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Abstract

A secure failure-localization path-quality-monitoring (FL-PQM) protocol allows a sender
to localize faulty links on a single path through a network to a receiver, even when interme-
diate nodes on the path behave adversarially. Such protocols were proposed as tools that
enable Internet service providers to select high-performance paths through the Internet, or to
enforce contractual obligations. We give the first formal definitions of security for FL-PQM
protocols and construct:

1. A simple FL-PQM protocol that can localize a faulty link every time a packet is not
correctly delivered. This protocol’s communication and storage overhead is O(1) addi-
tional messages of length O(n) per packet (where n is the security parameter).

2. A two more efficient FL-PQM protocols that can localize a faulty link when a noticeable
fraction of the packets sent during some time period are not correctly delivered. Our
sampling-based protocol has a storage and communication overhead that is an arbitrar-
ily small fraction of the total number of packets sent T . Our sketching-based protocol
requires O(n+ log T ) storage and only two additional messages of similar length.

We also prove lower bounds for such protocols:

1. Every secure FL-PQM protocol requires each intermediate node on the path to have
some shared secret information (e.g., keys).

2. If secure FL-PQM protocol exist then so do one-way functions.

3. Every black-box construction of a FL-PQM protocol from a random oracle that securely
localizes every packet and adds at most O(log n) messages overhead per packet requires
each intermediate node to invoke the oracle.

These results show that implementing FL-PQM requires active cooperation (i.e., main-
taining keys and agreeing on, and performing, cryptographic protocols) from all of the inter-
mediate nodes along the path. This may be problematic in the Internet, where links operate
at extremely high speeds, and intermediate nodes are owned by competing business entities
with little incentive to cooperate.

Keywords. Failure localization, secure routing, black-box separation.

1 Introduction

The Internet is an indispensable part of our society, and yet its basic foundations remain vulner-
able to attack. Secure routing protocols seek to remedy this by not only providing guarantees
on the correct setup of paths from sender to receiver through a network (e.g., Secure BGP [21]),
but also by verifying that data packets are actually delivered correctly along these paths. Packet
delivery is surprisingly susceptible to simple attacks; in the current Internet, packets are typi-
cally sent along a single path from sender to receiver, and so a malicious node along the data
path can easily drop or modify packets before they reach their destination. While small amounts
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of random packet loss are considered to be a natural part of the Internet’s operation, there are
many situations in which a sender would like to detect and respond to unusually high rates of
packet loss or corruption along a path. To this end, the networking community has recently
been studying monitoring and measurement protocols that return information about packet loss
events on a data path (e.g., [9, 11, 23, 28, 27, 5, 4, 25, 3]). The motivation for these protocols is
twofold. First, they provide the sender with information that he can use during path setup to
select a single, high-performance path to the receiver from the multiple available paths through
the network [17]. Second, since Internet service is a contractual business, where senders pay
nodes along the data path to carry their packets, information from Internet measurement proto-
cols is highly valuable for enforcing contractual obligations between nodes. Indeed, a number of
works [22,8,3] argue that quality of service on the Internet will could degrade unacceptably that
if there is a lack of accountability, i.e., mechanisms that empower senders to detect and respond
to degraded performance on a data path that violate contractual obligations. Note also that
if Internet measurement protocols are used to enforce contracts, nodes may have an economic
incentive to bias the information obtained from these protocols.

In this work we provide a rigorous cryptographic examination of secure monitoring protocols
that are robust even in the presence of malicious nodes on the data path. In particular, we study
techniques that allow a sender to localize the specific links along the data path where packets
were dropped or modified— a task that we call failure-localization path-quality monitoring. While
some protocols for this task are deployed in the Internet today (e.g., traceroute [1]), they are
not robust to nodes that behave adversarially in order to bias measurements.

1.1 Our results

We make the following contributions to the study of secure failure-localization path-quality
monitoring protocols (in the rest of the paper we call these simply failure localization or FL
protocols). Throughout the paper, we use the word “packet” to denote data that the sender
wishes to transmit, and “message” to refer to both data packets and FL-protocol-related control
messages.
Definition. In Section 2, we give the first formal definition of security for failure localization
protocols. We note that some of the previous FL protocols suggested in the literature, such
as [27,5, 3], do not satisfy our definition. (We sketch attacks in Appendix A.)

We give two variants of the definition— per-packet security requires localizing a link each
time a packet is not delivered, while statistical security only requires this when a noticeable
fraction of packets fail to arrive. An important feature of our definition is that it accounts
for the fact that messages can be dropped in the Internet for benign reasons like congestion.
We note that care must be taken to design protocols that are simultaneously robust to both
adversarial behavior and benign congestion. We discuss the effect of this assumption on some
previous work [5] in Appendix A.
Protocols. We present three simple protocols satisfying our per-packet (Section 3.1) and
statistical (Section 3.2) security definitions. All of these protocols do not modify the packets
sent on the path; instead, they add additional messages. Thus our protocols have the important
advantage of allowing backwards compatibility with the current techniques for processing packets
in a router, minimizing latency in the router, and not increasing packet size.

Because routers are highly-resource constrained devices that are designed to communicate
large amounts of information while storing very little, the most important measure of efficiency
for our protocols is storage overhead (i.e., the amount of state each router needs to keep as part
of the protocol). We are also concerned with communication overhead (i.e., the number and
size of messages added by the protocols), and the computational overhead (i.e., the complexity
of the computation that each router needs to perform per packet that it processes).

Our per-packet protocol requires each router to store an O(n)-length tag for each packet
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that it sends, and adds a single O(n)-length message to every packet sent (n is the security
parameter), and one O(Kn)-length messages when a failure occurs. (Typically in the Internet,
the path length K is less than 20, when nodes represent individual routers, and when nodes
represent Internet Service Providers (ISPs) then there are on average K ≈ 4, and no more
10 nodes on a typical path [21].) However, the communication and storage overhead of the
protocol is considered severe, so we present this mostly for pedagogical purposes and move on
to our statistical FL protocols.

Our first statistical protocol is based on sampling, and needs to store and communicate
O(pT ) tags of length O(n) each when the sampling rate is p and T packets are sent. For clarity
and correctness, we present a version of the protocol based on the Symmetric Secure Sampling
protocol from [13, 12] ; this version of the protocol requires each intermediate node to share
symmetric cryptographic keys with Alice and Bob. However, we emphasize that is possible to
construct an analogous statistical PQM protocol for the public-key setting as well, based on the
Asymmetric Secure Sampling protocols in [13, 12] . Such a protocol would require each node
to perform a similar amount of symmetric cryptographic operations on a per-packet basis, and
require only a single public-key cryptographic operation for each T packets sent.

Next, we present much more efficient statistical FL protocol based on the secure sketching
protocol from [13, 12] . This protocol requires the each node to share a symmetric key with
Alice only, and requires each node to store a single O(K2 log T )-sized array of counters, called a
sketch. The communication overhead of the protocol is only two additional messages of length
O(K3 log T + Kn) for every T packets sent, and we do not require any modifications to the
packets sent by Alice. However, unlike our sampling-based protocols, this protocol cannot be
generalized to public-key setting.
Lower bounds. Like many of the protocols in the literature [4, 5, 27, 30, 25, 3], both of our
protocols require cryptographic keys and computations at each node. These requirements are
considered severe in the networking literature; setting up a key infrastructure and agreeing on
cryptographic primitives is challenging in the distributed world of the Internet, where each node
is owned by a different entity with sometimes incompatible incentives. However, in Section 4 we
show that these requirements are to some degree inherent by:

1. Proving that every secure (per-packet or statistical) FL protocol requires a key infrastruc-
ture, or more precisely, that intermediate nodes and Alice and Bob must all share some
secret information between each other. This shared secret information can be pairwise
symmetric keys, or public-private key pairs.

2. Proving that a one-way function can be constructed from any secure FL protocol.

3. Giving evidence that any practical per-packet secure FL protocol must use these keys in a
cryptographic way at every node (e.g., , it does not suffice to use the secret information with
some simple, non-cryptographic, hash functions as in [11]). We show that in every black-
box construction of such a protocol from a random oracle, where at most O(log n) protocol
messages are added per packet, then every intermediate node must query the random
oracle. We note that practical protocols designed for Internet routers typically avoid using
non-black-box constructions or adding more than a constant number of protocol messages
per packet. We also show that for statistically-secure FL, or FL protocols adding ω(log n)
messages per packet, the necessity of cryptography depends on subtle variations in the
security definition.

Implications of our results. Our lower bounds raise questions about the practicality of
deploying FL protocols. In small highly-secure networks or for certain classes of traffic, the
high key-management and cryptographic overhead required for FL protocols may be tolerable.
However, FL protocols may be impractical for widespread deployment in the Internet; firstly
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because intermediate nodes are owned by competing business entities that may have little incen-
tive to set up a key infrastructure and agree on cryptographic protocols, and secondly because
cryptographic computations are expensive in the core of the Internet, where packets must be
processed at extremely high speeds (about 2 ns per packet). Thus, our work can be seen as
a motivation for finding security functionalities for the Internet that are more practical than
failure localization.

1.2 Related work

Some of this work (in particular, the results of Section 3 and a weaker version of Theorem 4.3)
appeared in our earlier technical report [12]. We built on [12] in [13], where, together with
Jennifer Rexford and Eran Tromer, we gave formal definitions, constructions, and lower bounds
for the simpler task of path-quality monitoring (PQM). In a PQM protocol the sender only
wishes to detect if a failure occurred, rather than localize the specific faulty link along the path.
We use the results from [13,12] in Section 3.2 to show how a PQM protocol can be composed to
obtain a statistical FL protocol, and in Section 4.2 to argue that FL protocols need cryptographic
computations.

In addition to the FL protocols from the networking literature [4,5,27,25,3,29], our work is
also related to the work on secure message transmission (SMT) begun by Dolev, Dwork, Waart,
and Yung in [10]. In SMT, a sender and receiver are connected by a multiple parallel wires, any
of which can be corrupted by an adversary. Here, we consider a single path with a series of nodes
that can be corrupted by an adversary, instead of multiple parallel paths. Furthermore, while
multiple parallel paths allow SMT protocols to prevent failures, in our single path setting, an
adversarial intermediate node can always block the communication between sender and receiver.
As such, here we only consider techniques for detecting and localizing failures.

Subsequent to the publication of this work in [6], Zhang et al. [30] considered FL protocols
that are similar to our per-packet FL and our sampling-based statistical FL protocols. Further-
more, Amir, Bunn, and Ostrovsky [2] consider FL in the setting of multiple paths, as in the
SMT framework.

2 Our model

In a failure localization (FL) protocol, a sender Alice wants to know whether the packets she
sends to receiver Bob arrive unmodified, and if not, to find the link along the path where the
failure occurred (see Figure 1). We say a failure or fault occurs when a data packet that was
sent by Alice fails to arrive unmodified at Bob. Following the literature, we make the somewhat
strong assumption that Alice knows the identities of all the nodes of the data path. While this
assumption only strengthens our lower bounds, it does limit the practicality of our protocols in
settings where Alice is not sure about the paths her packets take. For more discussion on this
assumption, see [?]. We work in the setting where all traffic travels on symmetric paths (i.e.,
intermediate nodes have bi-directional communication links with their neighbors, and messages
that sender Alice sends to receiver Bob traverse the same path as the messages that Bob sends
back to Alice). We say that messages travelling towards Alice are going upstream, and messages
travelling towards Bob are going downstream. An adversary Eve can occupy any set of nodes
on the path between Alice and Bob, and can add, drop, or modify messages sent on the links
adjacent to any of the nodes she controls. She can also use timing information to attack the
protocol.
Localizing links, not nodes. It is well known that an FL protocol can only pinpoint a link
where a failure occurred, rather than the node responsible for the failure. To see why, refer to
Figure 1, and suppose that (a) Eve controlling node R2 becomes unresponsive by ignoring all
the messages she receives from R1. Now suppose that (b) Eve controls node R1 and pretends
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RA (Alice) � R1 � R2 � . . . � RK � RB (Bob)

Figure 1: A path from Alice to Bob via K intermediate nodes.

that R2 is unresponsive by dropping all communication to and from R2. Because cases (a) and
(b) are completely indistinguishable from Alice’s point of view, at best Alice can localize the
failure to link (1, 2).
Congestion. Congestion-related packet loss is widespread on the current Internet, caused
by protocols like TCP [20] that naturally drive the network into a state of congestion. Our
definition accounts for congestion by assuming links can drop each message independently with
some probability. One could come up with other models for congestion (e.g., allowing Eve to
specify the distribution of congestion-related packet loss), and for some plausible choices our
positive results will still hold. However, we use independent drops for the sake of simplicity.
Furthermore, assuming that congestion is not controlled by the adversary only strengthens our
lower bounds and makes our model more realistic.

2.1 Security definition

Let n be the security parameter. A failure localization protocol consists of an efficient initial-
ization algorithm Init taking n uniformly random bits and generating keys for each node, and
efficient node algorithms Alice,Bob, R1, . . . , RK which take in a key and communicate with each
other as in Figure 1. We always fix K = O(1) independent of n. The Alice algorithm takes in a
packet that she wants to send to Bob. If communication is successful, then the Bob algorithm
outputs the packet that Alice sent. Our security definitions are game-based:

Definition 2.1 (Security game for FL). The game begins when Eve chooses a subset of nodes
E ⊆ {1, . . . ,K} that she will occupy for the duration of the game. The Init algorithm is then used
to generate keys for each node, and Eve is given the keys for the nodes i ∈ E that she controls.
We define an oracle Source that generates data packets d for the Alice algorithm to send. We
allow Eve to choose the packets that the Source oracle generates, subject to the condition that
she may not choose the same packet more than once during the game.1

We allow Eve to add, drop, or modify any of the messages sent on the links adjacent to the
nodes she occupies. We include congestion in our model by requiring that, for each message sent
on each link on the path, the link goes down or drops the message with some constant probability
ρ > 0. Notice that this means that a failure can happen at links not adjacent to a node occupied
by Eve.

