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1 IntrodutionIn this paper we desribe the SIGMA family of key-exhange protools, with emphasis on itsdesign features and rationale. The SIGMA protools introdue a general approah to buildingauthentiated DiÆe-Hellman protools using a areful ombination of digital signatures and a MAC(message authentiation) funtion. We all this the \SIGn-and-MA" approah whih is also thereason for the SIGMA aronym.SIGMA serves as the ryptographi basis for the Internet Key Exhange (IKE) protool [14, 19℄standardized to provide key-exhange funtionality to the IPse suite of seurity protools [20℄.More preisely, SIGMA is the basis for the signature-based authentiated key exhange in IKE[14℄, whih is the most ommonly used mode of publi-key authentiation in IKE, and the basis forthe only mode of publi-key authentiation in IKEv2 [19℄.This paper provides the �rst systemati desription of the development and rationale of theSIGMA protools. The presentation is intended to motivate the design hoies in the protoolby omparing and ontrasting it to alternative protools, and by learning from the strong andweak aspets of previous protools. It also explains how the di�erent variants of the SIGMAprotool follow from a ommon design ore. In partiular, it explains the seurity basis on whihthe signature-based modes of IKE, and its urrent revision IKEv2, are based. The presentation isinformal and emphasizes rationale and intuition rather than rigorous analysis. A formal analysisof the SIGMA protool has been presented in [8℄ where it is shown that the basi SIGMA designand its variants are seure under a omplexity-theoreti model of seurity. While this rigorousanalysis is essential for gaining on�dene in the seurity design of SIGMA, it does not providean expliit understanding of the design proess that led to these protools, and the numeroussubtleties surrounding this design. Providing suh an understanding is a main goal of this paperwhih will hopefully be bene�ial to ryptographers and seurity protool designers (as well as forthose engineering seurity solutions based on these protools).The basi guiding requirements behind the design of SIGMA are (a) to provide a seure key-exhange protool based on the DiÆe-Hellman exhange (for ensuring \perfet forward serey"),(b) the use of digital signatures as the means for publi-key authentiation of the protool, and() to provide the option to protet the identities of the protool peers from being learned by anattaker in the network. These were three basi requirements put forth by the IPse working groupfor its preferred key-exhange protool. The natural andidate for satisfying these requirements isthe well-known STS key-exhange protool due to DiÆe, van Oorshot and Wiener [11℄. We show,however, that this protool and some of its variants (inluding a variant adopted into Photuris[17℄, a predeessor of IKE as the key-exhange protool for IPse) su�er from seurity shortomingsthat make them unsuited for some pratial senarios, in partiular in the wide Internet setting forwhih the IPse protools are designed. Still, the design of SIGMA is strongly based on that ofSTS: both the strengths of the STS design priniples (very well artiulated in [11℄) as well as theweaknesses of some of the STS protool hoies have strongly inuened the SIGMA design.One point that is partiularly important for understanding the design of SIGMA (and other key-exhange protools) is the entral role that the requirement for identity protetion has in this design.As it turns out, the identity protetion funtionality onits with the essential requirement of peerauthentiation. The result is that both requirements (authentiation and identity protetion) anbe satis�ed simultaneously, at least to some extent, but their o-existene introdues signi�antsubtleties both in the design of the protool and its analysis. In order to highlight this issue weompare SIGMA to another authentiated DiÆe-Hellman design, a variant of the ISO protool [15℄,1



that has been shown to be seure [7℄ but whih is not well-suited to support identity protetion(Setion 4). As we will see SIGMA provides a satisfatory and exible solution to this problem bysupporting identity protetion as an optional feature of the protools, while keeping the number ofommuniation rounds and ryptographi operations to a minimum. As a result SIGMA an suitthe identity protetion senarios as well as those that do not require this funtionality. We thusbelieve that SIGMA is well suited as a \general purpose" authentiated DiÆe-Hellman protoolthat an serve a wide range of appliations and seurity senarios.History of the SIGMA protools. The SIGMA approah was introdued by the author in 1995[22℄ to the IPse working group as a possible replaement for the Photuris key-exhange protool[17℄ developed at the time by that working group. Photuris used a variant of the STS protoolthat we showed [22℄ to be awed through the attak presented in Setion 3.3. In partiular,this demonstrated that the Photuris key exhange, when used with optional identity protetionand RSA signatures (or any signature sheme allowing for message reovery), was open to thesame form of attak that originally motivated the design of STS (see Setion 3.1). Eventually,the Photuris protool was replaed with the Internet Key Exhange (IKE) protool whih adoptedSIGMA (unnamed at the time) into its two signature-based authentiation modes: main mode (thatprovides identity protetion) and aggressive mode (whih does not support identity protetion). TheIKE protool was standardized in 1999, and a revised version (IKEv2) is urrently under way [19℄(the latter also uses the SIGMA protool as its ryptographi key exhange).Related work. There is a vast amount of work that deals with the design and analysis of key-exhange (and authentiation) protools and whih is relevant to the subjet of this paper. Chapter12 of [29℄ provides many pointers to suh works, and additional papers an be found in the morereent seurity and ryptography literature. There have been a few works that provided analysisand ritique of the IKE protool (e.g., [12, 31℄). Yet, these works mainly disuss issues related tofuntionality and omplexity trade-o�s rather than analyzing the ore ryptographi design of thekey exhange protools. A formal analysis of the IKE protools has been arried by Meadows [28℄using automated analysis tools. In addition, as we have already mentioned, [8℄ provides a formalanalysis of the SIGMA protools (and its IKE variants) based on the omplexity-theoreti approahto the analysis of key-exhange protools initiated in [2℄. A BAN-logi analysis of the STS protoolsis presented in [34℄, and attaks on these protools that enhane those reported in [22℄ are presentedin [5℄ (we elaborate on these attaks in Setion 3.3). Finally, we mention the SKEME protools[23℄ whih served as the basis for the ryptographi struture of IKE and its non-signature modesof authentiation, but did not inlude a signature-based solution as in SIGMA.A �nal remark. One lear onlusion from this work is that in order to ahieve provable seurityfor key-exhange protools one does not have to abandon simpliity and pratiality (as exempli�edby the ISO and SIGMA protools from Setions 4 and 5, respetively). Yet, onverging to theseprotools and proving them seure has been non-trivial (espeially onsidering the large number ofaws onstantly found in authentiation and key-exhange protools). The reason for this is theenormous number of subtleties surrounding the de�nition and design of seure key-exhange pro-tools. Telling apart seure from inseure protool an hardly be done by immediate inspetion, orusing simple intuition, as illustrated in Figure 1. Therefore, understanding the rationale for designhoies in seure protools is of utmost importane as well as it is understanding the shortomingsof other protools. Hopefully, this work will help to shed some light on these issues.
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A A ; gx - B A A ; gx - BB ; gy ; sigB(gx; gy; A)� B ; gy ; sigB(gx; gy; B)�sigA(gy; gx; B) - sigA(gy; gx; A) -A A ; gx - B A A ; gx - BB ; gy ; sigB(gx; gy) ; maK(B)� B ; gy ; �z }| {sigB(gx; gy; B) ; maK(�)�sigA(gy; gx) ; maK(A) - �z }| {sigA(gy; gx; A) ; maK(�) -Figure 1: Test your intuition: whih of these four authentiated DiÆe-Hellman exhanges onstituteseure key-exhange protools (without identity protetion)? Answers are provided within thepaper. The notation sigX represents a signature by partiipant X; maK represents a message authentiationfuntion omputed using a key K derived from the DiÆe-Hellman key gxy. The output session key in all ases isderived from gxy independently of K.Organization In Setion 2 we informally disuss seurity requirements for key-exhange proto-ols in general and for SIGMA in partiular, and present spei� requirements related to identityprotetion. Setion 3 presents the STS protool and its variants, and analyzes the strengths andweaknesses of these protools. Setion 4 disusses the ISO protool as a further motivation forthe design of SIGMA (in partiular, this disussion serves to stress the role of identity protetionin the design of SIGMA). Finally, Setion 5 presents the SIGMA protools together with theirdesign rationale and seurity properties. In partiular, Setion 5.4 disusses the SIGMA variantsused in the IKE protools. Additional material is presented in the appendies. In Appendix Awe expand on the seurity de�nition that underlies the analysis of the SIGMA protools in [8℄. Inpartiular, this appendix inludes a simpli�ed (and somewhat informal) de�nition of key-exhangeseurity. Appendix B presents a \full edge" instantiation of SIGMA whih inludes some of theelements omitted in the simpli�ed presentation of Setion 5 but whih are ruial for a full seureimplementation of the protools. Appendix C disusses key derivation issues and presents the spe-i� key derivation tehnique designed for, and used in, the IKE protools. This tehnique is ofindependent interest sine it is appliable to the derivation of keys in other key-exhange protools;in partiular, it inludes a mehanism for \extrating randomness" from DiÆe-Hellman keys usingpseudorandom funtions.
3



