
Stretching NSEC3 to the Limit:
Efficient Zone Enumeration Attacks on NSEC3 Variants

Sharon Goldberg∗, Moni Naor†, Dimitrios Papadopoulos∗

Leonid Reyzin∗, Sachin Vasant∗, Asaf Ziv†

February 8, 2015

Abstract

We present efficient zone enumeration attacks against variants of DNSSEC with
NSEC3 that do not use online signing.

1 Introduction

Recently, in a paper proposing NSEC5, a denial of existence mechanism for DNSSEC [3],
we also proved that security against (1) network attackers that tamper with DNS messages
and (2) privacy against zone enumeration cannot be satisfied simultaneously, unless the
DNSSEC nameserver performs online public-key cryptographic operations for each denial-
of-existence response it sends. This explains why NSEC3 with precomputed responses is
vulnerable to zone enumeration; indeed, zone enumeration attacks have been demonstrated
by Bernstein [2] and Wander et al. [6]. More importantly, our results in [3] show that any
hash-based denial of existence scheme that provides integrity against network attackers will
still be vulnerable to zone enumeration.

Nevertheless, one might still be tempted to attempt to modify NSEC3 using only hash-
based techniques, in order to make zone enumeration more difficult. We emphasize that our
proof in [3] shows that schemes that do not use online signing will still be vulnerable to zone
enumeration.1 However, in this report we will demonstrate efficient zone enumeration attacks

∗Boston University, Department of Computer Science. Email:
{goldbe,dipapado,reyzin,sachinv}@cs.bu.edu. Research supported in part by the US National
Science Foundation under grants 1017907, 1347525, 1012798, and 1012910 and by a gift from Verisign Labs.
†Weizmann Institute of Science, Department of Computer Science and Applied Mathematics.

Email:{moni.naor,asaf.ziv}@weizmann.ac.il. Incumbent of the Judith Kleeman Professorial Chair. Re-
search supported in part by grants from the Israel Science Foundation , BSF and IMOS and from the I-CORE
Program of the Planning and Budgeting Committee and the Israel Science Foundation.

1Note that “NSEC3 White Lies” does use online signing, and thus is NOT vulnerable to zone enumeration.
However, with NSEC3 White Lies, each nameserver must hold the zone-signing key for the zone, and a
compromise of the nameserver completely compromises the integrity of the zone. Meanwhile, NSEC5 also

1



against two schemes that have been proposed to us, as alternatives to “vanilla” NSEC3. We
start by recalling vanilla NSEC3, and then describe its two variants.

Vanilla NSEC3. With NSEC3, each domain name present in a zone is cryptographically
hashed, and then all the hash values are lexicographically ordered. Every consecutive pair
of hashes is an NSEC3 record, and is signed by the authority for the zone. To prove the
non-existence of a name, the nameserver returns the precomputed NSEC3 record (and the
associated DNSSEC signatures) for the pair of hashes lexicographically before and after the
hash of the non-existent name.

NSEC3 with dummy records. We add dummy hash values to the NSEC3 chain, to
force an attacker to spend additional effort to enumerate the original zone, as follows:

1. Take all names in the zone and hash them to obtain a list of R hashed names; Λ =
{h1, h2 . . . hR}.

2. Pick m random numbers r1, . . . , rm and append them to Λ.

3. Lexicographically sort Λ.

4. Sign every adjacent pair in the list; each pair is an NSEC3 record.

Subsequently, queries are answered in the same way as with NSEC3, with the server re-
sponding with the unique “covering” NSEC3 record for the queried name. Note that, some
of the records have dummy random numbers (for one or both of their boundaries), rather
than actual names as in vanilla NSEC3.

Noisy NSEC3. This approach can be seen as a modification of the NSEC3 with dummy
records scheme, where each hash value of an existing name is “perturbed” by a small amount
of noise. The scheme is parameterized by an integer b, the “noise amplitude” or upper-bound
on the bit-length of the noise. Typically, we bound b by the size of the output of the hash
algorithm. So, for SHA-256, we have 0 ≤ b ≤ 256.

1. Take all names in the zone and hash them to obtain the list of R hashed names. Let
the list be Λ = {h1, h2, . . . hR}.

2. For each hashed name hi, choose two random b-bit numbers ai and ci and compute the
two ”noisy hash” values hi + ai and hi − ci . Add these noisy hash values to Λ.

3. Sort Λ lexicographically.

4. Sign every adjacent pair in the list; each pair is an NSEC3 record.

Queries are again handled in the exact same manner as before. The final list is of size 3R.

Overview of this report. Our goal is to show efficient zone enumeration attacks against
NSEC3 with dummy records and against Noisy NSEC3. We start in Section 2.1 by presenting
the classic zone enumeration attack used by Bernstein [2] and Wander et al. [6], and discussing

uses online signing, but a compromise of the nameserver does not harm integrity, because signatures are
computed using the the NSEC5KEY, rather than the zone-signing key. If the NSEC5KEY is leaked, then
zone enumeration is possible but violations of integrity are not (just like with NSEC3).