We introduce the notion of time into our model by assuming that the game proceeds in
discrete time steps; in each time step, a node can take in an input and produce an output, and
each link can transmit a single message. (Thus, each time step represents an event occurring
on the network.) Because it is expensive to have securely synchronized clocks in a distributed
system like the Internet,2 we do not allow the honest algorithms to take timing information as
an input. However, to model timing attacks, we assume that Eve knows which time step that the
game is in.

Then, our per-packet security definition uses the game defined in Definition 2.1:
1We make this assumption because there is natural entropy in packet contents, due to TCP sequence numbers

and IP ID fields [11]. One way to enforce this assumption in practice, is to require the use of ephemeral ‘interval
keys’ which are refreshed at the end an interval, and to assume that the natural entropy in packet contents
enforces the uniqueness of packets over an interval (see the further discussion in [13,12] ).

2Indeed, the NTP protocol used for clock synchronization on the Internet is not secure [24], and thus should
not be used as an input to a secure FL protocol.
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Definition 2.2 (Per-packet security for FL). In the per-packet security game, Eve gets to in-
teract with the Source oracle and the “honest” node algorithms as in Definition 2.1, until she
decides to stop. For each packet sent, Alice must output either

√
( i.e., not raise an alarm) or a

link ` ( i.e., raise an alarm and localize a failure to `). We assume that the game is sequential:
Alice must output a decision for each data packet before starting to transmit the next data packet
(see remarks below). We say that an FL protocol is per-packet secure if the following hold:

1. ( Secure localization). For every packet d sent by the Source oracle that is not successfully
output by Bob, then Alice outputs a link ` such that either (a) link ` is adjacent to a
node occupied by Eve, or (b) link ` went down due to congestion for one of the messages
(including FL protocol messages) associated with sending packet d from Alice to Bob.

2. ( No false positives). For every packet d sent by the Source oracle that is successfully output
by Bob, for which there was no congestion, and for which Eve does not deviate from the
protocol, Alice outputs

√
.

We need to introduce a few new concepts for our statistical security definition. First, we define
an interval as a sequence of T packets (and associated FL protocol messages) that Alice sends
to Bob.3 Next, we use the following parameters: a false alarm threshold α, a detection threshold
for the path β (where 0 < α < β < 1) and an error parameter δ ∈ {0, 1}. Usually, we will set
α such that congestion alone almost never causes the failure rate on a path to exceed the false
alarm threshold.

Definition 2.3 ((α, β, δ)-Statistical security for FL). In the statistical security game, Eve is
allowed to choose the number of intervals for which she wants to interact with the Source oracle
and the honest nodes as in Definition 2.1. The number of packets per interval T may grow
with n, but is always at least some minimum number depending α, β, δ,K. At the end of each
interval, Alice needs to output either

√
( i.e., not raise an alarm) or a link ` ( i.e., raise an alarm

and localize a link). The game is sequential; Alice must output a decision for each interval before
starting the next interval. Then, an FL protocol is statistically secure if the following hold:

1. ( Secure localization). For any interval in the security game where Eve causes the failure
rate on the path to exceed the detection threshold β, then with probability 1− δ Alice raises
alarm for a link ` that is adjacent to Eve, or a link ` whose failure rate exceeds α

K+1 .

2. ( Few false positives). For any interval in the security game where Eve does not deviate
from the correct algorithm Ri of any of the nodes i ∈ E that she controls and the failure
rate on each link is below the (per-link) false alarm threshold α

K+1 , then the probability that
Alice outputs

√
is at least 1− δ.

We now discuss some properties of our security definition.
Benign and malicious failures. Our security definitions require Alice to accurately localize
failures, but these failures may be caused by Eve, or may be the result of benign causes, such
as congestion. We do not require Alice to distinguish between benign or malicious (i.e., due to
Eve) failures, because Eve can always drop packets in a way that “looks like” congestion.
Sequential games. For simplicity, in our per-packet security game we required Alice to make
FL decisions before she sends a new data packet. This is to capture the fact that such protocols
should provide “real-time” information about the quality of the paths she uses, and so we did
not allow Alice in the per-packet case to make decisions only after sending many packets (as
is done in the statistical security case). We note that while our lower bounds (i.e., attacks)
are sequential, our positive results (i.e., , protocols) do not use the assumption of sequential

3We can think of an interval as all the packets sent in some time period (e.g., approximately 107 packets are
sent 100 msec over a 5 Gbps Internet path).
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execution in any way, and are secure in a more general setting where Eve can choose, at each
point in time, which of the previously sent packets “time-out”, and then Alice needs to output
FL decisions for these packets. We emphasize that the sequential assumption does not prevent
Alice from keeping state and using information from past packets in order to make FL decisions.
(Though none of our positive results require that Alice does this.)
Movements of the adversary. Our model does not allow Eve to move from node to node
in a single security game. This assumption, which only strengthens our lower bounds, does
not significantly limit the practicality of our protocols for a number of reasons. Firstly, when
Eve models a Internet service provider that tries to bias the results of FL protocol for business
reasons, it is reasonable to assume that she may only occupy nodes owned by her business entity.
Furthermore, when Eve is an external attacker or virus that compromises a router, “leaving”
a router means that the legitimate owner of the router removed the attacker from the router,
e.g., by refreshing its keys. We model this key refresh process as a re-start of the security
game. Furthermore, in practice “movements” to a new router happen infrequently, since an
external attacker typically needs a different strategy each time it compromises a router owned
by a different business entity.
Generalizations. All our results generalize to the setting where congestion rates, false
alarm thresholds, and detection thresholds are different per link; we set them all equal here for
simplicity. Our lower bounds also hold for the weaker adversary model where Eve can occupy
only one node and the Source oracle generates independent (efficiently-samplable) packets from
a distribution that is not controlled by Eve.

3 Protocols

We now present protocols for secure per-packet and statistical FL. Our protocols are related,
though not identical to those of [3,4,5]. (In Appendix A we show that the protocols in [3,5] do
not satisfy our security definitions.)

We use the notation [m]k to denote a message m authenticated by a key k using a message
authentication code (MAC); such schemes can be constructed from any one-way function [15,16].
We’ll often use the well-known notion of an onion report : if every node Ri wants to transmit a
report τi to Alice in an authenticated way, then we define inductively θK+1 = [(K + 1, τBob)]kBob

and for 1 ≤ i ≤ K, θi = [(i, τi, θi+1)]ki . That is, each Ri’s report is appended with its downstream
neighbors’ reports before being authenticated and passed upstream. Onion reports prevent Eve
from selectively dropping reports — if Eve occupies Rj and wants to drop the report τj of Ri
for some i > j then, under the assumption that Eve cannot forge MACs, Alice will discover that
Rj tampered with the onion report. We also note that every time we send or store a packet d
in acknowledgments and reports, we could save space by replacing d with an O(n)-length hash
of d via some collision-resistant hash function, where n is the security parameter.

3.1 Optimistic Per-Packet FL Protocol

We assume that each node Ri shares a symmetric key ki with Alice. For each packet that Alice
sends, the protocol proceeds in two phases:
The detect phase. Alice stores each packet d that she sends to Bob. When Bob receives the
packet d, he responds with an ack of the form a = [d]kB . Alice removes the packet d from storage
when she receives a validly MAC’d corresponding ack, and raises an alarm if a valid ack is not
received.4 We also require each intermediate node to store each data packet and corresponding
ack.

4In practice, each packet d should be stored along with a local timeout at Alice. If the ack does not arrive
before the timeout expires, then Alice should raise an alarm.
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The localize phase. This phase is run only if Alice raises an alarm for a packet d. Alice sends
an onion report request q = (report, d) downstream towards Bob. To respond to the request,
each node Ri checks if he stored data packet d; if he did, Ri sets τi = (q, i, d, a) where a is the
ack he saw corresponding to packet d, and substituting the symbol ⊥ for d and/or a if he failed
to receive that packet or an ack. Ri then creates an onion report θi using τi as described above.
In the onion report, Ri can substitute the symbol θi+1 = ⊥ if he fails to receive a θi+1 from
Ri+1. 5

To localize the failure, Alice classifies the onion reports that she received in response to
her onion report request q. An onion report θi = [q′, i′, d′, a′, θi+1]ki is “consistent” if it is
present, i.e., θi 6= ⊥, and all of the following four conditions hold. Otherwise, an onion report
is “inconsistent”.

1. q′ = q sent out by Alice.

2. The MAC on θi is valid.

3. d′ = d, where d is the packet queried in q.

4. a′ is not a valid ack for packet d.

Alice localizes then localizes the upstream-most link (i, i+ 1) where the onion reports transition
from consistent to inconsistent.

Theorem 3.1. The optimistic FL protocol is per-packet secure.

Proof. Eve can win the security game by causing a failure and either (a) convincing Alice that
no failure occurred, or (b) causes Alice to localize a node that is not adjacent to Eve. We show
that both (a) and (b) happen with negligible probability:

Consider (a) first. Recall that the packets d Alice sends in the security game are unique, and
that each ack for a packet d contains the packet d. It follows that if Eve creates a valid ack to a
packet d that was dropped before it arrived at Bob, she needs to forge the MAC on a message
(B, d). From the security of the MAC, she can do this with only negligible probability.

Next, consider (b). Let Ri be the upstream-most node where Eve either caused a failure or
tampered with an ack. We have two cases:

• Suppose all the nodes upstream of Eve’s node Ri do not deviate from the correct algorithm.
Let Rj be the first honest node that is downstream of node Ri (we know such a node exists
because Eve cannot occupy Bob’s node). Since Ri−1 and Rj are honest, they correctly
generate their onion reports θi−1, θj , and these reports must have different entries in their
“data” fields (if Eve tampered with the packet at node Ri), and/or different entries in their
“ack” fields (if Eve tampered with the ack at Ri). Now, since all the nodes upstream of
Ri−1 behave honestly, their onion reports are all be consistent. Also, conditioned on Eve
not forging Rj ’s MAC on the onion report, we know that Rj ’s onion report is inconsistent.
It follows that the upstream most transition from consistent to inconsistent reports must
occur on some link between Ri−1 and Rj and Alice will output a link adjacent to Eve.

• Suppose one of the nodes upstream of Eve’s node Ri does deviate from the correct algo-
rithm. Call the upstream-most such node Re, and observe that it must be occupied by
Eve. By the way we chose Ri, we know that Re did not cause a failure or tamper with
an ack. It follows that Re must have tampered with an onion report request or an onion

5 When each node originally receives the onion report request q from Alice, each node sets an local time-out
that determines how long he should wait for his downstream neighbor to send their onion report. If the onion
time-out expires, the node reports a missing onion report by setting θi+1 = ⊥ and then proceeding to construct
his own onion report as before.
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report. Let Rj be the first honest node downstream of Re. Conditioned on not forging the
MAC of an honest node in the onion report, it follows that Eve at Re must have caused
a consistent/inconsistent transition at some link between Re−1 and Rj , and so that Alice
will output a link adjacent to Eve.

Combining these two cases, we see that from the security of the MAC, (b) happens with negligible
probability.

Efficiency. We remark that the detect phase of this protocol incurs a high storage and
communication overhead at each node on the path; we require the addition of at least one new
O(n)-length message for each data packet sent, and even more egregiously, each node must store
(an O(n)-length digest of) each packet it sends until it receives an ack or onion report request.
This high overhead makes this protocol highly impractical for regular Internet traffic; however,
it might be useful for specialized highly-secure networks, or for certain classes of low-volume
traffic e.g., network management traffic.

3.2 A Composition Technique for Statistical FL

We now consider statistical security protocols, that apply results from our previous work on
statistical PQM [13, 12] to obtain statistical FL protocols with much lower overhead. In a
statistical PQM protocol, Alice detects whenever the average failure rate exceeds a threshold β
(but she need not localize a link).

Here we show how to compose the lightweight PQM protocols we presented in [13, 12] to
obtain statistical FL protocols. While it is possible to give a very general composition theorem,
for clarity and concreteness, we first describe how to compose the simpler symmetric secure
sampling (SSS) protocol of [13,12] to obtain a protocol with storage and communication overhead
that linear in (i.e., a small fraction of) the number of sent packets in the interval, T . The
protocol we present here requires each node to share pairwise keys with Alice and Bob. However,
we can extend this result to the public-key setting by composing instances of the asymmetric
secure sampling protocols of [13, 12] , to obtain a protocol that requires only a single public-
key cryptographic operation per interval of T sent packets. For brevity, we omit any further
discussion of this protocol here.

Finally, we show how to compose the secure sketch protocol of [13, 12] to obtain a more
efficient FL protocol with about O(K2 log T + n) storage overhead at each node and only two
additional control messages.

3.2.1 A composition with that uses Secure Sampling PQM.

Symmetric Secure Sampling (SSS), a statistical PQM protocol from [13, 12] . SSS
requires Alice and Bob to securely designate a random p fraction of the data packets that Alice
sends to Bob as “probes”, and require that Bob send MAC’d acknowledgments for all the probes.
We call p the probe frequency. To do this, Alice and Bob share a secret k = (k1, k2). For each
packet d that Alice sends to Bob, they use k1 to compute a function Probe that determines
whether or not a packet d is a probe and should therefore be stored, and acknowledged. To
acknowledge a probe, Bob sends Alice an ack [d]k2 that is MAC’d using k2. The Probe function
is implemented using a pseudorandom function (PRF) f keyed with k1, that we think of as
mapping strings to integers in [0, 2n−1]; We define

Probek1(d) = Yes if fk1 (d)

2n < p,
Probek1(d) = No otherwise.