2 Preliminaries: On the Seurity of Key-Exhange ProtoolsNote: this setion is important for understanding the design goals of SIGMA; yet, the impatientreader may skip it in a �rst reading (but see the notation paragraph at the end of the setion).In this paper we present an informal exposition of the design rationale behind the developmentof the SIGMA protools. This exposition is intended to serve rypto protool designers and seurityengineers to better understand the subtle design and analytial issues arising in the ontext of key-exhange (KE for short) protools in general, and in the design of SIGMA in partiular. Thisexposition, however, is not a replaement for a formal analysis of the protool. A serious analysiswork requires a formal mathematial treatment of the underlying seurity model and protoolgoals. This essential piee of work for providing on�dene in the seurity of the SIGMA protoolsis presented in a ompanion paper [8℄. The interested reader should onsult that work for the formalfoundations of seurity on whih SIGMA is based (see also Appendix A). Yet, before going on topresent the SIGMA protools and some of its preursors we disuss informally some of the salientaspets of the analytial setting under whih we study and judge KE protools. This presentationwill also provide a basis for the disussion of some of the tehniques, strengths and weaknessesshowing up in the protools studied in later setions.We start by noting that there is no ultimate seurity model. Seurity de�nitions may di�erdepending on the underlying mathematial methodology, the intended appliation setting, theonsideration of di�erent properties as more or less important, et. The disussion below fouseson the ore seurity properties of KE protools as required in most ommon settings. Theserequirements stem from the the quintessential appliation of KE protools as suppliers of sharedkeys to pairs of parties whih later use these keys to seure (via integrity and serey protetion)their pairwise ommuniations. In addition, we deal with some more spei� design goals of SIGMAmotivated by requirements put forth by the IPse working group: the use of the DiÆe-Hellmanexhange as the basi tehnique for providing \perfet forward serey", the use of digital signaturesfor authentiating the exhange, and the (possibly optional) provision of \identity protetion".2.1 Overview of the seurity model and requirementsIn spite of being a entral (and \obvious") funtionality in many ryptographi and seurity appli-ations, the notion of a \seure key-exhange protool" remains a very omplex notion to formalizeorretly. Here we state very informally some basi requirements from KE protools that we willuse as a basis for later disussion of seurity issues arising in the design of KE protools. Theserequirements are in no way a replaement for a formal treatment arried in [8℄, but are onsistent(at least at the intuitive level) with the notion of seurity in that work. (See also Appendix A.)Authentiation Eah party to a KE exeution (referred to as a session) needs to be able touniquely verify the identity of the peer with whih the session key is exhanged.Consisteny If two honest parties establish a ommon session key then both need to have aonsistent view of who the peers to the session are. Namely, if a party A establishes a key Kand believes the peer to the exhange to be B, then if B establishes the session key K thenit needs to believe that the peer to the exhange is A; and vie-versa.Serey If a session is established between two honest peers then no third party should be ableto learn any information about the resultant session key (in partiular, no suh third party,4



wathing or interfering with the protool run, should be able to distinguish the session keyfrom a random key).While the \authentiation" and \serey" requirements are very natural and broadly aepted,the requirement of \onsisteny" is muh trikier and many times overlooked. In Setion 3.1 weexemplify this type of failure through an attak �rst disovered in [11℄. This attak, to whih werefer as an \identity misbinding attak", applies to many seemingly natural and intuitive protools.Avoiding this form of attak and guaranteeing a onsistent binding between a session key and thepeers to the session is a entral element in the design of SIGMA.The adversarial model. An important point to observe is that the above requirements arenot absolute but exist only in relation to a well-de�ned attak model. Here we summarize theadversarial model from [8℄. We onsider an ative (\man-in-the-middle") attaker with full ontrolof the ommuniation links between parties. This attaker an interept messages, delay or preventtheir delivery, modify them at will, injet its own messages, interleave messages from di�erentsessions, et. This adversary an also shedule the ativation of parties to initiate and respond toKE sessions.Parties hold long-term private information that they use to authentiate their identities to otherparties. (In the ontext of this paper we an onretely think of this long-term authentiationmaterial as seret digital signature keys.) We also assume the existene of a trusted erti�ationauthority, or any other trusted mehanism (manual distribution, web of trust, et), for faithfullybinding identities with publi keys (i.e., it is assumed that the trusted party orretly veri�es theidentity of the registrant of a publi key before issuing a erti�ate that binds this identity with thispubli key) . Eah party has its own omputing environment whih may or may not be ontrolledby the attaker. If the attaker gains aess to the seret long-term authentiation information at aparty then we onsider this party fully ontrolled by the attaker, and we all that party orrupted.We make no attempt at proteting session keys produed by a party after orruption (sine in thisase the attaker an fully impersonate that party), but we will be interested in proteting sessionkeys produed (and erased from memory) before the party orruption happened. This protetionof past session keys in spite of the ompromise of long-term serets is known as perfet forwardserey (PFS) and is a property of all the (seure) protools disussed in this paper.We also onsider the level of protetion that a KE protool an provide when the attakergains some session-spei� information suh as learning information on the seret internal state ofa session (e.g. the exponent x used by a party to produe an ephemeral DH exponential gx) orlearning the value of a (past or urrent) session key. Note that in the ase that suh informationleakage happens (either via break-ins, mishandling of seret ephemeral information, ryptanalysis,et) then no guarantee on the seurity of the exposed session an be made. Yet, in this ase werequire that any adverse seurity onsequene from suh a ompromise will a�et the exposedsessions only, with no impliations on the seurity of other sessions. These seurity requirementsare very signi�ant and take are of avoiding well known type of attaks suh as known-key attaksand replay attaks (see [29℄), and emphasize the need for key independene between di�erent sessions.Note: The above attak model di�erentiates between an attak that ompromises a long-term seret andone that exposes an ephemeral state or seret. While in some environments gaining aess to a loal state ofa session is as hard, or easy, as gaining aess to the party's long-term serets, in other ases, however, thelevel of protetion of these two forms of information may be very di�erent. For example, the seret signaturekey may be well proteted in a speial hardware devie while ephemeral DH pairs (x; gx) may be produedo�-line and stored overnight in less proteted environments. Our model thus follows the important seurity5



priniple that the exposure of ephemeral seurity information will have more limited onsequenes than theompromise of sensitive long-term serets.Seurity analysis. The analysis of protools under this model is arried on the basis of the generiproperties assumed from the ryptographi primitives used in the protool (e.g., digital signatures,MAC, et.), rather than based on the properties of spei� algorithms (i.e. spei� instantiationsof these primitives). This algorithm independene (or generi seurity) priniple is important in asethat spei� rypto algorithms need to be replaed (for better seurity or improved performane),and is needed to support di�erent ombinations of individually seure algorithms. We say that weprove the seurity of a key-exhange protool in the above model, if we an show how to transformany adversarial ation that violates any of the postulated seurity properties of the protool intoan expliit algorithm that breaks one of the ryptographi primitives used in the protool. Thisensures that as long as these primitives (and their implementation) are not broken then the protoolsatis�es the de�ned properties.2.1.1 Disussion: suÆieny of the above seurity requirements.One important question is whether the above seurity requirements (and more preisely the formalseurity requirements from [8℄), under whih we judge the seurity of protools in this work, areneessary and/or suÆient to guarantee \key-exhange seurity". Neessity is easy to show throughnatural examples in whih the removal of any one of the above required properties results in expliitand learly harmful attaks against the seurity of the exhanged key (either by ompromising theserey of the key or by produing an inonsistent binding between the key and the identities ofthe holders of that key). SuÆieny, however, is harder to argue. We subsribe to the approahput forth in [7℄ (and followed by [8℄) by whih a minimal set of requirements for a KE protoolmust ensure the seurity of the quintessential appliation of KE protools, namely, the provisionof \seure hannels" (i.e., the sharing of a key between peers that subsequently use this key forproteting the serey and integrity of the information transmitted between them). It is shown in[8℄ that their de�nition (outlined here) is indeed suÆient (and atually minimalisti) for providingseure hannels.Also important to stress is that this de�nitional approah dispenses of some requirements thatsome authors (e.g., [27℄) onsider vital for a sound de�nition of seurity. One important example isthe aliveness requirement, namely, if A ompletes a session with peer B then A has a proof that Bwas \alive" during the exeution of the protool (e.g., by obtaining B's unique authentiation onsome none freshly generated by A). This property is not guaranteed by our (or [8℄) de�nition ofseurity. Moreover, some natural key-transport protools (e.g., the ENC protool formally spei�edin [7℄) are useful key-exhange protools that guarantee seure hannels yet do not provide a proofof aliveness. The only possible negative aspet of a KE protool that laks the aliveness guaranteeis that a party may establish a session with a peer that did not establish the orresponding session(and possibly was not even operational at the time); this results in a form of \denial of servie" forthe former party but not a ompromise of data transmitted and proteted under the key. However,DoS attaks with similar e�ets are possible even if aliveness guarantees are provided, for exampleby the attaker preventing the arrival of the last protool message to its destination.A related (and stronger) property not guaranteed by our basi de�nition of seurity is peerawareness. Roughly speaking, a protool provides peer awareness for A if whenA ompletes a sessionwith peer B, A has a guarantee that (not only is B alive but) B has initiated a orresponding sessionwith peer A. Adding aliveness and peer awareness guarantees to a KE that laks these properties is6



often very simple, yet it may ome at a ost (e.g., it may add messages to the exhange or ompliateother mehanisms suh as identity protetion). Therefore, it is best to leave these properties asoptional rather than labeling as \inseure" any protool that laks them.1All the protools disussed in this paper provide aliveness proofs to both parties but only theISO protool and the 4-message SIGMA-I with added ACK (Setion 5.2) provide peer awarenessto both parties. In partiular, the IKE protools (Setion 5.4) do not provide peer awareness toone of the peers. As said, this property an be added, when required, at the possible expense ofextra messages or other osts.2.2 Identity protetionAs disussed in Setion 2.1, key-exhange protools require strong mutual authentiation and there-fore they must be designed to ommuniate the identity of eah partiipant in the protool to itssession peer. This implies that the identities must be transmitted as part of the protool. Yet someappliations require to prevent the dislosure of these identities over the network. This may bethe ase in settings where the identity (for the purpose of authentiation) of a party is not diretlyderivable from the routing address that must appear in the lear in the protool messages.A ommon example is the ase of mobile devies wishing to prevent an attaker from orrelatingtheir (hanging) loation with the logial identity of the devie (or user). Note that suh anappliation may not just need to hide these identities from passive observers in the network butmay require to oneal the identity even from ative attakers. In this ase the sole enryptionof the sender's identity is not suÆient and it is required that the peer to the session proves itsown identity before the enrypted identity is transmitted. Many other examples of appliationsrequiring identity protetion exist. One is the ase of the IKE protool in whih lak of protetionof the responder's identity in the key-exhange would open this identity to trivial \identity-probingattaks" from any mahine in the Internet. That is, if I want to know the (logial) identity of amahine sitting at a given IP address all I need to do is to initiate an IKE exhange with thatIP address and reeive bak, as part of the key exhange, the responder's identity (whih may, forexample, be inluded under a publi-key erti�ate sent by the responder). To avoid this formof attak, the IKEv2 protool [19℄ spei�es that a responder to a key-exhange will not reveal itsidentity until the initiator of the exhange ommuniates and authentiates its own identity. Inthis way, the responder may use its own loal seurity poliy to determine if it is willing to engagein a key-exhange with that (authentiated) initiator and, in partiular, if it is willing to reveal itsidentity to that initiator. Yet another example from a di�erent set of appliations is desribed in[32℄; in this ase, a smart-ard engages in a key-exhange with a ard-reader but the ard will notreveal its identity until the reader has proven its identity (whih, in partiular, serves to prove thatthe latter is a legitimate ard-reader).As it turns out the requirement to support identity protetion adds new subtleties to thedesign of KE protools; these subtleties arise from the oniting nature of identity protetion andauthentiation. In partiular, it is not possible to design a protool that will protet both peeridentities from ative attaks. This is easy to see by noting that the �rst peer to authentiate itself(i.e. to prove its identity to the other party) must dislose its identity to the other party before itan verify the identity of the latter. Therefore the identity of the �rst-authentiating peer annotbe proteted against an ative attaker. In other words, KE protools may protet both identities1We stress that in ontrast to the key-exhange setting, the aliveness requirements, and sometimes peer awareness,is essential in \entity authentiation" protools whose sole purpose may be to determine the aliveness of a peer.7