2



the efficiency of the attack. We then propose our own modified version of this attack in
Section 2.2, that will be useful for the zone enumeration attacks attacks against the NSEC3
variants. In Sections 3 and 4 we discuss the modified versions of NSEC3, together with
efficient attacks against both of them. We conclude in Section 5 with a discussion of our
findings and a comparison with NSEC5.

2 Zone enumeration attacks

We start by describing the classic zone enumeration attack used on vanilla NSEC3, as well
as our own modified zone enumeration attack that will be useful later when we attack the
variants of NSEC3.

2.1 The classic zone enumeration attack

The classic zone enumeration attack has two phases: online and offline. In the online phase,
the attacker first collects the entire NSEC3 chain, all the hashes of all the names in the zone;
this was first proposed by Bernstein [2] and implemented in the nsec3walker mechanism. In
the offline phase, the attacker “reverses” all the hashes it collects; typically, the offline
phase is a dictionary attack, but other approaches can also be used. Recently, Wander et
al. [6] performed this classic zone enumeration attack against the .com zone; their offline
phase involved building a dictionary using combinations of words frequently used for naming
Internet resources and common multi-grams of 1 to 15 characters (including numerals).
Wander et al. [6] also tried also brute-force guessing and Markov chains to invert hash
values, their results clearly indicate the very limited effectiveness of these attacks, when
compared to the the dictionary attack. As such, we shall concentrate on offline dictionary
attacks in this report.

More formally, the classic attack is as follows:

Online phase : Retrieve all NSEC3 records (h, h′) from the zone.

1. Initiate an empty list of NSEC3 records L

2. Generate a candidate domain name x

3. If h(x) is not covered by any record of L, issue DNS query for x and insert the received
NSEC3 record to L

4. If the NSEC3 chain is not complete, go to step 1

Offline phase : Compute the hash of all names in the dictionary D and identify the
matching values from the received NSEC3 records.

1. Initiate an empty list of domain names N

2. For each value x ∈ D:

(a) Compute h(x)

3



(b) For each record (h, h′) ∈ L: if h(x) = h or h(x) = h′, then add x to N

3. Return N

At the end of the above process, N will hold the attacker’s view of the zone; all names
in N are in the zone, unless a collision for the hash function has been found. If the zone has
size R and the dictionary D contains aR names from the zone for 0 ≤ a ≤ 1, then |N | = aR.

Remark on attack formulation. Here we set the terminating condition for the online
phase to be the completion of the NSEC3 chain, i.e., retrieving all the NSEC3 records in
the zone. In practice, however, as more NSEC3 records are retrieved, “hitting” the last few
NSEC3 records will become much harder. Hence, a relaxed terminating condition may be
used, where the attacker has an estimate R′ of the actual size R of the zone and stops after
that many records have been retrieved.

Attack efficiency. We will measure the efficiency of the attack in terms of two very
important quantities: the number of DNS queries in the online phase, and the total number
of hash computations.

Online DNS queries. There will always be exactly R online queries, since a query is
generated only if it yields a new NSEC3 record2, and the attack terminates when all records
are collected.

Offline hash computations. Hash computations will occur during both the online and
offline phases. During the online phase, the process of randomly generating values and
hashing them to hit NSEC3 records, can be approximated (if we assume the hash function is
a random oracle) by the well-studied coupon collector’s problem [5] which yields an expected
number of R ·HR random values, where Hi is the i-th harmonic number.3 Asymptotically,
this process takes O(R logR) hash guesses. During the offline phase, there is one hash
computation per value in the zone, which brings the expected total number of queries to
R ·HR + |D|.
Efficiency in practice. How fast is this zone-enumeration attack in practice? In
particular we are interested in the time to do a hash computation. Given the computational
capabilities of modern GPU processors, the authors of [6] computed 2.5 billion hashes for
names in approximately 200 seconds, using SHA-1 with 140 iterations on a standard desktop
with an AMD HD 7970 GPU.

For the online phase, the average number of trials to generate a domain name that falls
within a the bounds of a particular NSEC3 record is inversely proportional to the “size” of
the NSEC3 record, i.e., |h−h′| where h and h′ are the hash values in the NSEC3 records. If
a record covers 10% of the domain-space, then one may obtain a conforming domain-name
in an average of 10 trials. Note that, the expected NSEC3 record size with SHA-265 will
be 2256/R. In particular, guessing a name that yields a new NSEC3 record took on average
2059 hashing attempts (and approximately less than 1ms) in [6].

2Unless one of the generated random names happens to be also in the zone, in which case the DNS
response is a positive one; this can happen with negligible probability in practice.

3In this analysis, we assume that if we have R NSEC3 records in the zone, then each of the NSEC3
records is of equal “size”, where the size of an NSEC3 record with hash values h, h′ is |h− h′|. In fact, the
expected value of the size of the NSEC3 records will be equal, but not the values themselves. We will be
using this expected value analysis throughout this report, for simplicity of presentation.