(1)

For each interval, Alice stores each probe packet (i.e., each packet d such that Probek1(d) =Yes).
At the end of the interval, after T packets are sent, Alice computes V , a count of the number
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Figure 2: On the left an insecure composition, on the right our secure composition.

of stored (probe) packets for which she failed to receive a valid ack. She computes the average
failure rate as V

pT .
A composition that does not work. Perhaps the most natural approach to construct
a statistical FL protocol is to have Alice run K simultaneous PQM protocols with each of
the intermediate nodes, and use the statistics from each protocol to infer behavior at each link
(similar to [27,5,29]). However, we now show that this composition is vulnerable to the following
timing attack : Suppose a packet d that Alice sends to Bob is ack’d by innocent node Rj with
message a. Then, if Eve occupies node Ri for i < j − 1, she can determine that Rj originated
the ack a by counting the time steps that elapsed between the time step in which she saw d and
time step in which she saw a. Then, Eve can implicate Rj by selectively dropping every ack
that originates at Rj . Notice that this attack results from the structure of this composition, and
cannot be prevented even when acks are encrypted.6 In practice, this attack can be launched
when isolated burst of packets triggers a separate burst of acks at each intermediate node.
Composing PQM to statistical FL. We require that every node Ri shares pairwise keys
kAi , k

B
i with Alice and Bob respectively. Using kBi , each intermediate node runs a statistical

PQM protocol with Bob with the following modification: whenever Bob decides to send an ack
for a packet d to an intermediate node Ri, Bob will (1) always address the ack to Alice and
(2) MAC the ack in onion fashion, starting with kBAlice (on the inside of the onion) and ending
with kBK (on the outside of the onion). Each node forwards all acks upstream, and processes
only the ack he expects. At the end of the interval u, Alice will send an onion report request
q = (report, u) to all the intermediate nodes. Each intermediate node produces a MAC’d onion
report θi = [q, i, Vi, θi+1]kAi where Vi is his estimate of the average failure rate on the path
between himself and Bob. Letting α, β be the false alarm and detection thresholds, when Alice
receives the final onion report θ1, she computes F` = Vi − Vi+1 for each link ` = (i, i + 1), and
outputs ` if F` >

α+β
2(K+1) , or if ` = (i, i + 1) is the upstream-most link when the onion report

θi+1 refers to the wrong interval, is missing, or is invalidly MAC’d.
We prove that this scheme is secure provided that the interval length T is long enough and the
congestion rate ρ is small enough.

Theorem 3.2. The composition of SSS described above with probe frequency p satisfies (α, β, δ)-
strong statistical security when each interval contains at least
T = O( K2

p(β−α)2
ln K

δ ) packets and the congestion rate satisfies β − α� Kρ.

Proof. First, observe that the probability that any efficient adversary Eve successfully forges
an ack for a dropped packet by forging a MAC used in SSS is negligible. As in the Optimistic
Protocol, the probability that any efficient adversary Eve successfully forges the onion report of
an honest node (by forging the MAC on the onion report) is negligible as well. Hence, for the
rest of this proof assume that Eve does not forge an ack to a dropped packet or validly forge
the onion report of an honest node. Moreover, we can assume that Eve does not tamper with
the onion report, or else she will implicate a link adjacent to one of the nodes she controls. We
now work within a single interval:

• Let Vi be Ri’s estimate of the failure rate between Ri and Bob.
6In [29], the authors suggest randomizing the sending time of acks.
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• Let Di be a count of the number of packets that were dropped or modified on the path
between Ri and Bob.

• Let Ci be the number of acks intended for any node that were dropped or modified on the
path between Bob and Ri.

• Let p′ = p
1−(1−p)K+1 be the probability that a node Ri expects an ack to a packet d (i.e.,

ProbekBi
(d) = Yes) conditioned on there being at least one node expecting an ack to packet

d (i.e., ∃j ∈ {0, . . . ,K}, ProbekBj
(d) = Yes).7

Note that when Ri estimates the average failure rate on the path from Ri to Bob, she is unable
to distinguish between dropped packets and dropped acks. Also, it is possible that Di > Di+1

or Ci > Ci+1 for two adjacent uncorrupted nodes because of congestion. In the absence of
adversarial behavior at Ri, the expectation of the estimator Vi that Alice receives in the onion
report is 1

T (Di + p′

p Ci). Finally, notice that the average failure rate on link (i, i+ 1) is 1
T (Di −

Di+1).
Set γ = β−α

2(K+1) . If T = O( K2

p(β−α)2
ln K

δ ) then we have the following lemmata:

Lemma 3.3 (Deviation of the estimator Vi). For each i /∈ E where E is the set of nodes
corrupted by Eve it holds (up to negligible error) that

Pr
[∣∣∣Vi − 1

T (Di + p′

p Ci)
∣∣∣ > 1

4γ
]
< δ

4(K+1)

Lemma 3.4 (Acks dropped due to congestion). For each i, i+ 1 /∈ E, it holds (up to negligible
error) that

Pr
[
p′

p
Ci−Ci+1

T > γ
2

]
< δ

2(K+1)

The proofs of these lemmata are technical, but not difficult. We defer them to Appendix B.1.
Both proofs are applications of the Chernoff bound under the assumption that the Probe function
is implemented with a truly random function; the negligible error refers the difference between
a PRF and a truly random function. The proof of Lemma 3.3 relies on the fact that Eve cannot
bias node Ri’s estimate of Ci by selectively dropping acks because (1) acks destined for different
nodes look identical, and they all originate at Bob (so that an adversary cannot use timing to
distinguish between them), and (2) acks are onion MAC’d, so the adversary cannot selectively
tamper with an ack intended for an upstream node. The proof of Lemma 3.4 also relies on the
fact that β − α� Kρ.
Few false positives: To prove this, we consider an interval where all the nodes on the path
behave honestly, and show that, with probability at least 1 − δ, Alice will not raise an alarm
during this “honest interval”.

Consider link ` = (i, i+1) where the average failure rate is less than the false alarm threshold
so 1

T (Di − Di+1) < α
K+1 . We now show that Alice will not raise an alarm for this link ` by

proving that Alice’s estimate of the failure rate for `, i.e., Vi − Vi+1, does not exceed her alarm
decision threshold, i.e., α+β

2(K+1) . We do this by proving that

Pr
[∣∣(Vi − Vi+1)− 1

T (Di −Di+1)
∣∣ > α+β

2(K+1) −
α

K+1 = γ
]
< δ

K+1 (2)

Notice that “Few false positives” condition follows from (2) by a union bound over all K + 1
links.

7This quantity is the probability that a node Ri samples an ack that was dropped between Ri and RB , since
at least one node must have sampled the corresponding packet in order for the ack to be transmitted at all.
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To prove (2), we start with the expression below, and apply the triangle inequality, and then
Lemma 3.3:

Pr[|(Vi − Vi+1)− (Di−Di+1

T + p′

p
Ci−Ci+1

T )| > γ/2]

≤ Pr[|Vi − 1
T (Di + p′

p Ci)| > γ/4] + Pr[|Vi+1 − 1
T (Di+1 + p′

p Ci+1)| > γ/4]

≤ δ
2(K+1) (3)

Next, from Lemma 3.4 we know that Pr[p
′

p
Ci−Ci+1

T > γ/2] ≤ δ
2(K+1) , and so a union bound over

this expression and (3) proves (2).
Secure localization: We now show that if Eve drops more than a β fraction of packets in
any interval, then Alice will catch her with probability at least 1 − δ. Since the actual failure
rate on the path is 1

TDA > β, we start by applying Lemma 3.3 to find that Alice’s estimate of
the failure rate is VA > β − γ

4 with probability at least 1 − δ
4(K+1) . We now use an averaging

argument to claim that there exists some link ` = (i, i + 1) such that Vi − Vi+1 >
α+β

2(K+1) . To

see why, suppose for the sake of contradiction that for all i we had Vi − Vi+1 ≤ α+β
2(K+1) . Then,

it follows that

VA =
K∑
i=0

(Vi − Vi+1) ≤
∑
`

α+β
2(K+1) = α+β

2 < β − γ
4

where VK+1 = 0 (Bob’s estimate of drops to himself is 0). But this contradicts our condition
that VA > β− γ

4 , so there is at least one link ` = (i, i+ 1) with Vi− Vi+1 >
α+β

2(K+1) so that Alice
raises an alarm.

Next, recall that we assume that for any link where the true failure rate due to congestion less
than α

K+1 , we have from our proof of the “Few false positives” condition that with probability
δ

K+1 , Alice does not raise an alarm for link ` between two honest nodes. Then, Alice must have
raised the alarm for a link adjacent to Eve with probability at least 1 − δ (by a union bound)
or a link with actual failure rate larger than α

K+1 , and secure localization follows.

Efficiency. We remark that this protocol requires Alice and each intermediate node to store
tags of length O(n) for a p-fraction of the packets that they send. The communication overhead
of the protocols is similarly a p-fraction of O(n)-length tags. Notice that, under the assumption
that the interval T is long enough, we can take p to be arbitrarily small.

3.2.2 A composition that uses Secure Sketch PQM

Secure Sketch, a statistical PQM protocol from [13, 12] . In Secure Sketch PQM,
Alice and Bob to securely aggregate information about all the traffic that Alice sends to Bob
in short hash-based data-structure called a sketch. At the end of the interval, Alice and Bob
exchange their sketches using in MAC’d control messages, and use the sketches to estimate the
failure rate on the path. To do this, Alice and Bob share a secret k = (k1, k2). The key k1 is
used to key a PRF that is used to at the beginning of interval u by both parties to derive the
interval key ku as ku = fk1(u). For each data packet d, Alice and Bob use the interval key ku to
compute a hash fk1(d) of the packet. The output of the hash function is a length N -vector that
added to a vector of N counters, each of length b, called the sketch. After T packets are sent
and the interval ends, Alice sends Bob control message that contains her sketch and the next
interval number, and is MAC’d with k2. Bob responds by subtracting Alice’s sketch from his
own, and replying with a MAC’d control message containing the interval number and difference
between the two sketches. Alice then obtains an estimate of the failure rate V by computing
some function g on the difference between the two sketches.

12



The security of secure sketch PQM. Briefly, the secure sketch protocol works because it
correctly estimates the pth-moment of a packet stream (for some p ≥ 1). That is, consider the
stream of T packets that Alice sends to Bob during the interval, where each packet is chosen from
a universe U (e.g., if packets are 1500bytes, then |U | ≈ 21500·8). Let vA be the characteristic
vector of this stream, a U -dimensional vector that has c in the position corresponding to packet
x if packet x was sent c times during the interval. Similarly, let vB be the characteristic vector of
the stream of packets received by Bob. Then, the sketches allow Alice to estimate ‖vA−vB‖p . In
particular, we say that a sketching protocol (ε, δ)-estimates the pth-moment of the characteristic
vector vA − vB if

Pr
[∣∣V − ‖vA − vB‖p

∣∣ ≤ ε‖vA − vB‖p
]
< 1− δ (4)

where the probability is taken over the randomly chosen key ku used to key the packet-hash
function f . In [13, 12] , we discuss exactly how to choose the hash function f , and how this
choice affects p, the norm estimated by the sketch, and N × b , the size of the sketch. For our
purposes we shall simply note that if the hash function f is an appropriately-chosen PRF, then
we can use sketch of size N × b where N = O( 1

ε2
log(1

δ )) and b = O(log(T )).
We no longer have timing attacks. In secure sketch PQM, Alice and Bob exchange only
a pair of control messages at the end of the interval; no other communication between them is
required. Because the timing of these control messages do not leak any information, the timing
attack we mentioned in Section 3.2.1 is no longer an issue. Our composition of secure sketch
PQM to statistical FL will have Alice run K simultaneous PQM protocols with each of the
intermediate nodes as in Figure 2, and use the statistics from each protocol to infer behavior at
each link.
A simpler composition. We require that every node Ri shares pairwise keys ki with Alice
only (c.f., with our SSS-based composition, where nodes need to share keys with Bob as well).
Using ki, each intermediate node runs a secure sketch PQM protocol with Alice, so that Alice
will keep a sketch wA

i for every i ∈ [K] and every other node Ri will keep a single sketch wi.
However, instead of sending individual control messages to each node at the end of interval u,
Alice will now send a single onion-MAC’d interval-end message containing all her sketches as

q = [(u,wA
1 )[(u,wA

2 )...[(u,wA
B)]kB ...]k2 ]k1

to all the intermediate nodes. Upon receiving a validly-MAC’d interval-end message, intermedi-
ate node Ri extracts the sketch wAi , and passes the interval-end message to Ri+1. (Ri drops the
interval-end message if the MAC is invalid.) Finally, as in the usual composition, each node Ri
produces a MAC’d onion report θi = [u, i, Vi, θi+1]ki . Here, Vi is node Ri’s estimate of ‖vi−vA‖p ,
which is computed by applying the function g to the difference sketch wi−wA

i . (Recall that vA
is the characteristic vector of the stream of packets that Alice sends, and vi is the characteristic
vector of the stream of packets that Ri receives.) Letting α, β be the false alarm and detection
thresholds, when Alice receives the final onion report θ1, computes F` = Vi − Vi+1 for each link
` = (i, i+1), and outputs ` if ` = (i, i+1) is the upstream-most link where F` > T

K+1
β(2α+β)
α+2β = Γ,

or the onion report θi+1 refers to the wrong interval, is missing, or is invalidly MAC’d. If there
is no such link, she outputs

√
.