from passive attaks and may, at best, protet the identity of one of the peers from dislosureagainst an ative attaker.This best-possible level of identity protetion is indeed ahievable by some KE protools, andin partiular is attained by the SIGMA protools. The underlying design of SIGMA allows fora protool variant where the initiator of the exhange is proteted against ative attaks and theresponder's identity is proteted against passive attaks (we refer to this variant as SIGMA-I), andit also allows for another variant where the responder's id is proteted against ative attaks andthe initiator's against passive attaks only (SIGMA-R). Moreover, providing identity protetion hasbeen a main motivating fore behind the design of SIGMA whih resulted from the requirementput forth by the IPse working group to support (at least optionally) identity protetion in itsKE protool. The SIGMA protools thus provide the best-possible protetion against identitydislosure. The hoie of SIGMA-I or SIGMA-R depends on whih identity is onsidered as moresensitive and requires protetion against ative attaks. On the other hand, SIGMA o�ers fullKE seurity also in ases where identity protetion is not needed. That is, the ore seurity ofSIGMA as a key-exhange protool does not depend on the hiding of identities; the latter is aprivay enhanement that the protool adds, optionally, on top of the ore protool.A related issue whih is typial of settings where identity protetion is a onern, but mayalso appear elsewhere, is that parties to the protool may not know at the beginning of a sessionthe spei� identity of the peer but rather learn this identity as the protool proeeds. (This is anatural ase for the party ating as responder to a key-exhange request, but may also be the asefor the initiator of the protool whih may intend to establish a session with one of a set of peers {all of whih share the same physial address { rather than with one prede�ned peer). This adds, inpriniple, more attak avenues against the protool and also introdues some deliate formal anddesign issues (e.g., most existing formalisms of key-exhange protools do assume that the peeridentities are �xed and known from the start of the session). In [8℄ this more general and realistisetting is formalized under the name of the post-spei�ed peer setting and the SIGMA protools areshown to be seure in this model. See [8℄ for the tehnial details.Finally we omment on one additional privay aspet of KE protools. In some senarios partiesmay wish to keep their privay proteted not only against attakers in the network but also to avoidleaving a \provable trae" of their ommuniations in the hands (or disks) of the peers with whihthey ommuniate. A protool suh as ISO (see Setion 4) in whih eah party to the protoolsigns the peer's identity is partiularly suseptible to this privay onern (sine these signaturesan serve to prove to a third party the fat that the ommuniation took plae). In the SIGMAprotools, however, this proof of ommuniation is avoided to a large extent by not signing thepeer's identity, thus providing a better solution to this problem.Note: some may onsider the non-repudiation property of a protool suh as ISO (Setion 4) as an advantage.However, we onsider that non-repudiation using digital signatures does not belong to the KE protool realmbut as a funtionality that needs to be dealt with arefully in spei� appliations, and with full awarenessof the signer to the non-repudiation onsequenes.2.3 Further remarks and notationDenial of Servie. Key-exhange protools (inluding SIGMA) open opportunities for Denial-of-Servie (DoS) attaks sine the responder to an exhange is usually required to generate stateand/or perform ostly omputations before it an authentiate the peer to the exhange. Thistype of attaks annot be prevented in a strong sense but an be mitigated by using some fast-to-8



verify measures. One suh tehnique has been proposed by Phil Karn [17℄ via the use of \ookies"that the responder to a KE protool uses to verify that the initiator of the exhange is beingable to reeive messages direted to the IP address from whih the exhange was initiated (thuspreventing some form of trivial DoS attaks in whih the attaker uses forged origin addresses, andalso improves the hanes to trae bak the DoS attak). This and other tehniques are orthogonalto the ryptographi details of the KE protool and then an be adopted into SIGMA. In partiular,version 2 of IKE [19℄ and the JFK protool [1℄ inorporate Karn's tehnique into SIGMA. Otherforms of denial of servie are possible (and atually unavoidable) suh as an ative attaker thatprevents the ompletion of sessions, or lets one party omplete the session and the other not.A word of aution. It is important to remark that all the protools disussed in this paper arepresented in their most basi form, showing only their ryptographi ore. When used in pratieit is essential to preserve this ryptographi ore but also to take are of additional elements arisingin atual settings. For example, if the protool negotiates seurity parameters (suh as ryptoalgorithms) or uses the protool messages to send additional information then the designers of suhfull-edge protool need to arefully expand the overage of authentiation also to these additionalelements. We also (over) simplify the protool presentation by omitting the expliit use of \sessionidenti�ers": suh identi�ers are needed for the run of a protool in a multi-session setting in order tomath (or \multiplex") inoming protool messages with open KE sessions. Moreover, the bindingof messages to spei� session id's is required for ore seurity reasons suh as preventing interleavingattaks. Similarly, nones may need to be inluded in the protool to ensure freshness of messages(e.g. to prevent replay attaks). In our presentation, however, these elements are omitted byover-harging the DiÆe-Hellman exponentials with the additional funtionality of session-id's andnones. For the level of oneptual disussion in this paper, simplifying the presentation by reduingthe number of elements in the protool is useful (and also in line with the traditional presentation ofprotools in the ryptographi literature, in partiular with [11℄). But when engineering a real-worldprotool we reommend to learly separate the funtionality of di�erent elements in the protool.For illustration purposes, we present a version of a \full edge" SIGMA protool in Appendix B.Notation. All the protools presented here use the DiÆe-Hellman exhange. We use the tra-ditional exponential notation gx where g is a group generator. However, all the treatment hereapplies to any group in whih the DiÆe-Hellman problem is hard. (A bit more preisely, groups inwhih the so alled \Deisional DiÆe-Hellman Assumption (DDH)" holds, namely, the infeasibilityto distinguish between quadruples of the form (g; gx; gy; gxy) and quadruples (g; gx; gy ; gz) wherex; y; z are random exponents.) We use the aronym DH to denote DiÆe-Hellman, and use the word\exponential" to refer to elements suh as gx, and the word \exponent" for x. In the desription ofour protools the DH group and generator g are assumed to be �xed and known in advane to theparties or ommuniated at the onset of the protool (in the later ase, the DH parameters needto be inluded in the information authentiated by the protool).Throughout the paper we will also use the notation f � � � gK to denote enryption of the informationbetween the brakets under a symmetri enryption funtion using key K. Other ryptographiprimitives used in the paper are a ma (message authentiation ode) whih is assumed to beunforgeable against hosen message attak by any adversary that is not provided the ma key, anda digital signature sheme sig assumed to be seure against hosen message attaks. By sigA(msg)we denote the signature using A's private key on the message msg. The letters A and B denotethe parties running a KE protool, while Eve (or E) denotes the (ative) attaker. We also useA;B;E to denote the identities used by these parties in the protools.9



3 The STS ProtoolsHere we disuss the STS protool (and some of its variants) whih onstitutes one of the mostfamous and inuential protools used to provide authentiated DH using digital signatures, andof partiular appeal to senarios where identity protetion is a onern. The STS protool, dueto DiÆe, van Oorshot and Wiener, is presented in [11℄ where a very instrutive desription ofits design rationale is provided. In partiular, this work is the �rst to observe some of the moreintriate subtleties related to the authentiation of protools in general and of the DH exhangein partiular. The STS protool served as the starting point for the SIGMA protools desribedin this paper. Both the strengths of the STS design priniples as well as the weaknesses of someof the protool hoies have motivated the design of SIGMA. These aspets are important to beunderstood before presenting SIGMA. We analyze several variants of the protool proposed in[11, 29, 17℄.Remark. The attaks on the STS protool and its variants presented here originate with the ommuniationsby the author to the IPse working group in 1995 [22℄. Sine then some of these attaks were realled elsewhere(e.g. [33℄) and enhanements of the attak against the MAC variant have been provided in [5℄.3.1 BADH and the identity-misbinding attak: A motivating exampleAs the motivation for the STS protool (and later for SIGMA too) we present a proposal foran \authentiated DH protool" whih intuitively provides an authentiated KE solution but isatually awed. We denote this protool by BADH (\badly authentiated DH").A gx - Bgy ; B ; sigB(gx; gy)� A ; sigA(gy ; gx) -The output of the protool is a session key Ks derived from the DH value gxy. (Note: the identityof A may also be sent in the �rst message, this is immaterial to the disussion here.)This protool provides the most natural way to authentiate a DH exhange using digital sig-natures. Eah party sends its DH exponential signed under its private signature key. The inlusionof the peer's exponential under one's signature is required to prove freshness of the signature foravoiding replay attaks (we will disuss more about this aspet in Setion 5, in partiular the pos-sibility to replae the signature on the peer's exponential with the signature on a peer-generatednone). One of the important ontributions of [11℄ was to demonstrate that this protool, even ifseemingly natural and intuitively orret, does not satisfy the important onsisteny requirementdisussed in Setion 2.1. Indeed, [11℄ present the following attak against the BADH protool. Anative (\person-in-the-middle") attaker, whih we denote by Eve (or E), lets the �rst two messagesof the protool to go unhanged between A and B, and then it replaes the third message from Ato B with the following message from Eve to B:E E ; sigE(gy; gx) - BThe result of the protool is that A reords the exhange of the session key Ks with B, whileB reords the exhange of the same key Ks with Eve. In this ase, any subsequent appliation10