4



In the offline phase, the work is dominated by computing the hash of each value in
the dictionary, with the salt value and the number of iterations specified by the zone’s
configuration4. Afterwards, the success of the attack (i.e., the overall number of correctly
enumerated names) depends on the “quality” of the dictionary. In [6], the authors put
together their dictionary, using popular website statistic trackers, and managed to match
approximately 62% of the retrieved hashed names, after only 14 hours of computation.

This attack is clearly very successful, under any reasonable metric. It required a com-
modity desktop with a GPU of moderate cost (approx. $400) and a little more than 1 day
to successfully retrieve more than 62% of the names in the .com zone5.

2.2 A dictionary-based zone-enumeration attack

Here we present a modification of the classic zone enumeration attack that achieves the same
success rate, but will be more efficient for the modified NSEC3 schemes we will discuss next.

In this attack, we will not collect the entire NSEC3 chain of all the NSEC3 records in
the zone. Why not? To see why, suppose that the process for “reversing” hashes is entirely
based on a dictionary attack, as suggested by the results of Wander et. al [6]. It follows
that if a name x is not in the dictionary, then retrieving the NSEC3 record that has h(x) as
a (upper or lower) bound is of no help to the adversary. Thus, in our modified attack, the
attacker will not bother obtaining the NSEC3 records for hashes of names that are not in
his dictionary. Instead, the attacker will collect as many distinct NSEC3 records as possible
using only names from the dictionary D, as follows:

1. Initiate an empty list of NSEC3 records L and an empty list of domain names N

2. For each value x ∈ D:

(a) Compute h(x)

(b) If h(x) is not contained in any record of L, issue DNS query for x

i. If the response is negative, add the received NSEC3 record to L
ii. Else add x to N

(c) For each record (h, h′) ∈ L: if h(x) = h or h(x) = h′, then add x to N if it is not
already present in N

3. Return N

The attack achieves the same success rate as the classic attack, i.e., it successfully re-
trieves aR records from the zone if D contains aR names from the zone for 0 ≤ a ≤ 1.

To see why this is the case, observe that if a name x is in the zone then it is not covered
by any NSEC3 record, and it appears as a bound of exactly two NSEC3 records. Therefore,
if x appears also in D, there are two cases: either it will trigger a new DNS query with

4The .com TLD employs only one hash iteration and no salt value, as of December 2014.
5The entire attack also included guessing hash pre-images with two other techniques, brute-force guessing

and Markov attacks, that took an additional 3-4 days but only yielded an additional 2% of names, for a total
of 64% in under 5 days.

5



positive response and therefore it will be added to N (step 2.(a).ii above), or it will be
the bound of an NSEC3 record collected as part of negative response (step 2.(a).i above)
and later identified and added to N (step 2.(c) above). These two cases are not necessarily
non-overlapping –e.g., x may be both retrieved with a positive response and as the bound of
an NSEC3 record of a negative response– but at least one of them must occut, hence either
way, if x is also in D it will eventually end up in N .

Efficiency. We again measure the number of DNS queries and the number of hash
computations required.

Online DNS queries. Oserve that an NSEC3 record (h, h′) will be retrieved only if there
exists x ∈ D with h < x < h′. In the best case for the attacker, this will be true for all
R NSEC3 records in zone, hence at most R queries. However, because we are going with a
dictionary-based attack, the following “bad event” could occur: if a name x ∈ D is queried,
the response will yield a positive response instead of an NSEC3 record, and afterwards, a
different name x′ ∈ D would be queried such that the NSEC3 record retrieved has h(x) as its
bound. Observe that in the above example, the bad event only happens if x is queried before
x′. In the worst case this bad event would happen for all the aR names in the dictionary that
also exist in the zone. Therefore, summing up the DNS queries with negative and positive
answers, the total upper bound is R + aR = (a + 1)R ≤ 2R DNS queries. For comparison,
the previous attack took exactly R queries. Hence, with this attack there is a small increase
on the upper bound of necessary DNS queries.

Offline hash computations. The number of hash computations is exactly |D|. Recall that
the previous attack required an expected number of R ·HR + |D| hash computations, which
implies a significant improvement in offline computation with our modified attack.

3 NSEC3 with dummy records

As described in Section 1, NSEC3 with dummy records involves adding m dummy hash
values to the NSEC3 chain, thus forcing the attacker has to expend additional effort to
collect all the NSEC3 records and enumerate the zone.

3.1 The dictionary-based attack on NSEC3 with dummy records.

The attack of Section 2.2 can be successfully applied to this scheme, and its success and
efficiency is analyzed below. For simplicity of presentation we assume that there are no
names in the dictionary D whose hash collides with one of the dummy values r1, . . . , rm. This
is a reasonable assumption since these collisions can only happen with negligible probability
in practice because (assuming SHA-256 is used for hashing) these ri are chosen at random
from {0, 1}256 and the size of the dictionary |D| is much smaller. (In [6] there were less than
244 names in the dictionary.)

First, observe that aR names from the zone are successfully retrieved. This follows
directly from our analysis of the attack in Section 2.2. Regarding efficiency, we measure the
number of DNS queries and hash computations.