Limiting the number of nodes occupied by Eve. To prove that this scheme is secure,
we need to assume that interval length T is long enough, the sketches are big enough, and the
congestion rate ρ is small enough. Our proof also relies on limiting the number of links occupied
by Eve to ≈

√
K. However, we conjecture that it may be possible to weaken this assumption,

as we have not been able to find any attacks on the protocol when Eve occupies more than
√
K

links. For more discussion, see the remarks in Appendix B.4.

Theorem 3.5. The composition of secure sketch PQM described above satisfies (α, β, δ)-statistical
security if the congestion rate satisfies ρK2 ≤ β, Eve occupies M ≤

√
(K + 1)(1− ρ

βK
2) links,
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each interval contains at least T > K+1
α packets, and for each i ∈ [K], sketches wi,wA

i have size

Ni × b = O

(
i2
(

2β+α
β−α

)2
log(Kδ )

)
×O(log T ) (5)

Proof. First, the probability that any efficient adversary Eve successfully forges the interval end
message or the onion report of an honest node (by forging the MAC) is negligible. Hence, for
the rest of this proof assume that Eve does not validly forge the onion report of an honest node.
Moreover, we can assume that Eve does not tamper with the interval-end message of the onion
report, or else she will implicate a link adjacent to one of the nodes she controls. We now work
within a single interval, and use the following definitions:

• Let vA is the characteristic vector of the stream of packets that Alice sends and vi for
i ∈ [K + 1] to be the characteristic vector of the stream of data packets that Ri receives.

• Let xi = vi − vA. We can decompose any xi into two vectors xi = di + ai. The vector di
is the characteristic vector of packets dropped on the path from Alice to Ri, and contains
the non-negative components of xi. The vector a is the characteristic vector of packets
added on the path from Alice to Ri, and contains the non-positive components of xi. Also
notice that the non-zero coordinates of d and a are disjoint.

• Let Vi be Ri’s estimate of ‖xi‖pp .

• Let Di be a count of the number of failures that occurred on the path between Alice and
Ri.

Our proof also makes use of the following identity

‖xi‖pp = ‖di‖pp + ‖ai‖pp = Di + ‖ai‖pp (6)

The first equality follows because the non-zero coordinates of d and a are disjoint. The second
equality follows because every packet that Alice send is unique so that that d is a {0, 1}-vector
for every i ∈ [K + 1]. In [13, 12] we show that if interval key is refreshed at the end of each
interval, then if each sketch has Ni×b = O( 1

εi
log 1

δ′ ) then it follows that each estimate Vi (εi, δ′)-
approximates ‖xi‖pp as per (4). Also, we will require that α

K+1T > 1 (which gives us the bound
on T , the number of packets in the interval), and prove the following lemma in Appendix B.3:

Lemma 3.6. Let Γ = T
K+1

β(2α+β)
α+2β and εi = 1

2i
β−α
2β+α . For every i ∈ [K], assume that Ri

computes an estimate Vi that (εi, δ′)-estimates ‖xi‖pp. Suppose also that ‖xi‖pp ≤
βi
K+1 . Then

with probability at least 1− 2δ′ it follows that:

1. If “link (i, i+ 1) is good” so that ‖xi+1‖pp − ‖xi‖
p
p
≤ α

K+1T then Vi+1 − Vi ≤ Γ.

2. If “link (i, i+ 1) is bad” so that ‖xi+1‖pp − ‖xi‖
p
p
≥ β

K+1T then Vi+1 − Vi ≥ Γ.

We use Lemma 3.6 to prove the “few false positives” and “secure localization” conditions.
Few false positives: To prove this, we consider an interval where all the nodes on the path
behave honestly. During this interval, we know that no packets were added anywhere on the
path (so that ‖ai‖pp = 0 for each i ∈ [K + 1]) and less than α

K+1 packets were dropped at each
link. We can apply identity (6) to find that for each link (i, i+ 1) we have

‖xi+1‖pp − ‖xi‖
p
p

= Di+1 −Di + 0 + 0 ≤ α
K+1 (7)

and the telescoping nature of (7) gives us that

‖xi‖pp = (‖xi‖pp − ‖xi−1‖pp) + ...+ (‖x2‖pp − ‖x1‖pp) + ‖x1‖pp ≤
αi
K+1 (8)
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We can now apply Lemma 3.6 to show that, with probability at least 1 − 2δ′ we have that
Vi+1 − Vi ≤ Γ so that Alice will not output link (i, i+ 1). A union bound over the K + 1 links
gives us that Alice will output

√
during this interval with probability at least 1− 2(K + 1)δi.

Secure localization: We now show that if Eve causes more than a β fraction of failures in
the interval, then with probability at least 1 − δ, Alice will either catch Eve or output a link
with more than α

K+1 failures. Recall that Alice outputs the upstream-most link ` = (i, i+ 1) for
which there is an “alarm”, i.e., where Vi+1− Vi ≥ Γ. We need the following simple observation:

Lemma 3.7. Define event Ei as the event that ‖xi‖pp ≤
βi
K+1 .For each i ∈ [K + 1], if Alice

does not raise an alarm for any link upstream of link i, then Ei holds with probability 1− 2iδ′.

Proof. Suppose that Alice does not raise an alarm for all the links upstream of node Ri. It
follows from Lemma 3.6 that ‖xj+1‖pp − ‖xj‖

p
p
≤ β

K+1 with probability 1 − 2δ′, for each link
(j, j + 1) where j ∈ [i− 1]. The lemma follows by taking a union bound over all these links and
using a telescoping sum as in (8).

First we show that the with high probability Alice will not output an honest link. Let link
(i, i + 1) is be “honest”, i.e., have a fewer than α

K+1 failures, and assume that Alice does not
raise alarm for any links upstream of Ri. Now, Lemma 3.6 shows that, conditioned on Ei, Alice
will not raise an alarm for link (i, i + 1) with probability at least 1 − 2δ′. Since Alice does not
alarm for any links upstream of Ri, we can apply Lemma 3.7 to remove the conditioning on Ei.
It follows that Alice will not output honest link (i, i+ 1) with probability at least 1− 2(i+ 1)δ′.
Taking a union bound over all honest links gives that Alice will not alarm for any honest link
with probability at least 1− 2(K + 1)2δ′.

Next, we need to show that Alice either will raise an alarm for a link adjacent to Eve or link
with more than α

K+1 failures. The most interesting part of this proof is the following technical
lemma, which we prove in Appendix B.4:

Lemma 3.8. If Eve occupies M ≤
√

(K + 1)(1− ρ
βK

2) links and causes a β-fraction of failures

in the interval, then there must be a link (i, i+ 1) that is adjacent to Eve with

‖xi+1‖pp − ‖xi‖
p
p
≥ β

K+1T

Now let link (i, i+1) be the upstream-most link that is adjacent to Eve and has ‖xi+1‖pp−‖xi‖
p
p
≥

β
K+1T . (Lemma 3.8 guarantees the existence of such a link.) We have two cases:

• Suppose Alice did not raise an alarm for a link upstream of Ri. Combining Lemma 3.7
and Lemma 3.6 it follows that Alice will alarm for link (i, i + 1) adjacent to Eve with
probability 1− 2(i+ 1)δ′.

• Suppose Alice did raise an alarm for a link upstream of Ri. It follows from Lemma 3.6
that there is some link (j, j + 1) for j ≤ [i− 1] where, with probability 1− 2δ′,

α
K+1 ≤ ‖xj+1‖pp − ‖xj‖

p
p

= Dj+1 −Dj + ‖aj+1‖pp − ‖aj‖
p
p

where the equality comes from applying identity (6). Now if link (j, j + 1) is adjacent
to Eve, it follows that Alice alarms for a link adjacent to Eve, and we are done. Thus,
suppose that link (j, j + 1) is not adjacent to Eve. Then, it follows that no new packets
could have been added to this link, and so we have that ‖aj+1‖pp = ‖aj‖pp . Thus, if link
(j, j + 1) is not adjacent to Eve, then Alice must have raised an alarm for a link with
Dj+1 −Dj ≥ α

K+1 failures, as required.
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Combining these cases, we see that with probability at least 1 − 2(K + 1)δ′, Alice will either
raise an alarm for a link that is either (a) adjacent to Eve, or (b) has more than α

K+1 failures.
Sizing the sketches. Finally, to ensure that (α, β, δ)-statistical security holds, it suffices to
take δ′ = δ/4(K + 1)2. Next, recall that Lemma 3.6 requires sketches that (εi, δ′)-estimate the
pth moment with εi = 1

2i
β−α
2β+α . For i ∈ [K + 1] it suffices to take sketches wi, wA

i of size Ni × b
where Ni = O( 1

ε2i
log( 1

δ′ )) and b = O(log(T )). Substituting in the values for εi, δ′ gives us (5) as
required.

Efficiency. We remark that, for a given interval of length T , this protocol requires O(K2 log T+
n) storage overhead at Bob and each intermediate node, while the storage overhead at Alice
is O(K3 log T + Kn). The communication overhead of the protocol is two control messages of
length O(K3 log T +Kn) each for every T packets sent.

4 Lower bounds

We now argue that in any secure per-packet FL scheme Alice requires shared keys with Bob and
the intermediate nodes, and Alice, Bob and each intermediate node must perform cryptographic
operations. We only argue for intermediate nodes R2, . . . , RK ; R1 is a border case which requires
neither keys nor crypto because we assume Alice is always honest.

4.1 Failure Localization Needs Keys at Each Node

Since FL provides strictly stronger security guarantees than path-quality monitoring, it follows
from the results in [13, 12] that in any secure FL protocol, Alice and Bob must have shared
keys. We also have the following theorem that proves that in any secure FL protocol, each
intermediate node must share keys with some Alice:

Theorem 4.1. Suppose Init generates some auxiliary information auxi for each node Ri for
i = 1, ...,K,Alice,Bob. A FL protocol cannot be (per-packet or statistical) secure if there is any
node i ∈ {2, . . . ,K} such that (auxAlice, aux1, . . . , auxi−1) and auxi are independent.

Proof. Suppose Ri has auxi that is independent of (auxAlice, . . . , auxi−1). Then, the following two
cases are indistinguishable from Alice’s view: (a) Node Ri+1is malicious and blocks communica-
tion on link (i, i+ 1), and (b) Eve occupies node Ri−1, and drops packets while simulating case
(a) by picking an independent aux′i and running Ri(aux′i) while pretending as if (i, i+1) is down.
These two cases are indistinguishable because auxi is independent of (auxAlice, . . . , auxi−1), and
so Alice will localize the failure to the same link in both case (a) and (b). But this breaks
security, since Ri+1, Ri−1 do not share a common link.

4.2 Failure Localization Needs Crypto at Each Node

In [13,12] , we give a reduction from one-way functions to secure PQM, proving:

Theorem 4.2 (From [13, 12] ). The existence of a per-packet secure PQM protocol implies the
existence of an infinitely-often one-way function (i.o.-OWF).

Since one-way functions are equivalent to many cryptographic primitives (in the sense that these
primitives exist if and only if one-way functions exist [18]), this result can be interpreted to mean
that nodes participating in any secure PQM protocol must perform cryptographic computations.
Since FL gives a strictly stronger security guarantee than PQM, we also have that in any FL
protocol, some node on the data path must perform cryptography. However, Theorem 4.2
only implies that the entire system performs cryptography. We want to prove that any secure
FL protocol requires each intermediate node R1, . . . , RK to perform cryptography. Because it
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is not clear even how to formalize this in full generality, we instead apply the methodology
of Impagliazzo and Rudich [19] to do this for black-box constructions of FL protocols from a
random oracle RO. We model “performing cryptography” as querying the random oracle, and
show that in such a secure FL protocol each node must query the RO.

In [19], Impagliazzo and Rudich showed that there can be no secure black-box construction
of key agreement (KA) from a random oracle. They argued that if any such KA construction
is secure, then it must also be secure in a relativized world where every party has access to
a random oracle RO, and a PSPACE oracle. (A PSPACE oracle solves any ‘PSPACE-complete
problem, e.g., True Quantified Boolean Formulae (TQBF).) Intuitively, in this (PSPACE,RO)
world, every computation is easy to invert except for those computed by the RO. They obtain
their result by showing, for every possible black-box construction of KA from a random oracle,
that there exists an efficient algorithm (relative to (PSPACE,RO)) that breaks the security of
KA. Using the same reasoning, any secure black-box FL protocol constructed from a RO must
remain secure even relative to a (RO,PSPACE) oracle. Then, to obtain our result, it suffices to
exhibit an efficient algorithm (relative to (PSPACE,RO)) that breaks security of any black-box
FL protocol where one node does not call RO. We do this below.

We will use the notion of an exchange to denote a data packet and all the FL-protocol-
related messages associated with that packet. Because our game is sequential (see Section 2),
Alice’s must decide to localize a link ` or output

√
before the next exchange begins. Let

〈Ri−1, Ri〉j denote the distribution of all messages sent and received along link (i− 1, i) during
the j’th exchange. We sometimes refer to these messages as a transcript for the j’th exchange.
Because we allow the nodes to keep state, this distribution may depend on what happened in all
previous exchanges, 〈Ri−1, Ri〉1, . . . , 〈Ri−1, Ri〉j−1. We now prove that a per-packet FL protocol
with 2r = O(log n) messages per exchange must invoke the random oracle at every node. We
assume that the number of messages per exchange is even, and that odd messages go from Ri−1

to Ri and even messages go from Ri to Ri−1.We note that protocols where number of messages
per packet grows with n are impractical and so “practical” protocols should use 2r = O(1)
messages per exchange. (See Remark 4.7 below on the possibility of extending this result to
statistical security and/or protocols with ω(log n) messages per exchange.)