message arriving to B and authentiated under the key Ks will be interpreted by B as oming fromEve (sine from the point of view of B the key Ks represents Eve not A). Note that this attakdoes not result in a breah of serey of the key (sine the attaker does not learn, nor inuene,the key in any way), but it does result in a severe breah of authentiity sine the two parties to theexhange will use the same key with di�erent understandings of who the peer to the exhange is,thus breaking the onsisteny requirement. To illustrate the possible adverse e�ets of this attakwe use the following example from [11℄: imagine B being a bank and A a ustomer sending to B amonetary element, suh as an eletroni hek or digital ash, enrypted and authentiated underKs. From the point of view of B this is interpreted as oming from Eve (whih we assume to alsobe a ustomer of B) and thus the money is onsidered to belong to Eve rather than to A (hopefullyfor Eve the money will go to her aount!).The essene of the attak is that Eve sueeds in onvining the peers to the DH exhange(those that hose the DH exponentials) that the exhange ended suessfully, yet the derived key isbound by eah of the parties to a di�erent peer. Thus the protool fails to provide an authentiatedbinding between the key and the honest identities that generated the key. We will refer to thisattak against the onsisteny requirement of KE protools as an identity misbinding attak (or just\misbinding attak" for short).23.2 The basi STS protoolHaving disovered the misbinding attak on the \natural" authentiated DH protool BADH, DiÆeet al. [11℄ designed the STS protool intended to solve this problem. The basi STS protool is:A gx - Bgy ; B ; f sigB(gx; gy) gKs� A ; f sigA(gy; gx) gKs -where the notation f � � � gK denotes enryption of the information between the brakets under asymmetri enryption funtion using key K. In the STS protool the key used for enryption isthe same as the one output as the session key produed by the exhange3.Is this protool seure? In partiular, is the introdution of the enryption of the signaturessuÆient to thwart the identity misbinding attak? This at least has been the intention of STS.The idea was that by using enryption under the DH key the parties to the exhange \prove"knowledge of this key something whih the attaker annot do. Yet, no proof of seurity of theSTS protool exists (see more on this below). Even more signi�antly we show here that themisbinding attak applies to this protool in any senario where parties an register publi keys2This type of attak appears in the ontext of other authentiation and KE protools. It is sometimes referred toas the \unknown key share attak" [5, 18℄. We believe that the name \identity-misbinding attak" better reets thee�et of the attak.3This is a weakness of the protool sine the use of the session key in the protool leaks information on the key(e.g., the key is not anymore indistinguishable from random). In addition, this an lead to the use of the same keywith two di�erent algorithms (one inside the KE protool, and another when using the exhanged session key in theappliation that triggered the key exhange), thus violating the basi ryptographi priniple of key separation (see,e.g., [23℄). These weaknesses are easily solved by deriving di�erent, and omputationally independent, keys fromthe DH value gxy, one used internally in the protool for enryption and the other as the session key output by theprotool. 11



without proving knowledge of the orresponding signature key. (We note that while suh \proof ofpossession" is required by some CAs for issuing a erti�ate, this is not a universal requirement forpubli key erti�ates; in partiular it is not satis�ed in many \out-of-band distribution" senarios,webs of trust, et.) In this ase Eve an register A's publi key as its own and then simply replaeA's identity (or erti�ate) in the third message of STS with her own. B veri�es the inomingmessage and aepts it as oming from Eve. Thus, in this ase the STS protool fails to defendagainst the misbinding attak. Therefore, for the STS to be seure one must assume that a seureexternal mehanism for proof of possession of signature keys is enfored. As we will see both theISO protool disussed in Setion 4 and the SIGMA protools presented here do not require suh amehanism. Moreover, even under the assumption of external \proof of possession" the above STSprotool has not been proven seure.Note. In [34℄ an analysis of the STS protool based on an extension of BAN logi [6℄ is presented. However,the modeling of the enryption funtion in that analysis is as a MAC funtion. Therefore this analysis holdsfor the MAC variant of STS presented in the next subsetion. However, as we will see, for onsideringthat protool seure one needs to assume that the CA veri�es that the registrant of a publi key holdsthe orresponding private key (proof of possession) and, moreover, that \on-line registration" attaks asdisussed in 3.3 are not possible.What is the reason for this protool failure? The main reason is to assume that the ombinationof proof of possession of the session key together with the signature on the DH exponentials providea suÆient binding between the identities of the (honest) peers partiipating in the exhange and theresultant key. However, as the above attak shows this is not true in general. Can this shortomingbe orreted? One �rst observation is that enryption is not the right ryptographi funtion touse for proving knowledge of a key. Being able to enrypt a ertain quantity under a seret keyis no proof of the knowledge of that key. Suh a \proof of key possession" is not guaranteed byommon modes of enryption suh as CBC and is expliitly violated by any mode using XOR of a(pseudo) random pad with the plaintext (suh as ounter or feedbak modes, stream iphers, et.).To further illustrate this point onsider a seemingly stronger variant of the protool in whih notonly the signature is enrypted but also the identity (or full erti�ate) of the signer is enryptedtoo. In this ase the above attak against STS is still viable if the enryption is of the XOR typedisussed above. In this ase, when A sends the message fA ; sigA(gy; gx) gKs , Eve replaes A'sidentity (or erti�ate) by just XORing the value A�E in the identity loation in the iphertext.When derypted by B this identity is read as E's and the signature veri�ed also as E's. Thus wesee that even identity enryption does not neessarily prevent the attak. As we will see in the nextsetion replaing the enryption with a MAC funtion, whih is better suited to prove possessionof a key, is still insuÆient to make the protool seure.3.3 Two STS variants: MACed-signature and PhoturisIn [11℄ (see also [29℄) a variant of the basi STS protool is mentioned in whih the enryptionfuntion in the protool is replaed with a message authentiation (MAC) funtion. Namely, inthis STS variant eah party in the protool applies its signature on the DH exponentials plus itonatenates to it a MAC on the signature using the key Ks. For example, the last message fromA to B in this protool onsists of the triple (A; b; ) where b = sigA(gy ; gx) and  = maKs(b).In [11℄ this variant is not motivated as a seurity enhanement but as an alternative for situations{suh as export ontrol restritions{ in whih the use of a strong enryption funtion is not viable.However, onsidering that a MAC funtion is more appropriate for \proving knowledge of a key"than an enryption funtion (as exempli�ed above) then one ould expet that this variant would12



provide for a more seure protool. This is atually inorret too. The above attak on basi STS(where Eve reords the publi key of A under her name) an be arried exatly in the same wayalso in this MAC-based variant of the protool. Same for the ase where on top of the signatureand identities (or even on top of the MAC) one applies an enryption funtion of the XOR type.Moreover, if (as it is ommon in many appliation) A and B ommuniate their publi key toeah other as part of the KE protool (i.e., the identities A and B sent in the protool inlude theirorresponding publi-key erti�ates), then this MAC-ed signature variant is not seure even if thesystem does ensure that the registrant of a publi key knows the orresponding private key! Thishas been shown by Blake-Wilson and Menezes [5℄ who present an ingenious on-line registrationattak against the protool. In this form of attak, the attaker Eve interepts the last messagefrom A to B and then registers a publi key (for whih she knows the private key) that satis�essigE(gy; gx) = sigA(gy ; gx). Eve then replaes the erti�ate of A with her own in the intereptedmessage and forwards it to B (leaving the signature and ma strings unhanged from A's originalmessage). Clearly, B will aept this as a valid message from Eve sine both signature and mawill pass veri�ation. In other words, Eve suessfully mounted an identity-misbinding attakagainst the MACed-signature protool. In [5℄ it is shown that this on-line registration attak anbe performed against natural signature shemes. In partiular, it is feasible against RSA signaturesprovided that the registrant of the publi key an hoose her own publi RSA exponent.4 Whilethe full pratiality of suh an attak is debatable, it ertainly suÆes to show that one annotprove this protool to be seure on the basis of generi ryptographi funtions, even under theassumption that the CA veri�es possession of the private signature key. As a �nal note on thisattak, we point out that this attak is possible even if the protool is modi�ed in suh a way thateah peer inludes its own identity under the signature (something that an be done to avoid theneed for \proof of possession" in the publi-key registration stage).From the above examples we learn that the failure to the misbinding attak is more essentiallyrelated to the insuÆieny of binding the DH key with the signatures. Suh a binding (e.g., via aMAC omputed on the signature) provides a proof that someone knows the session key, but doesnot prove who this someone is. As we will see later, the essential binding here needs to be donebetween the signature and the reipient's identity (the ISO protool), or between the DH key andthe sender's identity (the SIGMA protool).Photuris. We �nish this setion by showing the inseurity of another variant of the STS protooldesribed in [29℄ and used as the ore ryptographi protool in Photuris [17℄ (an early proposalfor a KE protool for IPse). As the previous variants, this one is also illustrative of the subtletiesof designing a good KE protool. This variant dispenses of the use of enryption or ma; instead itattempts at binding the DH key to the signatures by inluding the DH key gxy under the signature:A gx - Bgy ; B ; sigB(gx; gy; gxy)� A ; sigA(gy; gx; gxy) -An obvious, immediate, omplaint about this protool is that the DH key gxy is inluded under thesignature, and therefore any signature that leaks information on the signed data (for example, any4In this ase, Eve uses an RSA publi modulus equal to the produt of two primes p and q for whih omputingdisrete logarithms is easy (e.g., all fators of p� 1 and q � 1 are small), and alulates the private exponent d forwhih (hash(gy; gx))d equals the signature string sent by A.13