Online DNS queries. There are a total of R +m NSEC3 records, where m is the number
of dummy values and R is the size of the zone. As such, the online-phase of the dictionary-

6



based attack requires some additional DNS queries compared to that against vanilla NSEC3.
The number of queries with negative quries (i.e., those that retrieve NSEC3 records) will
be at most R + m, since each query will retrieve a previously unseen record and, at best,
all of them will be collected. By our analysis in Section 2.2, there can also be at most aR
additional queries with positive answers. It follows that the total number of online DNS
queries is at most R +m+ aR = (a+ 1)R +m ≤ 2R +m.

Offline hash computation. Because of the structure of the attack, the number of hashes is
always fixed to |D|, i.e., one hash per value in the dictionary.

The small increase in the number of DNS queries performed by the attacker is only
natural; the nameserver effectively increases the zone size, hence there are more records to
collect. For example, if the number of dummy records is m = (K − 2)R, the attack will
require at most 2R + (K − 2)R = K · R DNS queries. Observe that the attack on vanilla
NSEC3 took at most 2R queries. Here, the nameserver had to do roughly K times more
work during setup (and pay corresponding storage) to make the attack only K/2 times more
costly for the attacker.

3.2 The classic attack on NSEC3 with dummy records.

Alternatively, if the attacker wishes to collect all the NSEC3 records in the zone, it can
launch the classic attack from Section 2.1. From the analysis of the coupon-collector problem,
the expected number of hash computations is (R + m)HR+m + |D|. The number of DNS
queries will always be R + m, i.e., one for each NSEC3 record in the zone. If, for example,
m = (K − 1)R then the NSEC3 chain length is K · R, and the attack will take K · R DNS
queries and O(K · R log(K · R) + |D|) computations. Overall, we have the same trade-off,
with the nameserver doing roughly K times more work and the attack becoming less than
K times costlier.

4 Noisy NSEC3

An alternative way to make zone enumeration harder is to add parametrized noise to existing
NSEC3 records. This approach can be seen as a modification of the previous scheme, where
each hash value of an existing name is “perturbed” by a small amount of noise (instead of
introducing fresh random hash values). The scheme is, described in Section 1, is parameter-
ized by a integer b, where b is the “noise amplitude” or upper-bound on the bit-length of the
noise. Typically, we bound b by the size of the output of the hash algorithm; for SHA-256,
we have 0 ≤ b ≤ 256.

Before we attack Noisy NSEC3, we must clarify that simply adding noise to the hashed
names is not secure. To see why, assume that q0, q1 are two names in the zone with corre-
sponding hashes h0, h1 in a plain NSEC3 scheme, that are consecutive after sorting. Then
one might produce a perturbed version of the NSEC3 chain by adding random noises a0, a1
resulting in a list containing the NSEC3 record: (h0 + a0, h1 + a1) that is consequently
signed with signature σ0. One might imagine ‘noising’ every NSEC3 record in this manner,
in order to make zone enumeration more difficult for the adversary. However, this is not
secure. An adversarial nameserver, or one that is compromised, can produce the response

7



[(h0 + a0, h1 + a1), σ0] as proof for the non-existence of the queried name q1; the resolver will
correctly validate the signature σ0 and the answer as h0 + a0 < h(q1) < h1 + a1 and falsely
conclude that the name q1 is not in the zone.

Therefore, Noisy NSEC3 must introduce additional hash values around the existing hash
values in the NSEC3 chain. Since we want the additional hash values to not cover existing
hashed names (due to the security compromise discussed above), the hashes of the original
names must also be appear in the NSEC3 chain. Noisy NSEC3 achieves this by both adding
and subtracting some small noise to each hashed name to compute additional hash values,
and then proceeds with normal NSEC3 setup, as described in Section 1.

The high-level idea behind Noisy NSEC3 is that, if the noise amplitude b is relatively
small, it will be hard for the attacker to hit one of the two NSEC3 records (one above and
one below) that contain the hash of an existing name.6 While this NSEC3 variant originally
suggested with small noise amplitude b in mind, we evaluate attacks for all possible with
noise lengths, e.g., for b ∈ [0, 256] when SHA-256 is used for hashing.

Next we evaluate our attack when performed against NSEC3. In Appendix A we present
a more complicated and less efficient attack that aims at collecting the entire NSEC3 chain.

4.1 The dictionary-based attack on Noisy NSEC3

Our dictionary-based attack is again very successful on Noisy NSEC3. In fact, the analysis
is the same as for the case of NSEC3 with dummy records and all aR names from the zone
that appear in D will be retrieved.

The hash computations are once again exactly |D|, i.e., , one hash per name in the
dictionary. Regarding the necessary number of DNS queries, the same argument as with
NSEC3 with dummy records applies. There exist 3R NSEC3 records, and at most all of
them may be collected, each with a fresh query. Therefore there will at most 3R queries
with negative responses. On top of that, up to aR additional queries are required, for cases
where a query is answered positively (i.e., , it returns a name from the zone but not an
NSEC3 record), for a total upper bound of 3R + aR ≤ 4R DNS queries.