Theorem 4.3. Fix a fully black-box per-packet FL protocol that uses access to a random oracle
RO, where at least one node Ri for i ∈ {2, . . . , I} never calls the RO and where the maximum
number of messages per exchange is O(log n). Then there exists an efficient algorithm relative
to (PSPACE,RO) that breaks the security of the scheme with non-negligible probability over the
randomness of RO and the internal randomness of the algorithm.

The proof of Theorem 4.3 is quite technical and is deferred to Appendix C. We sketch the
proof, which resembles that of Theorem 4.1. Eve controls node Ri−1 and impersonates Ri, but
now auxi is secret, so Eve must first learn auxi:

1. Learning to impersonate. Sitting at Ri−1, Eve observes t exchanges (t is polynomial in n),
where Eve asks Source to transmit a uniformly random data packet. She then uses the
learning algorithm of Naor and Rothblum [26] to obtain a pair of impersonator algorithms
A′, B′, whose interaction generates a distribution over transcripts for the t+1’th exchange.
A′ impersonates nodes Alice, R1, . . . , Ri−1 and B′ impersonates nodes Ri, . . . , RK ,Bob.

2. Dropping and impersonating. On the t + 1’th exchange, for each message mj going from
Ri−1 to Ri, Eve computes a response herself mj+1 using algorithm B′ and returns mj+1 to
Ri−1; she does not send any messages to Ri. (More precisely, B′ samples mj+1 according
to the conditional distribution 〈A′, B′〉j+1 | 〈A′, B′〉j = (m1, ...,mj). Here 〈A′, B′〉j denotes
the first j messages of 〈A′, B′〉. Note that this sampling is efficient in the presence of a
PSPACE oracle.)
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Now, Eve at Ri−1 will break security if she manages to use B′ to impersonate an honest exchange
during which link (i, i+ 1) is down. (This breaks security since link (i, i+ 1) is not adjacent to
Ri−1.) The crucial observation is that here, Eve need only impersonate node Ri, and that Ri does
not “protect” its secret keys by calling the RO. Intuitively, Eve should be able to impersonate
Ri since any computations that Ri does are easy to invert in the (PSPACE,RO) world. To
prove the theorem, we shall show that with non-negligible probability > (10/ρ)r = 1/poly(n),
the following are 1/100-indistinguishable: (a) Alice’s view when link (i, i + 1) is down and (b)
Alice’s view when Ri−1 drops a packet but impersonates link (i, i+ 1) being down using B′.

In the following, we define the statistical distance between two random variables X,Y as
∆(X,Y ) = 1

2

∑
x∈U |Pr[X = x]− Pr[Y = x]| where U is the union of the supports of X and Y

(for more background on statistical distance, see e.g., [14]).
Recall (Section 2) that Alice is allowed to use information from past exchanges to help

her decide how to send messages in new exchanges. Fortunately, the algorithm of Naor and
Rothblum [26] is specifically designed to deal with this, and guarantees the following:

Lemma 4.4 (Based on [26]). Relative to a (PSPACE,RO)-oracle, there exists an efficient algo-
rithm that observes at most t = O( n

ε4
) honest exchanges 〈Ri−1, Ri〉1,...,t and then, with probability

> 1 − ε, outputs efficient impersonator algorithms R′0, . . . , R
′
K+1 such that that an imperson-

ated transcript 〈R′i−1, R
′
i〉t+1 (given by simulating the interaction of all the impersonator algo-

rithms) for the exchange t+1 is distributed ε-close in statistical distance to the honest transcript
〈Ri−1, Ri〉t+1 for exchange t+ 1.

Suppose Eve obtained an A′, B′ where we let A′ be the collection of algorithms R′0, . . . , R
′
i−1

and B′ be the collection R′i, . . . , R
′
K+1that satisfy the guarantee above. Our first challenge is

that the Naor-Rothblum algorithm does not guarantee that A′, B′ generates an impersonated
transcript that is statistically close to the “honest” transcript of messages on (i− 1, i) when the
observer has access to the RO. (The “honest” transcript of messages on the link (i − 1, i) is
generated by interactions of honest Alice, R1, ..., RK ,Bob.) Fortunately, with probability ρr all
the messages sent from Ri to Ri−1 are computed without access the RO. This happens when
congestion causes link (i, i + 1) to go down for the duration of an exchange (so that Ri, who
never calls the RO, has to compute all his upstream messages on his own).

Our next challenge is that Eve has no control, or even knowledge, of when congestion causes
this event to occur. Indeed, the distribution generated by A′, B′ is only guaranteed to be close
to the honest transcript overall; there is no guarantee that it is close to the honest transcript
conditioned on congestion on (i, i + 1).8 Fortunately, we can show that with probability ρr,
A′, B′ will generate a “useful” impersonated transcript that is ε/ρr-statistically close to the
honest transcripts conditioned on the event that link (i, i+ 1) is down. Eve does not necessarily
know when she impersonates a useful transcript; she simply has to hope that she is lucky enough
for this to happen.

The last challenge is that even when Eve is lucky enough to obtain a useful transcript, we
still need a guarantee that (a) conditioned on B′ generating a useful transcript, using B′ to
interact with the honest algorithm Ri−1 results in a transcript that is statistically close to (b)
the transcript between honest algorithms Ri−1 and Ri conditioned on link (i, i+ 1) being down.
Unfortunately, the Naor-Rothblum algorithm does not give any guarantees when an honest
algorithm interacts with an impersonated algorithm for more than 1 round. Thus, we prove
that, with probability at least (ρ/2)r, the impersonator algorithm B′ interacting with honest
Alice, ...Ri−1 still generates a useful transcript such that the statistical distance between (a) and
(b) is at most 1/100. (This assumes we take ε small enough; ε = (ρ/10)4r = 1/poly(n) suffices.)

We address these challenges in the next lemma, which we prove in Appendix C. We state a
general version of the lemma here, for which we first need a few definitions:

8For this reason, Eve cannot simply use R′
i (instead of R′

i, ..., R
′
K ,Bob′) to impersonate the honest Ri condi-

tioned on link (i, i+ 1) being down.
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• Let A,B and A′, B′ be two (different) pairs of algorithms such that the statistical difference
between the transcripts 〈A,B〉 and 〈A′, B′〉 is bounded by ε. We assume a priori that
A,B can share randomness, say by accessing a common random oracle, and so can A′, B′.

• Let (〈A,B〉, viewA(〈A,B〉)) be the joint distribution of transcripts 〈A,B〉 and the internal
randomness of party A, which we call viewA (which includes both randomness that is
shared with B and independent randomness). For a fixed τ , we will let viewA(τ) be the
distribution of the internal randomness of A conditioned on outputting the transcript τ .

• To deal with interaction, we let 〈A,B′〉 = (m1, . . . ,mr) be the distribution over transcripts
where for each message mj sent by A is computed honestly, while each mj sent by B′ is
computed by pretending that the partial transcript so far σi = (m1, . . . ,mj−1) came from
the distribution 〈A′, B′〉 and sampling the next message mj consistent with 〈A′, B′〉; more
formally B′ samples mj according to the conditional distribution (〈A′, B′〉j | 〈A′, B′〉j−1 =
σj−1).9 Here 〈A′, B′〉j denotes the first j messages of 〈A′, B′〉.

We are finally ready for the statement of the Lemma.

Lemma 4.5. Suppose that ∆(〈A,B〉, 〈A′, B′〉) ≤ ε, and there exist events E1, . . . , Er over the
internal randomness of A,B such that (1) ∀j, conditioned on Ej, the first j messages from B
to A are independent of A’s internal randomness, and (2) Pr[Ej | Ej−1] ≥ ρ. Set ε = (ρ/10)4r,
Then there exist η ≥ (ρ/2)r, and distributions over the transcripts Y,Z such that 〈A,B′〉 is a
convex combination ηY + (1− η)Z and

∆((Y, viewA(Y )), (〈A,B〉, viewA(〈A,B〉) | Er)) ≤ 1/100

Lemma 4.5 tells us that, with probability η, 〈A,B′〉 will generate a “useful” transcript Y that is√
ε(10/ρ)r-statistically close to the honest transcript 〈A,B〉 conditioned on event Er occurring.

(Z is the “not useful” transcript that is generated with probability 1 − η.) We can now apply
Lemma 4.5 by setting:

• A to be honest algorithms R0, R1, . . . , Ri−1.

• B to be honest algorithms Ri, . . . , RK+1.

• A′ to be the impersonator algorithms R′0, . . . , R
′
i−1 given by Lemma 4.5.

• B′ to be the impersonator algorithms R′i . . . , R
′
K+1 given by Lemma 4.5.

• Ej to be the event that link (i, i + 1) is congested for the messages 1, . . . , j that are sent
downstream from B to A. (Then, Er is the event that link (i, i+1) is down for the duration
of an exchange of length r = O(log n) messages.)

Now, notice that since Ri does not query the random oracle, conditioned on Ej the first j
messages of B are independent of A because they are computed by Ri only. Next, note that
Pr[Ej | Ej−1] = ρ because each message is lost to congestion independently.

To combine everything, set ε = (ρ/10)4r and apply Lemma 4.4 to find that with probability
at least ≥ (1 − ε) we get A′, B′ that is ε-close to 〈A,B〉 (notice that Eve is efficient with
this setting of ε). Conditioned on this happening, by Lemma 4.5 we get that with probability
(ρ/2)r = 1/poly(n), Eve is lucky enough to generate a useful transcript such that (a) the
view of Alice when Eve drops a packet at Ri−1 and impersonates using R′i, . . . , R

′
K+1 is 1/100-

indistinguishable from the situation (b) where link (i, i+ 1) is completely down for the duration
of an exchange. Since Alice should localize the same link in case (a) and (b) for all but a 1/100
fraction of the time, this breaks security since link (i, i+ 1) is not adjacent to Eve at Ri−1.

9In general this is not efficient, but it is efficient because in our setting Eve has access to a PSPACE oracle.
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4.2.1 Statistical security.

Our lower bounds in the statistical setting are more subtle. First of all, from [13,12] the analog
of Theorem 4.2 also holds, showing that the entire system needs to “perform cryptography”.

Theorem 4.6 (From [13,12] ). The existence of a (α, β, δ)-statistically secure failure detection
scheme for constants α, β, δ implies the existence of an infinitely-often one-way function (i.o.-
OWF).

However, we run into trouble when we try to show that cryptography is required at each
intermediate node. It turns out that Definition 2.3 does not inherently require complexity-based
cryptography at intermediate nodes. We sketch a statistically secure FL protocol where the
intermediate nodes R1, . . . , RK use only information-theoretically secure primitives (although
Alice and Bob still use regular MAC’s). While this protocol is completely impractical in terms
of communication and storage overhead, we present it here to demonstrate the subtleties of
Definition 2.3.10

Remark 4.7 (Impractical “crypto-free” statistical FL protocol.). The protocol uses one-time
MACs (OTMAC), information-theoretic objects that have the same properties as regular MACs
except that they can only be used a single time. (OTMACs and can be constructed from universal
hash functions [7].) Each node Ri shares pairwise keys with Alice. All the intermediate nodes
and Bob store each packet that Alice sends to Bob. For each packet, Bob replies with an ack
signed using a regular MAC. At the end of the interval, Alice counts the number of acks that
she either fails to receive, or are invalid. The first time this count exceeds a β-fraction, Alice
sends a “report request” message that is signed using a OTMAC to R1, . . . , RK , RK+1. Each
node R1, . . . , RK responds with a report of every single packet they have witnessed, that is “onion
signed” using the OTMAC (as in Section 3.1). Alice uses these reports in the usual way to localize
link ` adjacent to Eve. From this point onwards Alice simply counts valid acknowledgments from
Bob, and blames link ` each time the count exceeds a β fraction.

The protocol satisfies Definition 2.3 because the probability that the failure rate at any link
exceeds β by congestion alone is negligible. Since we do not allow Eve to move during the
security game, if Alice successfully localizes Eve to link ` once, it means it must have been
Eve’s fault, and so from then on Alice can always blame all failures on link `. As noted above,
similar “impractical” protocols exist for per-packet protocols with ω(log n) additional messages
per packet (since all ω(log n) messages are lost to congestion with only negligible probability),
except that we replace the idea of “exceeding β fraction of failures” with “losing an entire
exchange due to congestion”. We may interpret this as follows:

1. It is unreasonable to assume that the failure rate at a link exceeds β only due to adversarial
behavior (i.e., Eve). For example, occasionally congestion might spike, or a router might
malfunction or go down due maintenance, causing more than a β-fraction of packets to
be dropped. If we assume such events happen with non-negligible probability, we can
adapt the proof of Theorem 4.2 to show that cryptography is necessary at intermediate
nodes for statistical security. As a corollary, if Eve can control congestion at links she does
not occupy, then we need cryptography at every intermediate node. Our FL protocols
remain secure even under the strongest such definition, where the failure rate on a link
not occupied by Eve can exceed β.

10In concurrent work, Wong et al. [29] propose a statistical FL scheme where no cryptography is performed
during an interval. Instead, they precompute shared secrets that are appended to packets over the course of an
interval and are used guarantee security. The secrets must refreshed periodically, which requires cryptographic
participation by the intermediate nodes. This contrasts with the impractical scheme we describe here, which truly
never requires any intermediate node to perform crypto.
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2. We can take this issue outside of our model. If we say that it is reasonable that Eve
cannot move during the security game, and that the failure rate cannot exceed β on a
link that Eve does not control, then, as we showed above, there exist protocols where
the intermediate nodes do not use complexity-based cryptography. However, we must be
cognizant that in the real world there can be multiple adversaries that we would like to
localize correctly, or the adversary may be able to move from one link to another. If
protocols that do not use cryptography at intermediate nodes are to remain secure after
Eve moves (and learns the key of previous nodes she occupied), then the keys at each node
should be refreshed periodically. This key refresh process would require each intermediate
node to use cryptography.