signature sheme that provides \message reovery") will leak information on gxy. This problem isrelatively easy to �x: derive two values from gxy using a one-way pseudorandom transformation (asin Appendix C); use one value to plae under the signature, and the other as the generated sessionkey. A more subtle weakness of the protool is that it allows, even with the above enhanement,for an an identity misbinding attak whenever the signature sheme provides for message reovery(e.g. RSA). In this ase the attaker, Eve, proeeds as follows: it lets the protool proeed normallybetween A and B for the �rst two messages, then it interepts the last message from A to B andreplaes it with the messageE E ; sigE(gy; gx; gxy) - BBut how an E sign the key gxy (or a value derived from it) if it does not know gxy? For onretenessassume that sigA(M) = RSAA(hash(M)), for some hash (or enoding) funtion hash. Sine Eveknows A's publi key it an invert A's signature to retrieve hash(gy ; gx; gxy), and then apply its ownsignature RSAE(hash(gy ; gx; gxy)) as required to arry the above attak! (Note that this attakdoes not depend on any of the details of the publi-key registration proess; the attaker uses itslegitimately generated and registered publi key.)Photuris inluded the above protool as an \authentiation only" solution, namely, one in whihidentities are not enrypted. It also o�ered optional identity protetion by applying enryption ontop of the above protool. In the later ase the above simple misbinding attak does not work. Yet,even in this ase no proof of seurity for suh a protool is known. The above protool (withoutenryption) is also suggested as an STS variant in [29℄ where it is proposed to expliitly hash thevalue gxy before inluding it under the signature.Remark: In this STS variant [29℄ the value gxy under the signature is replaed with h(gxy) where h isa hash funtion. This expliit hashing of gxy seems to be intended to protet the value gxy in ase thatthe signature in use reveals its input. While this is not suÆient to defend against our identity misbindingattak, it is interesting to hek whether revealing the value h(gxy) may be of any use to an eavesdropper(note that in this ase the attaker has the signi�antly simpler task of passively monitoring the protool'smessages rather than atively interfering with the protool as required to arry the misbinding attak).Certainly, learning h(gxy) is suÆient for distinguishing the key gxy from random (even if the hash funtionats as an ideal \random orale"). But an the attaker obtain more than that? To illustrate the subtleways in whih seurity de�ienies may be exploited, onsider the following pratial senario in whihthe funtion h is implemented by SHA-1 and the key derivation algorithm de�nes the session key to beKs = HMAC-SHA1gxy (v), where v is a non-seret value. The reader an verify (using the de�nition ofHMAC in [24℄) that in this ase the attaker does not need to �nd gxy for deriving the session key Ks, butit suÆes for her to simply know SHA-1(gxy). Therefore if this later value is revealed by the signature thenthe seurity of the protool is totally lost. Not only this example shows the are required in designing theseprotools, but it also points to the the potential weaknesses arising from protools whose seurity annot belaimed in a generi (i.e. algorithm-independent) way.
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4 The ISO ProtoolHere we reall the ISO KE protool [15℄ whih similarly to STS uses digital signatures to authen-tiate a DH exhange5. However, the ISO protool resolves the problem of key-identity bindingdemonstrated by the misbinding attak on the BADH protool (see Setion 3.1) di�erently. Theprotool simply adds the identity of the intended reipient of the signature to the signed information.Spei�ally, the protool is:A A ; gx - BB ; gy ; sigB(gx; gy; A)� sigA(gy; gx; B) -It is not hard to see that the spei� identity misbinding attak as desribed in Setion 3.1 is avoidedby the inlusion of the identities under the signatures. Yet having seen the many subtleties andprotool weaknesses related to the STS protools in the previous setion it is lear that resolvingone spei� attak is no guarantee of seurity. Yet the on�dene in this protool an be based onthe analytial work of [7℄ where it is shown that this is a seure KE protool (under the seuritymodel of that work). It is shown there that any feasible attak in that model against the seurityof the ISO protool an be transformed into an eÆient ryptanalytial proedure against the DHtransform or against the digital signature funtion sheme in use.The above version of the ISO protool is simple and elegant. It uses a minimal number ofmessages and of ryptographi primitives. It allows for delaying omputation of the DH key gxyto the end of the interation (sine the key is not used inside the protool itself) thus reduingthe e�et of omputation on protool lateny. The protool is also minimal in the sense that theremoval of any of its elements would render the protool inseure. In partiular, as demonstratedby the BADH protool, the inlusion of the reipient's identity under the signature is ruial forseurity. It is also interesting to observe that replaing the reipient's identity under the signaturewith the signer's identity results in an inseure protool, open to the identity-misbinding attakexatly as in the ase of BADH.Therefore, it seems that we have no reason to look for other DH protools authentiated withdigital signatures. This is indeed true as long as \identity protetion" is not a feature to besupported by the protool. As explained next, in spite of all its other nie properties the ISOprotool does not satisfatorily aommodate the settings in whih the identities of the partiipantsin the protool are to be onealed from attakers in the network (espeially if suh a protetion issought against ative attaks).The limitation of the ISO protool in providing identity protetion omes from the fat thatin this protool eah party needs to know the identity of the peer before it an produe its ownsignature. This means that no party to the protool (neither A or B) an authentiate the otherparty before it reveals its own name to that party. This leaves both identities open to ative attaks.5Stritly speaking, the protool presented here is a simpli�ation of the protool in [15℄. The latter inludes twoelements that are redundant and do not ontribute signi�antly to the seurity of the protool and are thereforeomitted here. These elements are the inlusion of the signer's identity under the signature and an additional mavalue. In ontrast to SIGMA, where the additional MAC is essential for seurity, the ma in [15℄ serves only for expliitkey on�rmation (whih adds little to the impliit key on�rmation provided in the simpli�ed variant disussed here).15



If the only protetion sought in the protool is against passive eavesdroppers then the protool anbe built as a 4-message protool as follows:A gx - Bgy ; fB gKe� fA ; sigA(gy; gx; B) gKe -f sigB(gx; gy; A) gKe�where Ke is an enryption key derived from the DH key gxy. We note that with this additionof enryption the ISO protool looses several of its good properties (in partiular, the minimalitydisussed above and the ability to delay the omputation of gxy to the end of the protool) while itonly provides partial protetion of identities sine both identities are trivially suseptible to ativeattaks.Another privay (or lak of privay) issue related to the ISO protool whih is worth notingis that by signing the peer's identity eah party to the protool leaves in the hands of the peera signed (undeniable) trae that the ommuniation took plae (see the disussion at the end ofSetion 2.2).The SIGMA protool presented in the next setion provides better, and more exible, supportfor identity protetion with same or less ommuniation and omputational ost, and with a fullproof of seurity.Remark (an identity-protetion variant of the ISO protool): We end this setion by suggestingan adaptation of the ISO protool to settings requiring identity protetion (of one of the peers) toative attaks. We only sketh the idea behind this protool. The idea is to run the regular ISOprotool but instead of A sending its real identity in the �rst message it sends an \alias" omputedas Â = hash(A; r) for a random r. Then B proeeds as in the basi protool but inludes the valueÂ under its signature instead of A's identity; it also uses the key gxy to enrypt its own identityand signature. In the third message A reveals its real identity `A' and the value r used to omputeÂ. It also sends its signature (with B's identity signed as in the regular ISO protool). This wholemessage is privay-proteted with enryption under Ke. The above protool an be shown to beseure under ertain assumptions on the hash funtion hash. Spei�ally, this funtion needs tosatisfy some \ommitment" properties similar to those presented in [25℄.We omit further disussion of this protool and proeed to present the SIGMA protool thatprovides a satisfatory and exible solution to the KE problem suitable also for settings with identityprotetion requirements, and with less requirements on the underlying ryptographi primitivesthan the above \alias-based" ISO variant.
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5 The SIGMA ProtoolsThe weaknesses of the STS variants (whih provide identity protetion but not full seurity ingeneral) and the unsuitability of the ISO protool for settings where identity protetion is a re-quirement, motivated our searh for a solution that would provide solid seurity for settings whereidentity protetion may or may not be a requirement. The result is the SIGMA protools that wepresent in this setion and whose design we explain based on the design lessons learned throughthe examples presented in previous setions (as well as many other in the literature). SIGMA takesfrom STS the property that eah party an authentiate to the other without needing to knowthe peer's identity (reall that the lak of this property in the ISO protool makes that protoolinappropriate to support identity protetion). And it takes from ISO the areful binding betweenidentities and keys, but it implements this binding in a very di�erent way. More spei�ally, SIGMAdeouples the authentiation of the DH exponentials from the binding of key and identities. Theformer authentiation task is performed using digital signatures while the latter is done by om-puting a MAC funtion keyed via gxy (or more preisely, via a key derived from gxy) and applied tothe sender's identity. This \SIGn-and-MA" approah is the essential tehnique behind the designof these protools and the reason for the SIGMA aronym.As pointed out in Setion 2.3, we fous on the ryptographi ore of the protool leavingimportant system and implementation details out of the disussion. In partiular, as we willalso note below, in the following presentation we overharge the DH exponentials with the addedfuntionality of session id's and freshness nones. (A \full edge" SIGMA instantiation with a moreareful treatment of these elements is presented in Appendix B.)5.1 The basi SIGMA protoolThe most basi form of SIGMA (without identity protetion) is the following:A gx - Bgy ; B ; sigB(gx; gy) ; maKm(B)� A ; sigA(gy; gx) ; maKm(A) -The output of the protool is a session key Ks derived from the DH value gxy while the key Kmused as a MAC key in the protool is also derived from this DH value. It is essential for the protoolseurity that the keys Km and Ks be \omputationally independent" (namely no information onKs an be learned from Km and vie-versa).6 Note that this basi protool does not provideidentity protetion. This will be added on top of the above protool using enryption (see followingsetions). The important point is that SIGMA's seurity is built in a modular way suh that itsore ryptographi seurity is guaranteed independently of the enryption of identities. Thus, thesame design serves for senarios requiring identity protetion but also for the many ases wheresuh protetion is not an issue (or is o�ered only as an option). We note that the identities A andB transmitted in messages 2 and 3 may be full publi-key erti�ates; in this ase the identitiesinluded under the ma may be the erti�ates themselves or identities bound to these erti�ates.6We disuss spei� ways to derive these values from gxy in Appendix C.17