5 Discussion

In this technical report, we presented two modified versions of NSEC3 that attempt to
make zone enumeration harder by introducing randomized record values. We also, presented
a modified version of the attack technique of [2] and [6], that makes use of the existing
dictionary (already assumed by the above attacks) during the NSEC3 record collection phase,
and drastically reduces the number of necessary hash computations.

As demonstrated by our analysis, our attack is very efficient against both presented
schemes and achieves the same level of success, i.e., it successfully retrieves the same number

6Another way to think about this NSEC3 modification, is that it behaves in a similar manner as NSEC3
white lies (introduced in [4]) but the noise is introduced around the hashes of the existing names (as opposed
to the hash of the queried name), and without online record creation and signing; all ad-hoc boundaries are
pre-computed and pre-signed.

8



of names from the zone. The only trade-off is that it does not retrieve the entire NSEC3
zone, but only those names that are matched in the dictionary.

Using our attack, we also showed that both schemes can make zone enumeration attacks
costlier for the attacker by only a linear factor, while at the same time imposing the same
additional cost to the nameserver. At a high level, honest nameservers have to pay K times
more cost for zone signing and record storing in order to make the attack less than K times
harder for the attacker. This is a poor security-efficiency trade-off, made even worse by the
following practical observation. Doubling the zone size (via either scheme) would cause the
attacker to perform an attack against a zone of twice as large. Naively, this means that the
attack takes twice as long. In practice however, the attack can be launched in the same
amount of time, by simply using two GPU’s for hashing instead of one.

Of course, the trade-off entails costs of a different nature: the honest parties perform
more hash operations once (during setup) and then simply store additional records, while
the attacker needs to increase his computational cost. A similar effect for the nameserver can
be achieved by more trivial techniques, e.g., by multiplying the number of iterations for hash
computations by K, or by maintaining K separate copies of the NSEC3 chain, each using a
different salt value. However, this linear trade-off is a stark contradiction to the exponential
trade-off that occurs in cryptographic schemes, e.g., when the length of cryptographic keys
increases. In the latter situation, increasing the cost for honest parties only slightly (e.g., by
increasing the key-length by one bit), doubles the expected necessary computational effort
for the attacker.

The fact that neither of these schemes truly addresses the problem of zone enumeration
comes as no surprise. In our paper [3] we prove that any DNSSEC scheme that wishes
to simultaneously achieve security against attackers that may tamper with DNS messages
(including secondary nameservers) and privacy against zone enumeration, cannot be based
on pre-computed signatures and hashing alone; it must entail online public-key cryptographic
operations.

Compared to these schemes, NSEC5 makes zone enumeration exponentially harder (guess-
ing whether a name is in the zone, without explicitly issuing a DNS query for it, is approxi-
mately as hard as forging an RSA signature) by introducing only a constant multiplicative
overhead for the nameservers. As explained in more detail in our paper [3], this additional
cost comes from replacing the iterated hash computation in NSEC3 by a single RSA opera-
tion.

Acknowledgements

We thank Justin Cappos, Paul Hoffman, Samuel Weiler and various attendees of IETF90,
IETF91 and the DNS OARC Fall 2014 workshop for raising the questions discussed in this
technical report.

References

[1] Petra Berenbrink and Thomas Sauerwald. The weighted coupon collector’s problem and
applications. In Computing and Combinatorics, 15th Annual International Conference,

9



COCOON 2009, Niagara Falls, NY, USA, July 13-15, 2009, Proceedings, pages 449–458,
2009.

[2] Daniel J. Bernstein. Nsec3 walker. http://dnscurve.org/nsec3walker.html, 2011.

[3] Sharon Goldberg, Moni Naor, Dimitrios Papadopoulos, Leonid Reyzin, Sachin Vasant,
and Asaf Ziv. NSEC5: Provably Preventing DNSSEC Zone Enumeration. IACR Cryp-
tology ePrint Archive, 2014:582, 2014.

[4] Dan Kaminsky. Phreebird. http://dankaminsky.com/phreebird/, 2011.

[5] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algo-
rithms and Probabilistic Analysis. Cambridge University Press, New York, NY, USA,
2005.

[6] Matthäus Wander, Lorenz Schwittmann, Christopher Boelmann, and Torben Weis. GPU-
Based NSEC3 Hash Breaking. In Network Computing and Applications (NCA), 2014
IEEE 13th International Symposium on, pages 137–144, Aug 2014.

A Recovering all NSEC3 records against Noisy NSEC3

We already presented a very efficient attack against NSEC3 that retrieves all names from
the zone that also appear in D.

If the attacker is hellbent on recovering all the NSEC3 records in the zone, then Noisy
NSEC3 can indeed make its life more difficult7. Nevertheless, for completeness, we consider
now an attack whose goal is to collect the entire NSEC3 chain. Noisy NSEC3 does indeed
make the collection of the entire NSEC3 chain more difficult, but still possible.