5 Open problems

We gave lower bounds on the key-management and cryptographic overhead of secure FL proto-
cols. While our statistical FL protocol based on sketching requires fairly small storage overhead,
the interesting problem of bounding the storage requirements in an FL protocol is still open.
Furthermore, our results here only apply to FL on single symmetric paths between a single
sender-receiver pair. An interesting question would be to consider FL for asymmetric paths,
where the packets Bob sends back to Alice may take a different path than the packets that
Alice sends to Bob. Another direction is to consider FL in networks where packets can travel
simultaneously on multiple paths, as in the SMT framework [10]. Recently, Amir et al. [2] pre-
sented a protocol for this setting, that optimizes for low communication overhead. Designing
such protocols that optimize for low storage and computational overhead remains an interesting
open question.
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A Vulnerabilities of Other FL Protocols

We sketch why the protocols of [27,5, 3] do not satisfy our security definition.
An On-demand Secure Routing Protocol Resilient to Byzantine Failures [5]: Awer-
buch, Holmer, Nita-Rotaru and Rubens present a statistical FL protocol in which Alice and Bob
run a secure failure detection protocol, where Bob sends out authenticated acks for each packet
he receives. Once the number of detected faulty exchanges exceeds some threshold, say β, then
Alice appends a encrypted list of “probed nodes” to each new packet that she sends out. If a
node is included in the list of probed nodes, it is expected to send Alice an ack when it receives
the packet containing the list. The acks are (basically) formed as in our “onion reports”. To
localize failures, Alice chooses probed nodes according to a binary search algorithm, until she
localizes a single link.

Now, consider an adversary Eve that sits at Ri and, for every sent packet where Ri is not
included in the list of probed nodes, Eve happily causes failures. Eve stops causing failures
whenever Ri is included in the list of probed nodes. Alice will never be able to localize such an
Eve to a single link; as long as Eve behaves herself when she is part of the list of probed nodes,
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Alice has no way to find her. Our protocols avoid this problem by running their “detection
phases” and “localization phases” on the same set of packets.

Furthermore, care must be taken in implementing this protocol in the presence of both
adversarial behaviour and benign congestion. To see why, suppose that Eve causes the protocol
to enter the localization phase. In [5], the binary search algorithm proceeds by one step each
time failures are detected. It is important to ensure that normal congestion (on a link that is
not adjacent to Eve) cannot cause the binary search algorithm to search for Eve in the wrong
part of the path. To do this, the binary search algorithm should proceed by one step only when
the failure rate exceeds some carefully chosen false alarm threshold (related to loss rate caused
by normal congestion and the length of the portion of path that is currently being searched).
Packet Obituaries [3]: Argyraki, Maniatis, Cheriton, and Shenker propose an FL protocol
that is similar to our Optimistic Protocol of Section 3.1. Each node locally stores digests of
the packets they see, and at the end of some time interval, nodes send out reports to Alice
that contain these packet digests. Alice then uses the information from these reports to localize
failures on the path. The designers of this protocol focused on the benign setting, but mentioned
that reports should also be individually authenticated. However, because these reports are not
formed in a onion manner (as in our Optimistic Protocol) an adversarial node can implicate a
innocent downstream node by selectively dropping the innocent node’s reports.
Secure Traceroute [27]: At a very high level, Padmanabhan and Simon’s FL protocol
uses an approach that is very similar to that of [5]; Alice runs a failure detection protocol
with Bob until she detects that more than a β fraction of her packets have been dropped.
Then, on subsequent (new) sent packets, Alice will run a failure localization protocol, where the
intermediate nodes are required to send out acks that are used to localize failures. However, this
protocol is vulnerable to the same adversary as [5]’s protocol: an Eve that causes failures when
Alice runs failure detection, and then behaves herself once Alice turns on failure localization. The
other issue with this protocol is that acks are individually authenticated, rather than onionized
in the localization phase.

B A Composition Technique for Statistical FL

We prove Lemma 3.3, Lemma 3.4, Lemma 3.6 and Lemma 3.8.

B.1 Proof of Lemma 3.3

Lemma B.1 (Restatement of Lemma 3.3). As long as T = O( K2

p(β−α)2
ln K

δ ), then the estimators
in the composition of SSS satisfy: for each i /∈ E where E is the set of nodes corrupted by Eve
it holds (up to negligible error) that

Pr
[∣∣∣Vi − 1

T (Di + p′

p Ci)
∣∣∣ > 1

4γ
]
< δ

4(K+1)

where γ = β−α
2(K+1) , Vi is Ri’s estimate of the failure rate between i and K + 1, Di is the number

of data packets dropped between Ri and RK+1, and Ci is the number of acks (destined for any
node) dropped between Ri and RK+1.

Proof. Consider the random variable V ′i which is generated as Vi is generated in SSS, except that
now we assume that instead using a pseudorandom function fk1 to decide if a packet is a probe,
as in equation (1), Alice and Bob instead use shared, truly random function φi. Now consider
the statistical FL protocol composed of K instances of this “truly random version of SSS”. In
this statistical FL protocol, it follows that regardless of how Eve (or congestion) behaves,

• Every packet that Eve (or congestion) drops is a probe for each Ri with probability p
independent of Eve’s actions and each other Rj for j 6= i.
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• Every ack that Eve (or congestion) drops or tampers with is a probe for each Ri with
probability p′ independent of Eve’s actions and each other Rj for j 6= i. As we argued in the
proof of Theorem 3.2, this is because acks intended for different nodes are indistinguishable
(since they are all identically onion MAC’d, and they all originate at Bob), and since
the acks are onion MAC’d, Eve cannot selectively tamper with the ack intended for an
upstream node.

We will show now that this means V ′i is the average of many independent random variables. Let
SDi , SCi ⊆ [T ] denote the set of exchanges that are data-faulty and ack-faulty, respectively for
node Ri (we can order the exchanges in an arbitrary way), and notice that SDi ∩ SCi = ∅ since
an exchange cannot be both data- and ack-faulty. We now define the random variables Xt for
t ∈ [T ]. For t /∈ SDi ∪ SCi , the variable Xt is identically 0. Otherwise, Xt is defined as follows:

For t ∈ SDi , Xt =

{
1 w.p. p
0 w.p. 1− p

For t ∈ SCi , Xt =

{
1 w.p. p′

0 w.p. 1− p′

We claim that V ′i = 1
pT

∑T
t=1Xt because each data packet is unique and sampled exchanges are

chosen using a truly random function, each exchange will be sampled by Ri with independent
probability p. Thus each data-faulty exchange in SDi was sampled by Ri with probability p,
while each ack-faulty exchange in SCi was sampled by Ri with probability p′ (because here we
need to condition on the fact that at least one node sampled the ack-faulty exchange (so that
Bob generates an ack for that exchange!)). Thus, it follows that E[V ′i ] = 1

T (Di + p′

p Ci). We now
have

Pr[|V ′i −
1
T

(Di +
p′

p
Ci)| > γ] = Pr[|pV ′i −

1
T

(pDi + p′Ci)| > pγ]

= Pr[
1
T
|
∑
t

Xt − (pDi + p′Ci)| > pγ]

= Pr[| 1
T

∑
t

Xt − µ| >
pγ

µ
µ] (9)

where we let µ = 1
T (pDi + p′Ci). At this point, it would be nice if we could say that µ = O(p),

which would allow us to derive the conclusion, but a priori we can only assume that µ = O(p′).
Instead, in the rest of this proof we shall carefully show that the probability that Ci > 2 p

p′T

is at most δ
8(K+1) , and conditioned on Ci ≤ 2 p

p′T then we also have that the probability that

| 1T
∑

tXt − µ| > pγ is bounded by δ
8(K+1) , which gives us an overall bound of δ

4(K+1) .
We start by letting Y denote the number of exchanges in the game that require acks for any

Ri. Notice that E[Y ] = p
p′T and that Ci ≤ Y unconditionally, simply because one can’t tamper

with an ack if it was never sent. Now we split the probability in Equation (9) as follows:

Pr[| 1
T

∑
t

Xt − µ| >
pγ

µ
µ] ≤ Pr[| 1

T

∑
t

Xt − µ| >
pγ

µ
µ and Ci > 2

p

p′
T ]

+ Pr[| 1
T

∑
t

Xt − µ| >
pγ

µ
µ and Ci ≤ 2

p

p′
T ]

≤ Pr[Ci > 2
p

p′
T ] + Pr[| 1

T

∑
t

Xt − µ| >
pγ

µ
µ | Ci ≤ 2

p

p′
T ]

≤ Pr[Y > 2
p

p′
T ] + Pr[| 1

T

∑
t

Xt − µ| >
pγ

µ
µ | Ci ≤ 2

p

p′
T ] (10)
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Now by a Chernoff bound the first probability is much less than δ
8(K+1) for our choice of

T = O( 1
γ2p

ln K
δ ), since Y is the sum of independent p

p′ -biased random variables.
The second probability can now be bounded by a Chernoff bound. Notice that while the

definition of the distribution of the Xt depends on Ci, the actual randomness of the Xt is
independent of Ci. This gives us that the second probability is bounded by

Pr[| 1
T

∑
t

Xt − µ| >
pγ

µ
µ | Ci ≤ 2

p

p′
T ] ≤ 2−Ω( p

2γ2

µ
T ) (11)

In the above, we are interested in the event | 1T
∑

tXt − µ| > pγ
µ µ conditioned on Ci ≤ 2 p

p′T , so
that we can bound

µ =
1
T

(pDi + p′Ci) ≤
1
T

(pDi + 2pT ) ≤ 3p

Plugging this into Inequality (11) and recalling from the statement of Theorem 3.2 that we set
T = O( 1

pγ2 ln(K/δ)), we get

Pr[| 1
T

∑
t

Xt − µ| >
pγ

µ
µ | Ci ≤ 2pT ] ≤ 2−Ω(pγ2T ) ≤ δ

8(K + 1)

Combining this with the previous bound on Pr[Y > 2 p
p′T ] gives us that Inequality (10) becomes

Pr[|V ′i −
1
T

(Di +
1
p
Ci)| > γ] ≤ δ

4(K + 1)

To complete the proof of the lemma, it suffices to observe that if replacing a truly random
function φ with a PRF alters the probability by more than Kεprf , then we can efficiently dis-
tinguish between φ and the PRF f with advantage εprf by using the distinguisher that simply
simulates this entire game, using access to an oracle containing either φ or f to answer calls to
the PRF from the scheme, and then outputting 1 iff the condition |Vi − 1

T (Di + p′

p Ci)| ≤
1
2γ is

violated.11

B.2 Proof of Lemma 3.4

Lemma B.2 (Restatement of Lemma 3.4). As long as T = O( K2

p(β−α)2
ln K

δ ), for each i, i+1 /∈ E
where E is the set of nodes corrupted by Eve it holds (up to negligible error) that

Pr
[
p′

p
Ci−Ci+1

T > γ
2

]
< δ

2(K+1)

where γ = β−α
2(K+1) and where Ci is the number of acks (destined for any node) dropped between

Ri and RK+1.

Proof of Lemma 3.4. Fix Ci+1. Let M ≤ T be the number of exchanges in the interval for which
a data packet reaches Bob, and a corresponding ack packet returns to Ri+1. Since Ri is honest,
Ci+1 − Ci will just be the number of acks that are dropped due to congestion on link (i, i+ 1),
which occurs with probability ρ. Let Xi be a ρ-biased {0, 1} variable.

Let U = γ
2 (1− (1− p)K)T . We can derive:

Pr[p
′

p
Ci−Ci+1

T > γ
2 ] = Pr[Ci − Ci+1 > U ]

≤ Pr

 M∑
j=1

Xi > U

 = Pr

 1
M

M∑
j=1

Xi − ρ > ( U
ρM − 1)ρ


≤ 2−Ω(ρ(

U
ρM )2M) = 2−Ω(U2/(ρM))

11This distinguisher in fact requires access to K oracles, either all computing either a truly random function or
all computing a PRF. Then we can turn this into a distinguisher for a single oracle using the hybrid argument,
which is why we lose a factor of K in the distinguishing advantage. See e.g., [14] for details about this kind of
argument.
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Because we have γ = β−α
2K � ρ, this implies that

U
ρM ≥

γ
2 (1− (1− p)K)

ρ
= Ω(1)

so Pr[Ci−Ci+1 > U ] ≤ 2−Ω(U) = 2−
γ
2 (1−(1−p)N )T . Substituting our value of T gives us that this

is bounded by less than δ/(2(K + 1)).

B.3 Proof of Lemma 3.6

Lemma B.3 (Restatement of Lemma 3.6). Let Γ = T
K+1

β(2α+β)
α+2β and εi = 1

2i
β−α
2β+α . For every

i ∈ [K], assume that Ri computes an estimate Vi that (εi, δi)-estimates ‖xi‖pp. Suppose also that
‖xi‖pp ≤

βi
K+1 . Then with probability at least 1− 2δ′ it follows that:

1. If “link (i, i+ 1) is good” so that ‖xi+1‖pp − ‖xi‖
p
p
≤ α

K+1T then Vi+1 − Vi ≤ Γ.

2. If “link (i, i+ 1) is bad” so that ‖xi+1‖pp − ‖xi‖
p
p
≥ β

K+1T then Vi+1 − Vi ≥ Γ.

