We
show this phenomenon in figure 7. Note that, like the
original WOBT, the Time-Split B-tree is a DAG rather
than a tree. However, only historical nodes have more
than one parent.

We can also time split index nodes by finding a
time before which only historical versions exist, i.e., no
version with an earlier time resides on magnetic disk.
There may be no such time, of course. But most likely,
over ‘time’ there will be some such point. This puts an
additional constraint on index node splitting. Not only
must current entries be retained in the current version
index node, but no entries that reference current nodes
can go into the historical index node. This is so be-
cause the current nodes can split, requiring index node
updates, which cannot be accommodated in historical

60 JoeT=l 60 PeteT=S 60 Alice T=7

This data node is in the current data base.

Figure 0. Here there is no time before which all entries of the

index node point to the historical database. Either the index node

must be keyspace split, or else lower nodes must also be split.

index nodes.
When these conditions are met, index splitting is

local. In this case the redundant index entries are all
pointing to historical nodes. Again, this makes the
Time-Split B-tree a DAG rather than a tree, which,
as we have noted, is also true of the original WOBT.
Again, historical nodes may have more than one parent.
This is ihustrated in Figure 8.

When the conditions are not met, attempting to
time split index nodes would force splitting in nodes
lower in the tree. This would make splitting non-local.
That is, the split cascades down the tree. A node which
cannot be locally time split is illustrated in Figure 9.

When an old data node which has not undergone
a time split prevents us from doing a local time split at
an index node higher in the tree (as illustrated in Fig-
ure 9), this old data node could be marked to be time
split at the next opportunity. This is just an optimiza-
tion choice for the Time-Split B-tree. On the average,
we should be able to do time splits with index nodes
gradually, as there will usually be a time before which
all entries point to historical data. There should not be
many recalcitrant index nodes without this property.

3.6 Secondary Indexes

Secondary indexes can be implemented as Time-
Split B-trees as well. Secondary indexes are modi-
fied when a new record is created, or when the sec-
ondary field is updated in any data record. Each entry
inherits the timestamp from the record which caused
the change. Secondary indexes, like the primary index
Time-Split B-tree, span the historical (optical disk) and
current (magnetic disk) databases.

The secondary indexes contain records of the form

< timestamp, secondary key, primary key >

The primary key and the timestamp are used to
find the primary data record being referenced. When
splits occur to the primary data, secondary indexes
do not change. The timestamps also serve to answer

322

queries about the secondary values which do not re-
quire searching for primary data records. For example,
one can answer the question of how many records had
a given secondary key at a given time using only the
secondary time-split B-tree.

3.7 Summary of Time-Split B-tree Characteris-
tics

The Time-Split B-tree uses the best features of the
optical disk WOBT-simple structure, easy access for
many temporal queries and locality of access for records
valid at a given time. It migrates data incrementally
from the magnetic disk to the optical disk. One index-
ing structure handles both the current and the histori-
cal part of each relation.

Optimization choices can be made to limit the to-
tal space cost, the space used for current data or the
amount of redundancy in historical data. This is all
made possible by the flexibility for choosing whether to
make a time split or a keyspace split, and the ability to
choose the value for the time split.

Historical data space use is excellent as historical
node size can vary and many entries can be consolidated
on one sector. This is a consequence of integrating stor-
age on magnetic disks with storage on optical disks. No
small incremental data need be written to large opti-
cal disk sectors; it can be consolidated first and then
migrated.

4. SUPPORT FOR TRANSACTION PROCESS-
ING

Most concurrency methods based on versioning can
be used with the time-split B-tree. For example, sup-
pose that timestamps of committed transactions are
used on records as in POSTGRES [Ston]. Records cre-
ated by uncommitted transactions have no timestamps,
so that they are never written to the historical database
during a time split. This means that uncommitted data
can always be erased.

4.1 Read-Only Concurrency Control

A read-only transaction, e.g., one that does file
backup, can run without concurrency control, in terms
of logical record [database] locks, if it is given a times-
tamp when it is initiated, as opposed to when it com-
mits. It will then ‘see’ only versions that are not locked
by an updater. Thus, it will never have to wait for an
updater to commit.