The �rst basi element in the logi of the protool is that the DH exponential hosen by eahparty is proteted from modi�ation (or hoie) by the attaker via the signature that the partyapplies to its own exponential. We note that the inlusion of the peer's exponential under thesignature is not mandatory and an be replaed with a none freshly hosen and ommuniatedby the peer (see Appendix B). Yet, either the peer's exponential (if hosen fresh and anew ineah session) or a fresh none must be inluded under the signature; otherwise the following replayattak is possible. It would suÆe for the attaker to learn the exponent x of a single ephemeralexponential gx used by a party A in one session for the attaker to be able to impersonate Aon a KE with any other party (simply by replaying the values gx and sigA(gx)). In this ase,A's impersonation by the attaker is possible even without learning A's long-term signature key.This violates the seurity priniple (see Setion 2.1) by whih the exposure of ephemeral seretsbelonging to a spei� session should not have adverse e�ets on the seurity of other sessions.The seond fundamental element in SIGMA's design is the MACing of the sender's identityunder a key derived from the DH key. This an be seen as a \proof of possession" of the DH key, butits atual funtionality is to bind the session key to the identity of eah of the protool partiipantsin a way that ensures the \onsisteny" requirement of KE protools. As disussed in Setion 2.1,this is a fundamental requirement needed, in partiular, to avoid attaks suh as the identitymisbinding attaks from Setion 3. Note that without this MACing the protool \degenerates"into the BADH protool from Setion 3.1 whih is suseptible to this attak. Therefore we an seethat all the elements in the protool are mandatory (up to replaement of the peer's exponentialunder the signature with a fresh none).We note that the above SIGMA protool, as well as all the following variants, satisfy all theseurity guarantees disussed in Setion 2.1. In partiular, they provide \perfet forward serey"due to the use of the DiÆe-Hellman exhange. This assumes that DH exponentials are hosen anewand independently for eah session, that the exponents x; y used to generate the DH exponentialsgx; gy are erased as soon as the omputation of the key gxy is ompleted, and that these exponentsare not derivable from any other quantity stored in the party's omputer after the session terminates(in partiular, if x is generated pseudorandomly then the value of past exponents x should not bederivable from the present state of the pseudorandom generator). We note that SIGMA an allowfor re-use of DH exponentials by the same party aross di�erent sessions. However, in this ase theforward serey property is lost (or at least on�ned to hold only after all sessions using the sameexponent x are ompleted and the exponent x erased). In ase of re-use of DH exponents one mustderive the keys used by the session (e.g. Km, Ks) in a way that depends on some session-spei�non-repeating quantity (suh as a none or session-id). Also, as disussed before, in this ase suha fresh none needs to be inluded under the peer's signature (also see the end of Appendix B fora note on the importane of orretly positioning nones under the signature). There are other,more theoretial, issues onerning the re-use of DH exponents that are not treated here.As we have stressed earlier in the paper, this informal outline of the design rationale for SIGMAdoes not onstitute a proof of seurity for the protool. The formal analysis in whih we an baseour on�dene in the protool appears in the ompanion analysis paper [8℄.5.2 Proteting identities: SIGMA-IReall that SIGMA is designed to serve as a seure key-exhange protool both in settings that donot require identity protetion (in whih ase the above simple protool suÆes) or those whereidentity protetion is a requirement. The main point behind SIGMA's design that allows for easyaddition of identity protetion is that the peer's identity is not needed for own authentiation. In18



partiular, one of the peers an delay ommuniating its own identity until it learns the peer'sidentity in an authentiated form. Spei�ally, to the basi SIGMA protool we an add identityprotetion by simply enrypting identities and signatures using a key Ke derived from gxy (Ke mustbe omputationally independent from the authentiation key Km and the session key Ks):A gx - Bgy ; fB ; sigB(gx; gy) ; maKm(B) gKe� fA ; sigA(gy; gx) ; maKm(A) gKe -This protool has the property that it protets the identity of the initiator from ative attakers andthe identity of the responder from passive attakers. Thus, the protool is suitable for situationswhere onealing the identity of the initiator is onsidered of greater importane. A typial exampleis when the initiator is a mobile lient onneting to a remote server. There may be little orno signi�ane in onealing the server's identity but it may be of prime importane to onealthe identity of the mobile devie or user. We stress that the enryption funtion (as applied inthe third message) must be resistant to ative attaks and therefore must ombine some form ofintegrity protetion. Combined serey-integrity transforms suh as those from [16℄ an be used,or a onventional mode of enryption (e.g. CBC) an be used with a MAC funtion omputed ontop of the iphertext [3, 26℄. Due to the stronger protetion of the identity of the Initiator of theprotool we denote this variant by SIGMA-I.We remark that while this protool has the minimal number of messages that any KE protoolresistant to replay attaks (and not based on trusted timestamps) an use, it is sometimes desirableto organize the protool in full round-trips with eah pair of message ontaining a \request message"and a \response message". If so desired, the above protool an add a fourth message from B to Awith a simple ACK authentiated under the authentiation key Km. This ACK message serves to Aas a proof that B already established the key and ommuniations proteted under the exhangedkey Ks an start. It also provides the exibility for A to either wait for the ACK or start usingthe session key as soon as it sent the third protool message. (Depending on B's poliy this traÆmay be aepted by B if the hannel { or \seurity assoiation" in the language of IKE { wasalready established by B, or disarded if not, or queued until the key establishment is ompleted.)Finally, it is worth noting that this ACK-augmented protool provides the peer awareness propertydisussed in Setion 2.1. (This is in ontrast to the other variants of SIGMA presented here whihdo not enjoy this property.)5.3 A four message variant: SIGMA-RAs seen, SIGMA-I protets the initiator's identity against ative attaks and the responder's againstpassive attaks. Here we present SIGMA-R whih provides defense to the responder's identityagainst ative attaks and to the initiator's only against passive attaks. We start by presenting asimpli�ed version of SIGMA-R without enryption:
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A gx - Bgy� A ; sigA(gy; gx) ; maKm(A) -B ; sigB(gx; gy) ; maKm(B)�The logi of the protool is similar to that of the basi SIGMA protool from Setion 5.1. Thedi�erene is that B delays the sending of its identity and authentiation information to the fourthmessage after it veri�ed A's identity and authentiation in message 3. This \similarity" in thelogi of the protool does not mean that its seurity is implied by that of the 3-message variants.Indeed, the protool as desribed above is open to a reetion attak that is not possible againstthe 3-message variant. Due to the full symmetry of the protool an attaker an simply replay eahof the messages sent by A bak to A. If A is willing to aept a key exhange with itself then Awould suessfully omplete the protool.7 Therefore, to prevent this attak the protool needs toensure some \sense of diretion" in the authentiated information. This an be done by expliitlyadding di�erent \tags" under the ma for eah of the parties (e.g., A would send maKm(\0"; A)while B would send maKm(\1"; B)), or by using di�erent ma keys in eah diretion (i.e., insteadof deriving a single key Km from gxy one would derive two keys, Km and K 0m, where the former isused by A to ompute its ma and the latter by B). Any of these measures are suÆient to preventthe reetion attak and make the protool seure [8℄ (another defense is for A to hek that thepeer's DH exponential is di�erent than her own.)The full protool SIGMA-R (with identity protetion) is obtained by enrypting the last twomessages in the above depited protool (and adding a reetion defense as disussed before). A\full edge" illustration of protool SIGMA-R is presented in Appendix B.Remark (The inter-hangeability property of SIGMA). It is worth noting that the last twomessages in the above protool an be interhanged. Namely, B may proeed as desribed inSIGMA-R and wait for the reeption of A's message (message 3 in the above piture) beforesending his last message. But B may also deide to send his last message (signature and ma)immediately after, or together with, message 2 (whih results in SIGMA-I). In this way, B mayontrol if he is interested in proteting his own identity from ative attaks or if he prefers to favora faster exhange. The protool may also allow for messages 3 and 4 to ross in whih ase theprotool is still seure but both identities may be open to ative attaks.5.4 Further variants and the use of SIGMA in IKEAs seen above the MAC of the sender's identity is essential for SIGMA's seurity. Here we presenta variant of the protool that di�ers from the above desriptions by the way the MAC value isplaed in the protool's messages. Spei�ally, the idea is to inlude the MAC value under thesignature (i.e., as part of the signed information). The interest on this variant is that it saves in7The only damage of this attak seems to be that it fores A to use a key derived from the distribution gx2 ratherthan gxy. These distributions may be distinguishable depending on the DH groups.20



message length by avoiding expliit sending of the MAC value, and more signi�antly beause it isthe variant of SIGMA adopted into the IKE protools (both IKE version 1 [14℄ and version 2 [19℄).The ma moved under the signature may over just the identity of the sender or the wholesigned information. For example, in B's message the pair (sigB(gx; gy) ; maKm(B)) is replaedwith either (i) sigB(gx; gy;maKm(B)) or (ii) sigB(maKm(gx; gy ; B)). In this way the spae foran extra ma outside the signature is saved, and the veri�ation of the ma is merged with thatof the signature. In either ase, as long as the ma overs the identity of the signer then thesame seurity of the basi SIGMA protool (as well as SIGMA-I and SIGMA-R) is preserved8[8℄. Variant (ii) is used in the IKE protool (version 1) [14℄ in two of its authentiation modes:the signature-based exhange of IKE uses the basi 3-message SIGMA protool (without identityenryption) as presented in Setion 5.1 for its aggressive mode, and it uses the 4-message SIGMA-Rin its main mode. (In the later ase, the use of SIGMA-R in IKE is preeded by two extra messagesfor negotiating seurity parameters.) In IKE the ma funtion is implemented via a pseudorandomfuntion whih is also used in the protool for the purpose of key expansion and derivation.9 IKEversion 2 [19℄ uses variant (i) with SIGMA-R as its single key exhange method authentiatedwith publi keys. In this protool the peer's DH exponential is not signed; the essential freshnessguarantee is provided by signing a none hosen by the peer (see Setion 5.1).The SIGMA-R protool has also been adopted in the JFK protool [1℄ whih has been proposedin the ontext of the revision of the IKE protool. We note that in both [19, 1℄ protool SIGMA-R is augmented with mehanisms that provide some defense against Denial-of-Servie attaks asdisussed in Setion 2.3.AknowledgmentI wish to thank Ran Canetti for embarking with me on a long and hallenging journey towards for-malizing and proving the seurity of key-exhange protools (in partiular, the SIGMA protools).Speial thanks to Dan Harkins for being reeptive to my design suggestions when speifying thesignature modes of IKE, and to Charlie Kaufman (and the IPse WG) for inorporating this designinto IKEv2. Thanks to Sara Bitan and Paul Van Oorshot for many useful disussions, and to Pau-Chen Cheng for sharing muh of his implementation and system experiene with me. This researhwas partially funded by the Irwin and Bethea Green & Detroit Chapter Career Development Chair.
8A tehniality here is that moving the ma inside is possible only for ma funtions whose veri�ation is doneby reomputation of the ma value; this is the ase for all ommon ma funtions, in partiular when the ma isimplemented via a pseudorandom funtion as in IKE [14, 19℄.9This use of a prf {as a ma { under the signature has been a soure of onfusion among analysts of the IKEprotool; the prf was sometimes believed to have some other funtionality related to the signature. It is importantthen to realize that its funtionality under the signature is simply (and essentially!) that of a ma overing thesigner's identity. 21



