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Public parameters. Let q be a prime number, Zq be
the integers modulo q, Z∗q = Zq−{0}, and let G a cyclic
group of prime order q with generator g. We assume
that q, g and G are public parameters of our scheme.
Let H1 be a hash function (modeled as a random ora-
cle) mapping arbitrary-length bitstrings onto the cyclic
group G. (See Appendix A for a suggested instantia-
tion of H1.) Let H3 be a hash function (modeled as a
random oracle) mapping arbitrary-length bitstrings to
fixed-length bitstrings. We can use any secure crypto-
graphic function for H3; in fact, we need only the first
` bits of its output for `-bit security. Let H2 be a func-
tion that takes the bit representation of an element of
G and truncates it to the appropriate length; we need
a 256 bit output for 128-bit security.

Keys. The secret VRF key x ∈ Zq is chosen uni-
formly at random. The public VRF key is gx.

Hashing. Given the secret VRF key x and input α,
compute the proof π as:

1. Obtain the group element h = H1(α) and raise it
to the power of the secret key to get γ = hx.

2. Choose a nonce k ∈ Zq.
3. Compute c = H3(g, h, gx, hx, gk, hk).
4. Let s = k − cx mod q.

The proof π is the group element γ and the two expo-
nent values c, s. (Note that c may be shorter than a
full-length exponent, because its length is determined
by the choice of H3). The VRF output β = FSK (α) is
computed by truncating γ with H2. Thus

π = (γ, c, s) β = H2(γ)

Notice that anyone can compute β given π.

Verifying. Given public key gx , verify that proof π
corresponds to the input α and output β as follows:

1. Given public key gx, and exponent values c and s
from the proof π, compute u = (gx)c · gs.
Note that if everything is correct then u = gk.

2. Given input α, hash it to obtain h = H1(α). Make
sure that γ ∈ G. Use h and the values (γ, c, s) from
the proof to compute v = (γ)c · hs. Note that if
everything is correct then v = hk.

3. Check that hashing all these values together gives
us c from the proof. That is, given the values u
and v that we just computed, the group element γ
from the proof, the input α, the public key gx and
the public generator g, check that:

c = H3(g,H1(α), gx, γ, u, v)

Finally, given γ from the proof π, check that β = H2(γ).

Figure 2: An EC-based VRF for NSEC5. We use a
multiplicative group notation. This VRF adapts the
Chaum-Pederson protocol [28] for proving that two
cyclic group elements gx and hx have the same discrete
logarithm x base g and h, respectively.

tion, which roughly says that hx looks random given
the tuple (g, gx, h). Also, because [32,37] did not prove
that this construction is a VRF, we provide new formal
proofs that this VRF satisfies selective pseudorandom-
ness and trusted uniqueness in Appendix B.

The construction is in Figure 2 and can be instanti-
ated over any group where the decisional Diffie-Hellman
(DDH) problem is hard, including the elliptic curves
currently standardized in DNSSEC (NIST P-256 [45,
Sec. 3]), and Curve25519 [50] which has recently
been proposed for use with DNSSEC [47, 67]. Each of
these curves achieves an approximately 128-bit security
level [21,45]. Both of these curves operate in finite field
Fq, where q is a 256-bit prime.

Instantiation. What response lengths do we get
when we instantiate NSEC5 with the VRF in Figure 2
over 256-bit elliptic curves?

Each NSEC5 record will once again contain two hash
outputs (each corresponding to β in Figure 2) along
with a DNSSEC signature. We instantiate H2 in Fig-
ure 2 with the function that outputs the x coordinate
(abscissa) of a point (x, y) on the elliptic curve (where
x, y ∈ Fq). Thus, each β will be 256-bits long.

We instantiate H1 per Appendix A.
Next, observe that each NSEC5PROOF record will

contain the proof value π = (γ, c, s) from Figure 2. How
long is π? If we instantiate the VRF using a 256-bit
elliptic curve (e.g., NIST P-256 or Ed25519), then s is
256 bits long. Meanwhile, γ is a point on the elliptic
curve, which can be represented with 256 + 1 bits using
point compression.6 Finally, we show (in Appendix B)
c must be `-bits long for an `-bit security level. We
therefore instantiate H3 as the first 128 bits output by
the SHA-256 hash function.

It follows that proof π will be p = 256+1 + `+256 =
513 + ` bits for a `-bit security level; thus, p = 641 for
a 128-bit security level. Achieving the same security
level with RSA requires 3072-bit RSA, which results in
NSEC5PROOFS that are about 5 times longer!

6The idea behind point compression is to represent a point
with coordinates (x, y) using only its abscissa x (which
is 256 bits long) and a single bit that indicates which
square root (positive or negative) should be used for the
ordinate y. Without point compression, both coordinates
must be transmitted, for a total length of 256+256 bits.
(Thus, without point compression our proof π would be
2 ∗ 256 + 128 + 256 = 896 bits long.) There has been some
controversy over whether or not point compression is covered
by a patent, and whether its use in DNSSEC corresponds
to patent infringement [71]. However, as Bernstein [20] ar-
gues: “a patent cannot cover compression mechanisms [ap-
pearing in the paper by Miller in 1986 [54] that was] pub-
lished seven years before the patent was filed.” Moreover,
new IETF specifications for elliptic curve digital signatures
using Ed25519 also use point compression [47].
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