Intuitively, if b is small, it will be hard to come up with a random hash pre-image that hits
a record of the form hi + ai or hi− ci; however, we shall show a new attack that successfully
retrieves all hashed names from the zone when b is small.

The attack is based on this observation: If b is sufficiently large, then the list Λ produced
during setup will simply look like NSEC3 with the dummy records, for which we already
showed an efficient attack.

It remains to show what happens when b is small. In this case we distinguish two types
of records: large NSEC3 records, of the form (h0 + a0, h1 − c1) and small NSEC3 records, of
the form (h0, h0 + a0) or (h0− c0, h0). Then, hitting the “useful” small records (that contain
hashes of names as bounds) will indeed be hard. However, the crucial observation is that in
this case hitting the large ones will be easy, and that is what our attack utilizes.

This attack is parameterized by a threshold value between 0 and 256 (intuitively for
values below the threshold, the noise is perceived as small) that and proceeds as follows:

1. If b > threshold perform the attack of Section 2.1. Else proceed as follows:

7However, as we argued above in Section 2.2, there may not be much sense in this sort of attack, since
if a name x is not in the dictionary, then retrieving the NSEC3 record that has h(x) as a (upper or lower)
bound is of no help to the adversary, unless he dedicates resources to inverting h(x).

10

http://dnscurve.org/nsec3walker.html
http://dankaminsky.com/phreebird/


2. First online phase.

(a) Initiate an empty list of NSEC3 records L.

(b) Generate a candidate domain name x.

(c) If h(x) is not covered by any record of L, issue DNS query for x and insert the
received NSEC3 record to L.

(d) If your have not collected all the large records, go to Step (b)

3. First offline phase.

(a) For each name x ∈ D, compute hash h(x)

(b) Sort the records in L and let (hi, h
′
i) be the i-th record after the sorting.

(c) Initiate R empty lists L1, . . . ,LR.

(d) For each name x ∈ D, if h′i ≤ h(x) ≤ hi+1 add d to Li.
(e) Initiate an empty list of names N .

4. Second online phase.

(a) Initiate an empty list of NSEC3 records L′.
(b) For i = 1, . . . , R choose at random a name x from Li, issue corresponding DNS

query and append the received NSEC3 record to L′ if the response is negative. If
the response is positive, insert x to N .

5. Second offline phase.

(a) For i = 1, . . . , R compare the hashed values of names in Li with the hash value
of the i-th entry of L′. If a name matches, insert it to N .

6. Return N .

By following the online phase of the attack from Section 2.1, the attacker can retrieve
all the large records without much additional effort and the first online phase terminates
when this happens. Then, the attacker ignores all those names from D that are covered by
the retrieved records (for security purposes these cannot correspond to existing names, as
discussed above). All the values that remain in the dictionary are candidate names. The
attacker proceeds to group the dictionary values in buckets based on which “gap” between
the collected NSEC3 records that the dictionary values fall into. Assuming all large records
have been retrieved in the online phase, each such gap contains one name that is in the zone.
To retrieve the name in the “gap”, the attacker performs an additional online phase where he
asks one DNS query per “gap” using a randomly-chosen name for the part of his dictionary
that corresponds to that gap. The response can either be positive (if the attacker happened
to choose the correct name), or it will contain an NSEC3 that will contain the hash of the
name that it in the zone as its upper or lower bound. Finally, in a second offline phase, the
attacker performs a pass over each bucket to identify which value matches the one in the

11



response; this process looks like the offline phase of the classic attack from Section 2.1 but
with many tiny dictionaries (one for each “gap”) instead of a single large dictionary.

We stress that the idea of small and large records is only used to facilitate the analysis of
the attack. In practice, if b is significantly large, it is quite possible to have records that are
of neither type. To better understand this, assume a noise value ai is such that ai > hi+1−hi.
The produced records (in order) will be (hi− ci+1, hi+1); (hi+1, hi + ai); (hi + ai, hi+1 + ai+1).
We call this (and other similar cases) an overlap and to simplify the analysis we will assume,
when appropriate, that overlaps do not occur.

Efficiency and success of the attack. Somewhat surprisingly, our analysis will show
that, although Noisy NSEC3 was suggested with small noise values in mind, it performs
better for some intermediate values of b. That is, its performance depends on how the
threshold is chosen.

What the threshold value corresponds to is the attacker’s confidence that he can retrieve
all records by simply generating names at random. If the noise b is below the threshold,
then the attacker believes that the “small records” are too difficult to collect. If the noise
is above the threshold, then the attacker believes collection of the full NSEC3 chain is easy.
Therefore the choice of threshold is crucial for the efficiency of the attack. In what follows,
we analyze how this choice of threshold should be done.

In order to appropriately choose the threshold level, we define value C, that will help us
partition the noise levels. It is defined as

C =

2R∑
1

size of small record

size of large record
=

2R · 2b−1

2u/R− 2b
=

2b+r

2u−r − 2b

where r = logR, and 2u is the range of the hash function, i.e., u = 256 if SHA-256 is used.
C is a measure of the relative size of the introduced records around the hash of a name,

and a record between two noisy values. For small values of b, C � 1, and C grows as b
increases. We will examine what happens if we set the threshold according to various values
of C and the corresponding values of noise amplitude b, by analyzing the attacks that can
be efficiently launched in each case.