If the latest version has a timestamp, the read-
only transaction knows, based on its timestamp, which
version to use. No updater can post a timestamp earlier
than the read-only timestamp since that point in time
has come and gone.

Similarly, if a version exists with a timestamp later
than that of the read-only transaction, the read-only
transaction will read the earlier version appropriate to

its timestamp. This will be true even if there is a non-
timestamped version.

This capability enables database unloading and back-
ups to be efficient, since they do not require locks. This
can be used in any versioning system; it is not unique
to the Time-Split B-tree.

5. CONCLUSIONS AND ONGOING WORK

Space use in the WOBT on write-once disks can
be poor when small amounts of information, such as
index entries or delta records, occupy an entire sec-
tor. Further, if only write-once devices are used, as in
the WOBT, “reorganization” of information (as occurs
in node splits even when all the entries are insertions
rather than updates) involves duplication of all the cur-
rent data. Also, temporary data cannot be discarded.

By using both a magnetic disk and an optical disk,
and the new node splitting policies, the Time-Split B-
tree solves these problems. We can consolidate infor-
mation before placing it on a write-once device. The
erasability of the magnetic disk permits “normal” B-
tree node splitting. Data can be data written by un-
committed transactions and erased if the transaction
aborts. The adjustable splitting policy allows for differ-
ent space costs in the magnetic and the optical disks-
more time splits to lower magnetic-disk space use, and
more key splits to lower total space use and data re-
dundancy.

The Time-Split B-tree incrementally moves data
from the current database stored on magnetic disk to
the historical database on optical disk, one node at a
time. Efficient concurrency methods based on version-
ing can be applied to allow read-only transactions to
run without locks. Splitting policies can be param-
eterized to optimize for different cost formulas. The
Time-Split B-tree should be an attractive storage op-
tion for multiversioned historical databases where there
is a non-deletion policy.

We are currently in the process of implementing
Time-Split B-trees at Northeastern University. This
implementation effort is supported by the NSF (IRI-88-
15707). We expect to measure total space use, space
use in the current database, and amount of redundancy,
under different splitting policies and with different rates
of update versus insertion.

323

References

[Chri] Christodoulakis, S., “Analysis of Retrieval Per-
formance for Records and Objects Using Optical Disk
Technology,” ACM-TODS, 12:2, June 1987, pp. 137-
169.

[East] Easton, M., “Key-Sequence Data Sets on Indeli-
ble Storage,” IBM J. Res. Develop., 30:3, May 1986,
pp 230-241.

[Lome] Lomet, D., “Partial Expansions for File Orga-
nizations with an Index,” ACM-TODS, 12:1, March
1987, pp. 65-84.

[McKe] McKenzie, E., “Bibliography: Temporal Databases,”
SIGMOD Record, 15:2, Dec. 1986, pp. 40-52.

[Rath] Rathmann, P., “Dynamic Data Structures on
Optical Disks,” Computer Data Engineering Confer-
ence, April 1984, Los Angeles.

[Salz] Salzberg, B., File Structures: An Analytic Ap-
proach, Prentice-Hall, Englewood Cliffs, New Jersey,
1988.

[SaTa] Sarnak, N., and Tarjan, R., “Planar Point Loca-
tion Using Persistent Search Trees,” Communications
of the ACM, 29::7, July 1986, pp. 669-679.

[SeSh] Segev, A. and Shoshani, A., “Logical Modeling
of Temporal Data,” Proc ACM SIGMOD, May 1987,
pp. 454-466.

[SnAh] Snodgrass, R., and Ahn, I., “A Taxonomy of
Time in Databases,” Proc ACM SIGMOD, March 1985,
pp. 236-246.

[Ston] Stonebraker, M., “The Design of the POST-
GRES Storage System,” Proc. 13th VLDB Conference,
Brighton, 1987, pp.289-300.

[Vitt] Vitter, J., “An Efficient I/O Interface for Optical
Disks,” ACM-TODS, June 1985, pp 129-162.

324