A A De�nition of Seure Key-Exhange ProtoolsHere we expand on the seurity de�nition outlined in Setion 2.1. For a full formalism see [8℄.Reall that we onsider a KE protool as a protool spei�ed to run between pairs of partieswhih wish to establish a seret key known to the partiipating parties only. The ommuniationsenvironment is a multi-party network where any party may run the protool with any other parties.Eah exeution of a protool run within a party is alled a session, and multiple sessions by thesame or di�erent parties may run onurrently. When a KE session ompletes at a party the outputof that session is (a) a session identi�er that uniquely identi�es the session at that party, (b) thename of the identi�ed peer to the session, and () the value of a (seret) session key.Note: We all a KE session ompleted at the point where the session key is output by the protool; at thispoint the loal state of a KE session is erased and the session key is passed to the appliation that requestedit (e.g. an appliation, suh as IPse's ESP [21℄, intended to authentiate and/or enrypt ommuniationstraÆ). We also note that while we refer to a session key as a single key, further keys may be produed bythe session or be derived from this single session key.The adversarial model has been summarized in Setion 2.1. In essene, the ommuniationlinks between the parties are ontrolled by a fully ative attaker, whih also has ontrol of thesheduling of sessions and message delivery. The attaker may also orrupt any party (in whihase the attaker learns the long-term seret information held by that party, and an impersonateit at will), and may expose a session by learning seret data related to that spei� session (suhas ephemeral session state information or the output session key).Seurity of key-exhange protools. On the basis of the above attaker apabilities we outlinethe de�nition of seurity for a KE protool. We �rst reall (see Setion 2.1 that we onsider a sessionas a loal objet run at a party. In partiular, when two parties A and B interat in a run of theKE protool they eah have a loal session orresponding to this run. Sessions are denoted by thename of the party holding the session and a session identi�er. The formal treatment in [7, 8℄ usesthe notion of \mathing sessions" to denote sessions that are related to the \same exhange". Herewe simplify our presentation by impliitly referring to mathing sessions as those that have thesame session identi�er. In pratie this requires that parties reate session identi�ers interatively(before or during the KE run). Spei�ally, we assume the ommon pratie where (as part of theprotool) A sends to B a value sidA, B sends to A a value sidB , and they both de�ne the sessionidenti�er as s = (sidA; sidB) (for an example see the full-edge protool in Appendix B, or theIKE protools [14, 19℄ where these session identi�ers are alled \ookies" and SPIs, respetively).In this ase we name the loal session at A as session (A; s) and the loal session at B as (B; s).Note that eah party needs to hoose its loal session id sid to be unique among all sessions atthat party. This suÆes to ensure the uniqueness of s at that party. Thus, there is no need for theparty to keep a global view of session identi�ers at other parties, or to depend on the hoie of sidby the peer.We also use the following notation: if a party P ompletes a session (P; s) with output (s;Q; k)(denoting the session-id, the peer to the session, and the session key, respetively) then we writepeer(P; s) = Q and sk(P; s) = k.De�nition. We say that a key-exhange protool is seure (in the adversarial setting desribedabove) if the following holds. Let (P; s) be a session that ompletes at an unorrupted party Pwith peer(P; s) = Q. Then:1. If Q ompletes session (Q; s) while P and Q are unorrupted then22



(a) peer(Q; s) = P ; and(b) sk(Q; s) = sk(P; s).2. If the sessions (P; s) and (Q; s) are not exposed then the attaker annot distinguish sk(P; s)from a random value10.This de�nition is somewhat stronger than the de�nition of seurity in [8℄ whih does not guaranteeondition 1(a) (and it guarantees 1(b) only in ase that 1(a) holds). We use this stronger de�nitionhere sine it is simpler to state and is satis�ed by the SIGMA protools. (In ontrast, some naturalKE protools, suh as the ENC protool from [7℄, satisfy the de�nition from [8℄ but not the abovestronger variant.)Proving seurity. The above seurity model and de�nition is aimed at apturing a small setof requirements for key-exhange protools that when satis�ed provide assurane for many otherdesired seurity properties and resistane to a large variety of attaks. In partiular, they overin a systemati way di�erent attak senarios, without neessitating of an exhaustive enumerationof the attaks. Very importantly, this ompat mathematial formulation of seurity allows forseurity proofs to be arried in this model. In partiular, suh proofs are provided for a varietyof KE protools in [7℄ and for the SIGMA protools in [8℄. Following the omplexity-theoretiapproah to the analysis of KE protools initiated in [2℄, these papers show how to relate theseurity of the protool to the seurity of the underlying ryptographi funtions. Moreover, thisanalysis is \onstrutive" in the sense that any feasible attak strategy that breaks the seurityrequirements in the model an be transformed into an expliit eÆient algorithm to break one ofthe ryptographi funtions used in the protool (in the ase of SIGMA, for example, this maybe an attak against the basi DH transform, or a forgery attak against the signature or MACshemes used in the protool). Therefore, as long as the underlying funtions are seure so is theKE protool. Note that this analysis is done on the basis of the generi requirements from theseryptographi funtions and does not depend on their spei� instantiation (we usually refer to thisalgorithm-independene property as generi seurity).Finally, we remark that not only the above seurity formulation provides a strong basis for theanalysis of protools, but atually serves as a design tool too. By understanding the requirementsthat arise from this seurity model one an derive lear seurity priniples appliable to the designof spei� protools. For example, these requirements make lear the need for (i) deriving fresh keysfor eah session; (ii) avoiding the use of the session key during the KE run (whih in turn requiresareful key derivation tehniques); (iii) maintaining the (omputational) independene betweenkeys of di�erent sessions; (iv) preventing unnotied replay of old messages; (v) using fresh sessionidenti�ers for binding messages to partiular sessions; and (vi) the essential role of a areful bindingbetween sessions, identities and keys. In designing a KE protool all these elements MUST appearin the protool or otherwise seurity in the above model annot be guaranteed. On the other hand,understanding the role of eah element in the design simpli�es the resultant protool by avoidingthe need to add preautionary \safety margins".B A \full edge" ProtoolAs \dislaimed" in Setion 2.3 our presentation of the key-exhange protools in this paper showsonly the ryptographi skeleton of these protools. When embedding these protools in real ap-10More preisely, the probability of the attaker to win the distinguishing game when (P; s) is hosen as the testsession is negligibly larger than 1/2 (see [8℄). 23



pliations one has to add to these protools additional information related to the hoie (or ne-gotiation) of seurity parameters, environmental data (suh as network protool information), et.Very importantly, the protools should separate the funtions of DH exponentials and freshnessnones into di�erent elements (something that our presentation avoids in the name of simpliityand \ompatibility" with the presentation in other papers). In addition, protools need to inludesession identi�ers that serve to math inoming messages with new or existing sessions as well asto identify exhanged keys with their orresponding sessions. For illustration purposes we presentin this appendix a more general form of the protool SIGMA-R (from Setion 5.3) in whih someof the elements missing in our simpli�ed presentation in Setion 5 are shown expliitly.A sidA ; gx; nA ; info1A - BsidA ; sidB ; gy ; nB ; info1B� sidA; sidB ; f info2A; A; sigA(nB; sidA; gx; info1A; info2A);maKm(A) gKe -sidA; sidB ; f info2B ; B; sigB(nA; sidB ; gy ; info1B; info2B);maK0m(B) gK0e�Here sid stands for the session identi�er hosen by eah party for the ongoing session; the value sidAhosen by A is returned in the response messages by B, and similarly sidB is added in messagesfrom A to B (exept for the initial message). The nones nA and nB are hosen freshly and anewwith eah session by A and B, respetively, and they serve to guarantee freshness of the exhangedkey and to protet against replay11. (We note that some protools may speify that nones serve forthe dual purpose of freshness guarantee and session identi�ers.) The info �elds represent additionalgeneri information that an be arried in the protool messages. The letters A and B arried in themessages denote the identities of the partiipants: they may be addresses, logial names, full publikey erti�ates, et. The atual seurity of the protool depends on a orret binding betweenthese identities, the publi keys used to verify the signature, and the internal poliy of eah partythat spei�es whether a key-exhange with that party is to be ompleted or not. The enryptionfuntionality inluded in this illustrative protool may be applied optionally (we also note that inthe general ase the third and fourth messages may arry an info �eld internal to the enryptionand another suh �eld in leartext form). If enryption is applied, and identity protetion ofthe responder B is sought against ative attakers, then (at least in the ase of message 4) theenryption funtion must be seure against ative attaks, e.g. it may use a regular enryptionmode with a MAC funtion omputed on top of it. The keys Km;K 0m;Ke;K 0e used in the protool(to key the ma and enryption funtions, respetively) as well as the output session key Ks areall derived from the DH key gxy in a omputationally independent way, e.g. by arefully using apseudorandom funtion (see Appendix C).In our above illustration of a full-edge protool, we hose to sign the essential �elds in theprotool. As a general design rule, however, it is reommended that a party sign the peer's noneonatenated with the whole information sent during the protool by the signing party. Moreover, ifthe same signature keys are used for other appliations then the information signed in the protoolshould also inlude some \ontext information" (suh as protool name, message number, et.). Asa �nal note, it is essential that protools speify that the signature overs the peer's none; it is also11Note that in this full-edge version the peer' DH exponential is not signed but the peer's none is.24