We distinguish the following cases for C:

C ≤ 1 This case captures small values of b. It corresponds to scenarios where the sum of
the length of all small records is at most as large as the length of one large record.
From the above, this can be written as:

2b+r + 2b ≤ 2u−r ⇔ 2b ≤ 2u−r/(2r + 1) < 2u−r/2r ⇔ b < u− 2r

Let us now analyze the efficiency of our attack for values of b < u− 2r. As usual, we
will measure the number of necessary hash computations and DNS queries.

Hash computations. We model the process of random name generation with a
modified coupon-collector’s problem with R + 1 records. The first R coupons are the
“large records” and the last one corresponds to all of the “small records”. That is,
whenever the hash of a randomly generated name falls within a small record (which

12



will happen rarely for these values of b) we suppose that the attack collected only a
single coupon. Observe that since that are a total of 3R NSEC3 records, collecting a
“small record” cannot not cause the number of DNS queries to exceed 3R. By standard
analysis, collecting all coupons (including the R large record) will take (R + 1)HR+1

hash computations. |D| additional hash computations are performed for the dictionary
values, hence asymptotically the total number of hash computations is O(R logR+|D|),
i.e., the same order of hashes as with vanilla NSEC3.

Online DNS queries. During the first online phase at most 3R queries may be issued
and during the second phase at most R additional queries can be made. However,
observe that the upper bound of 3R+R = 4R corresponds to a very naive attack that
ignores small records retrieved during the first online phase. In practice however, these
records contain the actual target information (i.e., hashed zone names) therefore for
every such record retrieved, no additional query during the second phase is necessary.
This gives a final upper bound of 3R queries (same as vanilla-NSEC3 for a zone of size
3R).

Success of the attack. The attack successfully retrieves aR zone names if the dictionary
D contains aR names from the zone. If name y appears both in the zone and the
dictionary, and falls inside one of the “gaps” then are there are two cases during the
second online phase: either x = y, or the returned NSEC3 record has h(x) as upper
or lower bound. In both cases, at the end of the attack, it holds that x ∈ N . Observe
that y cannot fall outside all gaps, as this means that there would exist an NSEC3
record that covers it, which would be a security breach.

From the above analysis, for values of b < u − 2r the attack presented here is very
efficient in practice. Next we turn our attention to large threshold values.

C ≥ 2R This case captures values of b that are large enough to make the collection of all
records feasible. For C = 2R the expected size of a small record is the same as that
of a large record. At this noise level, the role of parameterized noise is redundant;
it produces the same effect as introducing dummy values into the NSEC3 chain, per
Section 3. For C ≥ 2R we have:

2b+r ≥ 2u+1 − 2b+r+1 ⇔ 3 · 2b+r ≥ 2u+1 ⇔ log 3 + b+ r ≥ u+ 1⇔ b ≥ u− r

From our modeling of the attack as a coupon collector’s problem, it follows that the
expected number of hash computations is 3R·H3R+|D|, i.e., as many as those necessary
against vanilla-NSEC3 for a zone of 3R records. Also, the necessary number of DNS
queries is at most (3 + a)R ≤ 4R, in order to retrieve aR zone names that appear also
in D.

It follows that for b = u− r, or any value above that8, collecting all the hashed names
is a viable and efficient option for the adversary.

8Intuitively, small records, i.e., the ones that contain the actual hashed names with Noisy NSEC3, become
larger than the truly noisy ones, hence easier to hit.

13



1 < C < 2R We saw that for values of b below u − 2r or above u − r, we have efficient
attacks. This leaves the problem of how to handle intermediate noise levels. This
noise amplitude can be characterized as b = u − r − j for j = 1, . . . , r, i.e., there
are r possible noise levels. At this noise amplitude, the “small records” are small but
not small enough that the probability of hitting them is negligible. For example, for
b = u− r − 1 each introduced noisy record, has an expected size of half the expected
size of a large record. That is, in expectation hitting a small record is twice as hard
as hitting a large record. More generally, if j = δ, then the expected size of a small
record is 2δ times smaller than that of a large one.

One viable attack would be to proceed for full NSEC3 chain record collection, i.e., to
set the threshold for C = 2R.