Proof. We prove each case separately.
Link (i, i + 1) is good. Since Vi (εi, δi)-approximates ‖xi‖pp , we can apply (4) to find, that
with probability 1− 2δ′,

Vi+1 − Vi ≤ (1 + εi+1)‖xi+1‖pp + (1− εi)‖xi‖pp
≤ (1 + εi+1)(‖xi+1‖pp − ‖xi‖

p
p
) + (εi+1 + εi)‖xi‖pp

≤ (1 + εi+1) α
K+1T + (εi+1 + εi) iβ

K+1T

= α
K+1T

(
1 + εi+1(1 + β

α i) + εii
β
α

)
≤ α

K+1T
(

1 + (i+ 1)εi+1(1 + β
α) + iεi(1 + β

α)
)

= T
K+1

β(2α+β)
α+2β = Γ (12)

where we get the required inequality by putting εi = 1
2i

β−α
2β+α .

Link (i, i+ 1) is bad. Again, we apply (4) to find, that with probability 1− 2δ′,

Vi+1 − Vi ≥ (1− εi+1)(‖xi+1‖pp − ‖xi‖
p
p
)− (εi+1 + εi)‖xi‖pp

≥ (1− εi+1) β
K+1T − (εi+1 + εi) iβ

K+1T

= T
K+1

β(2α+β)
α+2β = Γ (13)

where we again get the required inequality by putting εi = 1
2i

β−α
2β+α .

B.4 Proof of Lemma 3.8

Our proof of Lemma 3.8 relies on the assumption that Eve occupies less than
√
K links on the

path.
To better understand why we made this assumption, suppose Eve occupies a large number

of links on the path, and let node Re be node occupied by Eve. Suppose Eve adds a small
number ≤ β

K+1 of nonsense packets to each link she occupies that is upstream of node Re. If the
number of added packets at each link is small, then there is a probability greater than δ that
Alice will not raise alarm for these links. Next, at node Re, Eve drops all the packets she added
before, and additionally causes γ-fraction of failures. As such, we have that Ve will be large
(proportional to the number of nonsense packets added downstream), and Ve+1 will be large as
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well (proportional to the γT failures at Re). It follows that there is a probability greater than δ
that Ve+1−Ve will be small enough for Alice not to alarm, and so security fails. To rule out this
attack, we limit the number of nodes occupied by Eve; this forces Eve to add a larger number of
nonsense packets to the links upstream of Re and increases the probability that Alice will raise
an alarm for one of these links.

However, our proof only uses a simple averaging argument to claim that if Eve occupies M
links, there must be a single link where γT ≥ β

M T , and uses this to arrive at the fact that Eve
can only occupy M ≤

√
K links on the path. However, we have not used the fact that Eve must

cause a total of βT failures at all the links she occupies; we conjecture that using this fact could
allow us to arrive at a weaker bound on M . We leave this to future work.

Lemma B.4 (Restatement of Lemma 3.8). If Eve occupies M ≤
√

(K + 1)(1− ρ
βK

2) links and

causes a β-fraction of failures in the interval, then there must be a link (i, i+ 1) that is adjacent
to Eve with

‖xi+1‖pp − ‖xi‖
p
p
≥ β

K+1T

Proof of Lemma 3.8. Since Eve occupies M links causes at least a β-fraction failures, it imme-
diately follows that there exists a link (i, i + 1) adjacent to Eve where at least β

M -fraction of
failures, i.e., Di+1 −Di ≥ β

M . Now if the following holds

‖xi+1‖pp − ‖xi‖
p
p
> β

K+1T (14)

we are done, since link (i, i + 1) is adjacent to Eve. Thus, suppose (14) do not hold. Then,
applying identity (6), we have that

β
K+1T ≥ ‖xi+1‖pp − ‖xi‖

p
p

= Di+1 −Di + ‖ai+1‖pp − ‖ai‖
p
p

rearranging and then using that fact that Di+1 −Di ≥ β
M we get

‖ai‖pp ≥= βT ( 1
M −

1
K+1) (15)

Next, consider the next link (j, j+1) that is occupied by Eve and is upstream of link (i, i+1).
Now again, if the following holds

‖xj+1‖pp − ‖xj‖
p
p
> β

K+1T (16)

then we are done, since link (j, j + 1) is adjacent to Eve. So, we again suppose (16) does
not hold. Since Eve does not occupy any links between Rj+1 and Ri, and only congestion-
related loss could have occurred on the links between Rj+1 and Ri. It follows that ‖xj+1‖pp ≥
‖xi‖pp + ρ(i − j − 1). Since (16) does not hold, we can apply identity (6) and the fact that
‖xj+1‖pp ≥ ‖xi‖

p
p

+ ρ(i− j − 1) ≥ ‖ai‖pp + ρ(i− j − 1) and the bound on ‖ai‖pp in (15) to get

‖xj‖pp > βT
(

1
M −

2
K+1 −

ρ
β (i− j − 1)

)
(17)

We continue this argument for all m ≤ M − 1 links that are adjacent to Eve and upstream
of link (i, i+ 1). Finally, arriving at the last such link, which we call link (e, e+ 1), we have

‖xe+1‖pp > βT
(

1
M −

m
K+1 −

ρ
β (i− e− 1)

)
> βT

(
1
M −

M−1
K+1 −

ρ
βK
)

(18)
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where the last inequality follows by putting m ≤M − 1 and i− e ≤ K. Now since by definition
Eve does not occupy any links downstream of link (e, e+1), we immediately have that ‖xe‖pp = 0.
It follows that link (e, e+ 1) has

‖xe+1‖pp − ‖xe‖
p
p
> βT ( 1

M −
M−1
K+1 −

ρ
βK) > β

K+1 (19)

where the last inequality follows because we put M ≤
√

(K + 1)(1− ρ
βK

2). This concludes the

proof of this lemma, since link (e, e+ 1) is adjacent to Eve.

C Lower Bounds

After introducing some notation and technical lemmata, we prove Lemma 4.4 and Lemma 4.5.

C.1 Technical Lemmata

Notation. For two random variables, X,Y , we denote their concatenation with either (X,Y )
or with XY .
Statistical distance. Recall that we define the statistical distance between two random
variables X,Y as ∆(X,Y ) = 1

2

∑
x∈U |Pr[X = x] − Pr[Y = x]| where U is the union of the

supports of X and Y (for more background on statistical distance, see e.g., [14]).

Lemma C.1. For any random variables X,Y, Z,X ′ satisfying X = ηY+(1−η)Z and ∆(X,X ′) ≤ ε,
there exists random variables Y ′, Z ′ and η′ ∈ [η ± ε] such that X ′ = η′Y ′ + (1 − η′)Z ′ and
∆(Y, Y ′) ≤ 3ε

2η .

Proof. Define a randomized process F acting on the support of X, where for each x ∈ supp(X),
F (x) = 1 with probability p(x) = ηPr[Y=x]

Pr[X=x] and F (x) = 0 with probability 1 − p(x), and say
F (x) = 0 for all x /∈ supp(X). We can check that

Pr[F (X) = 1] = E[F (X)] =
∑

x∈supp(X)

Pr[X = x]ηPr[Y=x]
Pr[X=x] =

∑
x∈supp(X)

ηPr[Y = x] = η

and similarly F (X) = 0 with probability 1−η. Furthermore, we claim that Y = (X | F (X) = 1)
since for every x,

Pr[X = x | F (X) = 1] = Pr[F (X)=1∧X=x]
Pr[F (X)=1] = Pr[F (x)=1] Pr[X=x]

η = ηPr[Y=x]
Pr[X=x]

Pr[X=x]
η Pr[Y = x]

and similarly Z = (X | F (X) = 0).
Since ∆(X,X ′) ≤ ε, this means that Pr[F (X ′) = 1] = η′ for η′ ∈ [η ± ε], and also

∆((F (X), X), (F (X ′), X ′)) ≤ ε. Define Y ′ = (X ′ | F (X ′) = 1) and Z ′ = (X ′ | F (X ′) = 0). We
may derive:

ε ≥ ∆((F (X), X), (F (X ′), X ′))
= ∆(η(1, Y ) + (1− η)(0, Z), η′(1, Y ′) + (1− η′)(0, Z ′))

Viewing the random variables as the characteristic vectors of their distributions, and using the
`1 formulation of statistical distance, we have:

= 1
2‖η(1, Y ) + (1− η)(0, Z)− η′(1, Y ′)− (1− η′)(0, Z ′)‖1
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Since coordinates of the form (1, Y ) are disjoint from coordinates of the form (0, Z), we have
the equality:

= 1
2‖η(1, Y )− η′(1, Y ′)‖1 + 1

2‖(1− η)(0, Z)− (1− η′)(0, Z ′)‖1
≥ 1

2‖η(1, Y )− η′(1, Y ′)‖1
= 1

2‖ηY − η
′Y ′ − (η′ − η)‖1

≥ 1
2η‖Y − Y

′‖1 − 1
2 |η
′ − η|

≥ η∆(Y, Y ′)− ε/2

which, rearranged, gives us that ∆(Y, Y ′) ≤ 3ε
2η .

Lemma C.2. Let X,Y,X ′, Y ′ be such that ∆(XY,X ′Y ′) ≤ ε. Say that x ∈ supp(X) ∩ supp(X ′)
is δ-bad if ∆(Y (x), Y ′(x)) > δ, where Y (x) denotes the conditional distribution Y | X = x
and Y ′(x) denotes Y ′ | X ′ = x. Then Pr[X is δ-bad] ≤ 2ε/δ.

Proof. Our proof is by contradiction. Suppose Pr[X is δ-bad] > 2ε/δ. Then, use the triangle
inequality to obtain:

∆(XY,X ′Y ′) ≥ ∆(XY,XY ′(X))−∆(XY ′(X), X ′Y ′)

where the random variable Y (X ′) denotes Y (x) = y | x ←R X
′. By hypothesis, we know that

∆(X,X ′) ≤ ε so we have

≥ ∆(XY,XY ′(X))− ε
= ∆(Y, Y ′(X))− ε
≥ Pr[X is δ-bad]∆(Y | Xbad, Y ′(X) | Xbad)− ε

and since the statistical distance between Y (x) and Y ′(x) when x is δ-bad is at least δ, we have

> (2ε/δ) · δ − ε ≥ ε

which contradicts the hypothesis that ∆(X,X ′) ≤ ε.

Lemma C.3. Let X,Y,X ′, Y ′ be random variables where ∆(X,X ′) ≤ ε1. We say that
x ∈ supp(X) ∩ supp(X ′) is ε2-bad if ∆(Y (x), Y ′(x)) ≥ ε2, and suppose Pr[X ε2-bad] ≤ ε3.
Then ∆(XY,X ′Y ′)) ≤ ε1 + ε2 + ε3.

Proof. This follows from the triangle inequality:

∆(XY,X ′Y ′) ≤ ∆(XY,XY ′(X)) + ∆(XY ′(X), X ′Y ′)
≤ ∆(Y, Y ′(X)) + ∆(X,X ′)
≤ ∆(Y, Y ′(X)) + ε1

≤ Pr[X ε2-bad] ·∆(Y | X bad, Y ′(X) | X bad)
+ (1− Pr[X ε2-bad]) ·∆(Y | X not bad, Y ′(X) | X not bad) + ε1

≤ ε3 · 1 + (1− 0) · ε2 + ε1
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C.2 Proof of Lemma 4.4

First a word about random oracles, which we treat as a function RO : {0, 1}∗ → {0, 1}. We look
at the RO using the “lazy evaluation” methodology: points in RO are not fixed until they have
been queried. When an efficient algorithm executes with a random oracle, it can make only an
efficient number of queries. This means that RO can be viewed as a polynomially long string
representing the responses to the algorithm, rather than as an infinitely large function, and
replacing RO by a different string RO′ (of equal length) amounts to replacing the real random
oracle with a “fake random oracle”. Thus, in the following, when we say that an oracle outputs
a fake random oracle consistent with the output h of an algorithm A, we mean it outputs a
string RO′ ∈ {0, 1}poly(n) such that running A with the responses encoded in RO′ generates h.
Learning Algorithm. We apply Naor and Rothblum’s [26] learning algorithm for adaptively
changing distributions (ACD). The ACD we work with is defined as a pair (Init, D) of random
processes, where Init is a key generation process that takes a uniform string s and generates
secrets −→aux = Init(s), and D is a process that takes the initial state −→aux and a history Hi−1 and
uses them to generate a sample τi of an exchange. The history Hi−1 consists of tuples (rj , τj)
for all j ≤ i− 1, where rj was the random string used to generate the transcript τj . Notice that
the τj are the outputs of the ACD, while the initial state s and the rj remain secret.

Theorem C.4 (Naor and Rothblum [26]). There exists a PSPACE algorithm that, for any ACD
(Init, D), observes at most t = O(n/ε4) samples from D and generates with probability > 1 − ε
a fake secret state −→aux′ and fake history H ′t such that simulating D with −→aux′, H ′t generates a
sample tau′t+1 that is distributed ε-statistically close to an honest sample generated by D using
−→aux, Ht.

Lemma C.5 (Lemma 4.4 restated). Relative to a (PSPACE,RO)-oracle, there exists an efficient
algorithm that observes at most t = O( n

ε4
) honest exchanges τj = 〈Ri−1, Ri〉j and then, with

probability > 1− ε, outputs algorithms R′0, . . . , R
′
K+1 such that a fake exchange 〈R′i−1, R

′
i〉t+1 is

distributed ε-close to an honest exchange 〈Ri−1, Ri〉t+1.