important that nones are positioned in �xed loations in all signatures (e.g., always as the �rstitem under the signature or always at the end). Having the none in hanging positions may openprotools to attak. As a simple example, onsider the basi SIGMA protool from Setion 5.1.In this protool one uses the peer's DH exponential with the funtionality of a none. One ouldhange the protool to speify that in the signature from B to A (seond message) the none (i.e.the peer's exponential) goes at the beginning of the data to be signed, while in the signature fromA to B the peer's none goes seond. (That is, the seond message inludes sigB(gx; gy) while thethird inludes sigA(gx; gy).) This \slight modi�ation" is suÆient to make this protool inseure:it is open to a serious reetion attak against B (left as an exerise...)C Key DerivationKey derivation is a fundamental omponent of any key-exhange protool and, in partiular, of theSIGMA protools. Here we disuss two basi issues related to key derivation: (i) how to derive\omputationally independent" keys from an initial \seed key"; and (ii) how to ompute suha seed key from a DiÆe-Hellman value gxy. The former aspet is ommon to virtually all KEprotools, while the latter is required by DiÆe-Hellman exhanges (SIGMA inluded). The key-derivation design disussed here is reommended for use with SIGMA (and an be applied to otherKE protools as well). On the other hand, SIGMA may remain seure with other key-derivationstrategies as long as the ryptographi soundness of the \key independene" priniple disussedbelow is preserved.C.1 Derivation of multiple keys from a seed keyFor simpliity we often think of KE protools as outputting a (single) session key; however, inpratie one usually needs to derive more than one key per session (e.g., a MAC key and anenryption key). Moreover, in some ases (and SIGMA is one of them) not only the KE protoolneeds to provide a session key (or keys) to the alling appliation but it needs to derive keys usedinternally by the key exhange itself. (Suh is the ase of the MAC key used in all the SIGMAvariants, and the additional enryption key needed to provide identity protetion.) A fundamentalpriniple is that all derived keys (whether used internally by the protool or output by it) need tobe omputationally independent from eah other. Roughly speaking, we need to ensure that givenany information on one or more of these derived keys, all other derived keys remain seure. Intehnial terms this alls for the indistinguishability (usually from the uniform distribution) of anyof these keys even when all other derived keys are given to the distinguisher.One a �rst key, k (whih we all a \seed key"), is exhanged by the parties, all other keys anbe derived in a omputationally independent way through the use of a pseudorandom generatoror a pseudorandom funtion family.12 In the former ase, the key k is used as a seed to the12See [13℄ for a formal de�nition of pseudorandom funtion families. Informally, the main properties of these fam-ilies are: (i) Eah funtion in the family is determined by a key k (we usually denote by fk the resultant funtion);knowledge of a key k allows to (eÆiently and deterministially) ompute the funtion fk on any input. (ii) For anobserver Eve that is not given the key k, the funtion fk behaves essentially as a random funtion; in partiular,seeing the funtion fk omputed on any set of values v1; v2; : : : ; vn (hosen by Eve) is of no help for deduing anyinformation on fk(v) (other than its length) for any value v not in the above set. Pseudorandom funtions aresometimes alled \keyed hash funtions" (an unde�ned and abused terminology that should be abandoned).The most ommon implementations of pseudorandom funtions inlude HMAC (based on ryptographi hash fun-tions) and CBC-MAC (based on blok iphers { a variable-length input variant is XCBC-MAC [4℄).25



pseudorandom generator; in the latter, k is used as a key for seleting a spei� funtion in thepseudorandom family. In both ases, a stream of ` pseudorandom bits is produed, where ` is thetotal number of key bits required internally and externally by the protool (that is, ` is determinedas the sum of lengths of all keys to be derived from k). When using a pseudorandom funtion toderive new keys from a seed key k, the simplest strategy is to ompute the required stream of bitsby suessive omputations: fk(1); fk(2); fk(3), et. We refer to this usage of the pseudorandomfuntion as \ounter mode". A somewhat more onservative approah is to use the pseudorandomfuntion in \feedbak mode". In this ase, the stream of ` key-bits is omputed as the onatenationof a sequene of values t1; t2; t3; : : :, where t1 = fk(; 1) and for i > 1, ti = fk(ti�1; ; i). In thisnotation, the omma inside the funtion's argument represents onatenation,  is a \ontext value"(suh as a string identifying a partiular protool or appliation, one or more nones exhangedduring the protool, a sequene number related to the urrent run of the protool, et.)13, and irepresents a sequential numeri value (an integer, byte, et). The \ontext value" may be useful tobind the urrent derivation to a partiular protool run or instane. The sequene value i ensuresthat all inputs to fk are di�erent. The \feedbak value" ti is used to make all the inputs to thepseudorandom funtion signi�antly di�erent. (We note that even when using ounter mode, it isadvisable to use a ontext value as in feedbak mode, yet this does not resolve the issue of losenessbetween inputs disussed next.)This input-variability property is the main advantage of \feedbak mode" over "ounter mode".In the latter, the onseutive inputs to the funtion di�er by very little (e.g., by a single bit); inontrast in feedbak mode onseutive inputs di�er very signi�antly due to the pseudorandomnature of the values ti. We note that this di�erentiation between the two modes should be on-sidered a prudent engineering pratie rather than an aademially founded priniple. Indeed, ifthe funtion family ffkg behaves as a truly pseudorandom family then both modes are equallyseure. On the other extreme, a total break of the family f may make it as easy to �nd the outputvalues produed by feedbak mode as those produed by ounter mode. Yet, in pratie, where weexpet to see progressive ryptanalytial improvements, we reommend \feedbak mode" as a morerobust strategy for the imaginable ase in whih newly found weaknesses in the family f make itsigni�antly easier to relate (for example) the values t2 = fk(2) and t3 = fk(3), than the valuest2 = fk(t1; ; 1) and t3 = f(t2; ; 2). This onsideration has been the basis for our reommendation,and subsequent adoption, of \feedbak mode" as the basi key-derivation tehnique in the IKEprotools (version 1 and 2) and the TLS protool [10℄ (the key-derivation spei�ation in IKEv2 isthe \leanest" via the prf+ onstrut; IKEv1 and TLS inlude slight variants of this mehanism).C.2 Derivation of a seed key from a DiÆe-Hellman keyIn DiÆe-Hellman exhanges, espeially those in whih the peers share no prior serets, the aboveseed key is to be omputed from the DiÆe-Hellman key gxy. One may be tempted to use gxy itselfas a seed to a pseudorandom generator or as a key to a pseudorandom funtion. For example, usingounter mode one would derive a stream of bits fgxy(1); fgxy(2) : : : However, note that there are twoobstales for this use of gxy as a seed key. First, most pseudorandom generators and pseudorandomfuntions, do not aept seed keys of arbitrary length, espeially given the onsiderable length of aDiÆe-Hellman output.14 Seond, the value gxy is not distributed uniformly over the set of strings13The value  needs to be derivable from publi information in the protool; in partiular, it should not inludethe seret key k.14HMAC is an exeption sine aording to its spei�ation [24℄ keys longer than a blok size (typially, 512 bits) are�rst hashed. Operationally, this allows the use of long keys in HMAC. Its analytial justi�ation, however, requires26



of ertain length (as usually required for ryptographi keys), but rather over some mathematial(DiÆe-Hellman) group. Moreover, in the ase of non-prime order generators (this is the ase forthe standardized DH groups in IKE) there is expliit information that an be learned about thevalue gxy from the exponentials gx; gy; e.g., the quadrati residuosity of gxy is diretly related to(and omputable from) that of gx and gy. Therefore, we annot use the value gxy itself as a (seed)key but rather we need to derive a shorter and better randomized (i.e., omputationally loser touniform) key out of gxy.A well-known mehanism for ahieving these two goals uses strongly-universal hash funtions(UH) [9℄. Using the so alled \Leftover Hash Lemma" (see [13℄; Lemma 3.5.1) one an apply tothe DH value gxy a randomly hosen funtion from a UH family (with a suitable output length)and obtain an output of the required length whih is indistinguishable from random provided thatthe DiÆe-Hellman key has suÆient \omputational entropy" (the exat quantitative details areomitted from this informal disussion). It is important to note that the \randomness extration"e�et of a UH family holds also if the observer (say the attaker) not only knows gx; gy, but alsothe key that identi�es the spei� hash funtion being applied to the gxy value. Thus, the followingproedure ensures a seure (pseudorandom) output from any DiÆe-Hellman exhange: in additionto a DH group, the protool spei�es a UH family; also, together with the DH exponentials gx; gy ,the parties exhange (in the lear) random nones r1; r2 from whih a random key r is derived(e.g., via onatenation or XORing of r1 and r2). Now, both parties ompute the (seed) key asUHr(gxy). This seed key is guaranteed to have the length and ryptographi strength required forfurther key derivation (using any of the tehniques disussed in the previous subsetion).The above proedure, however, adds omplexity to the spei�ation and implementation of theKE protool by requiring one more primitive in the form of a UH family. Our proposal (adopted intoIKE, versions 1 and 2) is to use the above proedure, but with the pseudorandom funtion family(needed anyway in the protool for derivation of keys from the seed key) ating as a UH family.In other words, the seed-key derivation follows the above desription but UHr(gxy) is replaedwith fr(gxy). Is this seure? Had the key r be seret (i.e. unknown to an attaker) then oneould easily argue on the basis of the seurity properties of a pseudorandom family (spei�ally,its indistinguishability from random) that the derived seed key is seure. However, the aboveproedure does not hide r, and therefore one annot laim the seurity of the seed key solelybased on the standard seurity properties of a pseudorandom family. Moreover, we an show anexpliit (speially tailored) example of a pseudorandom family that when used in the above wayprodues seed keys that are eÆiently distinguishable from random. Yet, we make the heuristiassumption that natural (and reasonable) pseudorandom funtions have the suÆient statistial (orombinatorial) strength to satisfatorily at as good \randomness extrators" similarly to stronguniversal hash families. In partiular, this seems to be a plausible assumption (given urrentknowledge) regarding spei� families suh as HMAC-SHA1 or AES.We will not expand further on these issues here. A more omprehensive analytial treatmentof pseudorandom funtions ating as randomness extrators is the subjet of on-going work whihwe hope to publish shortly.of speial assumptions on the underlying hash funtion and therefore the approah suggested here applies also whenthe pseudorandom funtion is implemented via HMAC.
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