Record collection in this case can be modeled with a weighted coupon collector’s prob-
lem. As shown in [1], a good approximation (within a sub-logarithmic factor) of the
number of necessary trials to collect n coupons is

∑n
i=1 1/(i · pi), where p1 ≤ . . . ≤ pn

are the different probabilities in increasing order (pi corresponds to the i-the coupon).
Let pl be the probability to hit a large record with a random guess, and likewise ps
for small ones. The above formula in our case yields for the expected number of hash
computations (on top of the mandatory |D| hashes for dictionary names):

2R∑
i=1

1/ips +
3R∑

i=2R+1

1/ipl = (1/ps)H2R + (1/pl)(H3R −H2R)

As a sanity check, observe that when pl = ps = 1/(3R) the above formula gives 3R·H3R,
as expected. If pl/ps = 2δ (i.e., j = δ), substituting above we get:

(1/ps)H2R + (1/(2δps))(H3R −H2R) = 2u−b+1H2R + 2−δ2u−b+1(H3R −H2R)

= 2δ(2R ·H2R) + 2R(H3R −H2R)

= 2R(2δ ·H2R +H3R −H2R)

≈ 2R(2δ ·H2R + ln(3R)− ln (2R))

= 2R(2δ ·H2R + ln 3− ln 2)

< 2R(2δ ·H2R + 1) < 2R(2δ ·H2R +H2R)

≤ (2δ + 1)(2R ·H2R)

< (2δ + 1)(3R ·H3R) < 2δ(3R ·H3R)

Recall that 3R · H3R is the expected number of hash computations to collect all the
NSEC3 zones from a zone of size 3R employing vanilla NSEC3. At a high level, this
implies that proceeding for full record-collection in a scenario where small records are,
e.g., K times smaller than the large ones in expectation, takes less than K times more
hash computations for the attacker. We already have an efficient attack for the case
where K > 2R (that is, C > 1 in our previous analysis above). Hence, in the worst
case this attack would require less than R times hash computations, than the attack
against vanilla-NSEC3 for a zone of size 3R. On the other hand, the number of online
DNS queries is again upper-bound by 3R.

14



An alternative attack for these intermediate noise values would be to run the attack
collecting the large records (in other words, to set the threshold for C = 1). It follows
easily that the total number of the DNS queries for such an attack is again upper
bounded by 4R, as in our analysis for C ≤ 1. The expected number of necessary
hash computations can again be estimated by a modification of the coupon collector’s
problem (similar to the one we made for our analysis for C ≤ 1). Observe that within
these noise levels, the total expected size of small records is upper bounded by twice
that of the total expected size of the large ones (which occurs for C = 2R). Hence,
the collection of large records can be modeled by a game with 3R records of the same
size (R of which are the large ones and 2R the others). It follows that the expected
number of hash computations is only 3R · H3R + |D|. Finally, if all large records are
retrieved, it follows that aR names will be retrieved from the zone.

This attack is much more efficient than the previous one. This should come as no sur-
prise as it is a strictly weaker attack that only retrieves R of the 3R records. However,
measuring the exact effectiveness of this attack is rather complicated. For these noise
levels, where the sizes of small and large records are comparable, it is not clear whether
large and small records are distinguishable, or even whether R large records exist. This
happens because of the possible existence of overlaps (which will realistically occur at
these noise levels).

A very rough estimation on the effectiveness of the attack can be made as follows. If
the expected size of small records is, e.g., 8 times smaller than that of the large ones,
overlaps of noisy values with hashed names should occur in expectation while 1/8 of
the noisy values is introduced. Since an overlap can occur either from “above” or from
“below” (i.e., , due to ai or ci), roughly 1/4 of the time a record will contain an overlap.
That is, in expectation 75% of the names will be retrieved correctly at the end of the
attack.

Of course, this is a very heavy-handed approximation; it would be very informative
to implement this attack against Noisy NSEC3, in order to see how it performs in
practice.

The above concludes our analysis for this attack against Noisy NSEC3 and highlights the
importance of setting the threshold value appropriately. To provide some concrete numbers
for the relation of noise amplitude, zone size and threshold, let us consider the case of
SHA-256 for the hash function of choice, and let the zone under attack be the .com TLD.

It follows that u = 256 and r = 18, hence for noise values b < u − 2r = 220, collecting
the R large records is easy, from our analysis for the first case above. On the other hand,
for noise values around b = u− r = 238 collecting all 3R records is easy, as per our analysis
for the second case above. Based on our analysis for the third case, a good candidate for the
threshold value might be 3 bits below 238, i.e., 235. From our analysis, if the noise level is
above this level, collecting all the records will take in expectation 23 = 8 times more hash
computations. The alternative is to have an efficient attack, that will successfully retrieve
about 1−2 ·(1/8) of the names that are matched in the dictionary, i.e., 0.75aR of the names,
if D contains aR of the zone’s names.

Again, implementing this attack against Noisy NSEC3 would help shed some light to the

15



extent in which the hardness of this attack (as well as its success rate) is an artifact of our
analysis and modeling.

In practice, we expect a hybrid of the two attack to be most effective, at all times : collect
as many records as possible, proceed to erase values from D, and then ask queries from names
still in D that happen to fall between gaps of the retrieved records.

16


	Introduction
	Zone enumeration attacks
	The classic zone enumeration attack
	A dictionary-based zone-enumeration attack

	NSEC3 with dummy records
	The dictionary-based attack on NSEC3 with dummy records.
	The classic attack on NSEC3 with dummy records.

	Noisy NSEC3
	The dictionary-based attack on Noisy NSEC3

	Discussion
	Recovering all NSEC3 records against Noisy NSEC3