Proof of Lemma 4.4. Apply Theorem C.4 where the Init function is our key generation function,
and D is the algorithm that simulates the interaction of all algorithms R0, . . . , RK+1 given a
uniformly random data packet to be sent, including simulating all the congestion along links
between the nodes, and outputs the transcript along link (i − 1, i). To generate the transcript
of the i’th exchange, D takes input −→aux, Hi−1,ROi, ri where ROi are responses to new queries to
the random oracle that D makes in generating the transcript, ri is the fresh internal randomness
used to generate the i + 1’th transcript, and Hi−1 = (τj ,ROj , rj)j≤i−1 is a history of previous
transcripts, responses of the random oracle, and internal randomness. Notice that because D
simulates all the nodes, there is no distinction between how the learning algorithm treats ROi

and ri.
After observing t = O(n/ε4) exchanges, using the learning algorithm of Theorem C.4, we

get with probability > 1− ε fake secrets −→aux′, H ′t consistent with the transcripts and such that
generating the t+ 1’th transcript using the fake secrets is ε to generating the t+ 1’th transcript
using the honest secrets. Set R′i to be Ri but with the secrets in −→aux′, H ′t hardwired into the
algorithm.

Efficiency is clear because we allow a PSPACE oracle and because the number of samples is
O(n/ε4).

C.3 Proof of Lemma 4.5

Lemma C.6 (Lemma 4.5 restated). Suppose that ∆(〈A,B〉, 〈A′, B′〉) ≤ ε, and there exist events
E1, . . . , Er over the internal randomness of A,B such that (1) ∀j, conditioned on Ej, the first j
messages from B to A are independent of A’s internal randomness, and (2) Pr[Ej | Ej−1] ≥ ρ.
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Set ε = (ρ/10)4r, Then there exist η ≥ (ρ/2)r, and distributions over the transcripts Y,Z such
that 〈A,B′〉 is a convex combination ηY + (1− η)Z and

∆((Y, viewA(Y )), (〈A,B〉, viewA(〈A,B〉) | Er)) ≤ 1/100

Proof. We define σi = 〈A,B〉i, the first i messages in the partial transcript of 〈A,B〉. Notice
that σi is a random variable so it makes sense to condition σi on the event Ei. Similarly define
σ′i = 〈A′, B′〉i and σalt

i = 〈A,B′〉i. We will decompose A,B,A′, B′ into next-message functions
Ai, Bi, A

′
i, B

′
i for 1 ≤ i ≤ r, where we assume that each party takes turns communicating, and 2r

is the maximum number of rounds of communication. Recall from the statement of the lemma
that we think of applying the i’th next message function B′i(τ) to a partial transcript τ of 2i−1
messages as sampling from (〈A′, B′〉2i | 〈A′, B′〉2i−1 = τ).

Recall that viewA(τ) is the distribution of the internal randomness of A conditioned on
outputting the transcript τ .

Now, we define the conditional view condviewA(τ) to be a uniformly sampled view of all the
possible shared and independent internal randomness for A that causes A to output its messages
in τ , such that the shared randomness is consistent with B output its messages in τ . Intuitively,
we think of condviewA(τ) and randomness for A sampled under the assumption that parties
A,B that created τ correctly shared their randomness.

Define alternating view altviewA(τ) to be a uniformly sampled view of the all possible shared
and independent internal randomness for A that causes A to output its messages in τ , even
if the shared randomness would not result in B outputting its messages in τ . We can think of
altviewA(τ) and randomness for A sampled under the assumption that B and A use independent
randomness, i.e., that party B incorrectly shares its randomness with A.

Notice that when the parties that created τ are independent, the condview and altview are
the same. Otherwise, the support of the condview is a subset of the support of the altview. As
such, we can list some properties of condview, altview, view. Before we begin, recall that A,B
share randomness, but B′ impersonates to A, the randomness that B′ is supposed to share with
A is independent of A’s randomness.

1. condviewA(〈A,B〉) = viewA(〈A,B〉) because in this case both parties are correctly sharing
randomness.

2. altviewA(〈A,B′〉) = viewA(〈A,B′〉) because when B′ is impersonating to A, B′ is not
correctly sharing randomness with A. Thus the view of A is independent of the randomness
of B′.

3. condviewA(〈A,B′〉) 6= viewA(〈A,B′〉) because condviewA assumes that A,B′ correctly share
randomness, but when B′ impersonates to A this is not the case.

4. altviewA(〈A,B′〉2i) = altviewA(〈A,B′〉2i−1) since B′ computes the 2i’th message, this does
not affect A’s altview since altviewA is independent of the randomness used by B′.

5. Conditioned on Ei, condviewA(〈A,B〉2i) = condviewA(〈A,B〉2i−1) because Ei tells us that
the 2i’th message (computed by B) is independent of A’s randomness. It follows that the
2i’th message will not affect A’s condview.

6. Conditioned on Ei, condviewA(〈A,B〉2i) = altviewA(〈A,B〉2i) and condviewA(〈A,B〉2i+1) =
altviewA(〈A,B〉2i+1). This follows because messages 2, 4, ..., 2i are computed by B and
messages 1, 3, ..., 2i + 1 are computed by A, and Ei tells us that all the messages from B
to A are independent of A’s randomness.

The proof of this Lemma 4.5 rests on the following claim, which will prove by induction:
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Claim C.7. Assuming ε = (ρ/10)4r, for each i, 0 ≤ i ≤ r, there exist ηi ≥ ρ/2 and random
variables Yi, Zi such that

σalt
2i =

i∏
j=1

ηjYi + (1−
i∏

j=1

ηj)Zi

and, for δi =
√
ε(10/ρ)i,

∆((σ2i, condviewA(σ2i) | Ei), (Yi, altviewA(Yi))) ≤ δi

Apply this claim for the case of σ2r = 〈A,B〉 and σalt
2r = 〈A,B′〉 to obtain Y = Yr and

η =
∏r
j= η ≥ (ρ/2)r. This implies that we have the decomposition σalt

2r = ηY +(1−η)Z Next,
we argued above (in the first item) that condviewA(σ2r) = viewA(σ2r). We argued above (in the
second item) that altviewA(σalt

2r ) = viewA(σalt
2r ), and the decomposition of σalt

2r = ηY + (1 − η)Z
then gives that that altviewA(Y ) = viewA(Y ). Finally, we can apply the claim to obtain that

∆((Y, viewA(Y )), (σ2r, viewA(σ2r) | Er)) ≤
√
ε(10/ρ)r

which proves the lemma since
√
ε(10/ρ)r = (ρ/10)r ≤ 100.

We now prove Claim C.7.

Proof of Claim C.7. Our proof is by induction. The base case i = 0 is trivial. The inductive
hypothesis for i− 1 is as follows: There exists ηi−1 ≥ ρ/2, δi =

√
ε(10/ρ)i and random variables

Yi−1, Zi−1 such that

∆((σ2i−2, condviewA(σ2i−2) | Ei−1), (Yi−1, altviewA(Yi−1)) ≤ δi−1 (20)

and

σalt
2i−2 =

i−1∏
j=1

ηjYi−1 + (1−
i−1∏
j=1

ηj)Zi−1 (21)

Our claim will follow if we show that this is also the case for i.

We are ready to start proving the inductive step. First, we apply Ai to both terms in
Inequality 20 and update the view to get (because this process is identical in both cases):

∆((σ2i−1, condviewA(σ2i−1) | Ei−1), (ζ2i−1, altviewA(ζ2i−1))) ≤ δi−1 (22)

where for compactness we have set ζ2i−1 = Yi−1Ai(Yi−1, altviewA(Yi−1)).
Applying Lemma C.2. Suppose that 〈A,B〉, 〈A′, B′〉 that are statistically close, and consider
a partial transcript σ2i−1 generated by A,B. Informally, we would like to show that it is
extremely unlikely that the next message functions of B applied to σ2i−1 generates a transcript
that is statistically far from the transcript generated by the next-message function of B′ applied
σ2i−1. Formally, we do this by applying Lemma C.2, with

X = (σ2i−1, condviewA(σ2i−1)), Y = Bi(σ2i−1, condviewA(σ2i−1))
X ′ = (σ′2i−1, condviewA(σ′2i−1)), Y ′ = B′i(σ

′
2i−1)

Notice that that (σ2i, condviewA(σ2i)) = XY and (σ′2i, condviewA(σ′2i)) = X ′Y ′, and we have ∀i,

∆(XY,X ′Y ′) = ∆((σ2i, condviewA(σ2i)), (σ′2i, condviewA(σ′2i))) ≤ ∆(σ2i, σ
′
2i) ≤ ∆(〈A,B〉, 〈A′, B′〉) ≤ ε

where the last inequality follows from the hypothesis in Lemma 4.5. Next, we say that a fixed
transcript and view x = (τ2i−1, condviewA(τ2i−1)) is 2

√
ε-bad if

∆(Y (x), Y ′(x)) = ∆(Bi(τ2i−1, condviewA(τ2i−1)), B′i(τ2i−1)) > 2
√
ε
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We can now apply Lemma C.2 to find that the probability that (σ2i−1, condviewA(σ2i−1)) is
2
√
ε-bad is at most 2ε

2
√
ε

=
√
ε. Before we move on, also observe that by the hypothesis in

Lemma 4.5 we know that Pr[Ei−1] = ρi−1 so that

Pr[(σ2i−1, condviewA(σ2i−1)) is 2
√
ε bad | Ei−1] ≤

√
ε/ρi−1 (23)

Applying Lemma C.3. Informally, we want to argue that, if (σ2i−1 | Ei−1) and ζ2i−1

along with their views are statistically close (Inequality 22), and if (σ2i−1 | Ei−1) is rarely bad
(Inequality 23) it follows that transcripts (σ2i | Ei−1) and ζ2i along with their views are also
statistically close. We will do this using Lemma C.3, setting

X = (σ2i−1, condviewA(σ2i−1) | Ei−1), Y = Bi(σ2i−1, condviewA(σ2i−1)) | Ei−1

X ′ = (ζ2i−1, altviewA(ζ2i−1)), Y ′ = B′i(ζ2i−1)

Notice that Inequality 22 tells us that ∆(X,X ′) ≤ δi−1. Furthermore, we have that

XY = (σ2i, condviewA(σ2i−1) | Ei−1)

and setting ζ2i = ζ2i−1B
′
i(ζ2i−1) we have that

X ′Y ′ = (ζ2i, altviewA(ζ2i−1))

Furthermore, from Inequality 23 it follows that x = (σ2i−1, condviewA(σ2i−1) | Ei−1) is 2
√
ε-

bad (i.e., ∆(Y (x), Y ′(x)) ≥ 2
√
ε) with probability at most

√
ε/ρi−1. Thus, we can apply Lemma

C.3 to obtain

∆(XY,X ′Y ′) = ∆((σ2i, condviewA(σ2i−1) | Ei−1), (ζ2i, altviewA(ζ2i−1))) ≤ δi−1 + 2
√
ε+
√
ε/ρi−1

Before moving on, notice that this immediately implies that

∆((σ2i | Ei−1), ζ2i) ≤ δi−1 + 2
√
ε+
√
ε/ρi−1 .= γ (24)

Applying Lemma C.1: So far, we have been conditioning on Ei−1. We now condition on
Ei. We want to say that because (σ2i | Ei−1) and ζ2i are close, and because (Ei | Ei−1) happens
often, we can decompose ζ2i so that part of it is close to (σ2i | Ei).

We shall do this using Lemma C.1. Set X = (σ2i | Ei−1) and let Y = X | Ei while
Z = X | ¬Ei. By hypothesis in Lemma 4.5 the conditional event (Ei | Ei−1) occurs with
probability ρ, so that (σ2i | Ei−1) = X = ρY + (1 − ρ)Z. From Inequality 24 we know that
∆(X, ζ2i) = γ. We can now apply Lemma C.1 to find that there exist ηi ∈ [ρ± γ] and random
variables Yi, Zi such that

ζ2i = ηiYi + (1− ηi)Zi (25)

and
∆((σ2i | Ei), Yi) ≤ 3γ

2ηi
(26)

Setting δi−1 =
√
ε(10/ρ)i−1 and assuming ε = (ρ/10)4r, since ni ≥ ρ− γ implies that ηi ≥ ρ/2,

and Inequality 26 is bounded by δi =
√
ε(10/ρ)i. Applying altviewA to both terms in Inequality

26 we get

∆((σ2i, altviewA(σ2i) | Ei), (Yi, altviewA(Yi))) ≤
√
ε(10/ρ)i

and then applying the fact that condviewA(σ2i) = altviewA(σ2i) conditioned on Ei, we get

∆((σ2i, condviewA(σ2i) | Ei), (Yi, altviewA(Yi))) ≤
√
ε(10/ρ)i (27)
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which proves the first equation in our induction step (corresponding to Inequality 20).
Finally, we finish by proving the part of our induction step corresponding to Equation 21.

We can derive

σalt
2i = σalt

2i−2Ai−1(σalt
2i−2)B′i−1(σalt

2i−2Ai−1(σalt
2i−2))

and using Equation 21, we get

=
i−1∏
j=1

ηjYi−1Ai−1(Yi−1)B′i−1(Yi−1Ai−1(Yi−1)) + (1−
i−1∏
j=1

ηj) . . .

=
i−1∏
j=1

ηjζ2i + (1−
i−1∏
j=1

ηj) . . .

now we apply Equation 25 to get

=
i∏

j=1

ηjYi +
i−1∏
j=1

ηj(1− ηi)Zi + (1−
i−1∏
j=1

ηj) . . .

=
i∏

j=1

ηjYi + (1−
i∏

j=1

ηj)Wi (28)

where we used “. . .” to represent the rest of the convex combination of the Yj , Zj ’s which
we finally collected in a new variable Wi

12. Recalling that ηi ≥ ρ/2 for all i, we have that∏i
j=1 ηj ≥ (ρ/2)i = 1/poly(n).

Thus, combining Inequality 27 with Equation 28 completes the proof of our induction step.

12We can do this because Zi is from the decomposition of ζ2i while Wi corresponds to the decomposition of
σalt

2i .
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