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ON THE PRINCIPLE OF CONSERVATION OF INFORMATION
IN INTUITIONISTIC MATHEMATICS
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1. Herein we consider a new intuitionistic axiomatic theory, based on the principle

of conservation of information (the axiom schema (4.1)). This principle states that 1in
the process of forming a free choice sequence there can be no unbounded growth of the
quantity of iz‘ﬁig%grmation contained in it about the truth of arithmetic predicates. For this
we use the concept of ‘‘quantity of information’’, itntroduced by A. N. Kolmogorov [2]

on the basis of ‘‘algorithmic complexity’’ and later made more precise 1n 13]. Also
studied in [3] was the ‘‘principle of conservation of information’ in the form of laws
of probabﬂiity theory, and the Thesis 1 was formulated, according to which these laws are
fulfilled, in general, in any process of an arbitrary physical nature. If we interpret
intuitionistic sequences as sequences whose members can be obtained in some sort of
process actually taking place in the physical world, then the thesis mentioned sub-
stantiates the naturalness of the adoption of the principle (4.1).

If we term as ‘‘elementary’’ a physical process generating a sequence that cannot
be represented as the result of applying a computable operator to the result of a phys-
ical process ‘‘simpler’’ than the one under consideration, then, extrapolating the proper-
ties of familar natural phenomena, we can plausibly assume that:

1) any natural process generating a sequence can be “‘understood’’, i.e. can be
represented in the form of a superposition of an ‘‘elementary’ (in the sense above)
physical process and a computable operator;

2) the sequence generated by an elementary physical process is always random
according to some very simple probability distribution.

Then the theorem in [3] on the nongrowth of information in random and computable

processes is sufficient for the justification of the principle of conservation of infor-

mation.

2. Our theory (f Inf will be constructed by adding a group of axioms ((4.1), (4.2),
and latef?(i_l)) to the calculus {, which we shall describe in this section and take
as a basis. ( is formulated in the usual language of second-order arithmetic. This
language is obtained by adding to the language of first-order arithmetic (see [1], $38)
a countable list of second-order variables denoting sequences of natural numbers or
functions, and adopting the following rules for the formation of terms and formulas: if
o is a second-order variable, ¢ is a term, and ® is a formula, then alt) is a term, and
Vv a® and 3a®d are formulas. A formula will called absolute if it is constructed from
equalities between terms with the aid of conjunction, negation and universal quantifica- .

tion on first-order variables. Absolute formulas have identical meanings in 1ntultionisticC

and classical theories. By a pair of terms (@1, czz) we shall mean the term (621 - ﬂz)z
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Then, allowing liberties with the language, we can use the following notation fcr this

rion on ¢ of the term ¢). Handling the expression

-
)

c. {n is equal to the proje
a like 2 term will never cause any misunderstanding, in particular thanks to (Z.2).
The axioms for ({ consist of the axioms of first-order arithmetic (see [1] , Russian p.

: ; " ! : » " i
467; Schema 8 is taken in the intuitioniStic version 2 ') and the following three principles of

second order arithmetic:

Schema of choice:

(Vo( 14—82P(z)))>daVn (TA—P(priafn, t))) (2.1)

T.eningrad principle:

1¥;f’3¢((j‘?‘?}?, C&(n) :O)+H}g a(n)i{}) (2.2)

Axiom of countability

He, VB Tk Vi p(n) =prea(k, 1, ). (2.3)

Axiom (2.3) asserts that the set of intuitionistic sequences is countable. Under the

interpretation of intuitionistic sequences as sequences of results of real macroevents

in the physical world, Axiom (Z.3) corresponds to the customary statement on the

separability of space-time. We shall not discuss the axioms of ({ in detail, since this

has been done many times in the literature, We observe only that for the construction

of any “‘complete’’ (satisfying Theorem 1) calculus, it is necessary to take either
these axioms (if only under double negation), or their negation, or their equivalence to
some undecidable absolute statements of number theory. The last two variants seem to
1t is well known that (2.1)—(2.3) are inconsistent with the principles

f continuity and Bar-induction. In this, the calculus (f more resembles constructive

O

analvsis. The principle difference between them, however, lies in the absence from
({ of Church’s thesis. Its rejection is dictated by the desire to interpret the sequences
of our theory as sequences of results of events occuring in nature. Of course, the

e : ‘ . ' . . ;
calSulus (f, lacking both Bar-induction and Church’s thesis, 1s still too weak. None-

theless, we have

Proposition 1. For any formula © there exists an absolute formula P such thai

@%q}mvaaggp

3. Some notions in the algorithmic theory of information. The backgmund is
explained briefly and superficially; for more detail, see (3] (as well as [2], [5]).

A nonnegative real function f{x) defined on finite sequences of natural numbers 1S
called enumerable (from below) if the set of pairs (7, x), where 7 1s a rational number
less than f(x), is recursively enumerable. A function [(x, o) is called enumerable
(from below) if f(x, a)=sup ['(x, (a) ), where x is a natural number, & is an infinite
sequence of natural numbers, (@)  is its segment of length 7, and {’is an enumerable

function. A function f(x) will be called computable if the functions f(x) and 1/f(x)
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are enumerable. The signs 2=, =<, =
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sequence obtained by adaing x onio d finite sequence S.

The first of these maximal functions is denoted by P(x), the second by P(x|a), the
third by M(s); the integral parts of the absolute values of their logarithms are denoted

respectively by KP(x), KP{x|a) and kM(s). Let a, B be finite or infinite sequences.

Then the amount
I(aiﬁ):‘[l@gz Z(P(xicc) P(ylp)-P(z,y)/P(z) *P(y))]

is called the quantity of :formation in each of them about the other.

For finite s and any 5, KM(s) %f(s: ‘8\1 helds, so KM(s) can serve as a characters
ization of the ‘‘full amount of information in s'’, or the “‘complexity of s”. Let f(s)
be an arbitrary computable function such that f(s) > f(sx). Then [ﬂlong(é‘)] %KM(S)
by the definition of KM. For certain « there may exist a computable f for which this
inequality becomes the equality KM((a) )= [—log, f((a) )l. Then with the help of [
one can effectively compute KM((Q)?I\) ‘o within an additive constant for all n (but
generally KM is not computable). Such a sequence Q 1S called complete. Thus com-
plete sequences contain all the :nformation about the complexity of their segments

needed to compute it. The set of complete sequences is closed under computable,

everywhere defined operators; any computable pneasure of its complement is equal to
sero. The term ‘‘complete’’ is warranted, In particular, by the fact that any sequence
can be ‘‘completed’’ without using any “prohibited’” information; more precisely, we
have

Proposilion 3. Let B be a sequence soy which a universal recursively enumerable
set is reducible, and let o be a sequence such that [(a: B) < oe.

Then there exists a y such that the pair (y, a) 1S complete and I((y, a) : ) < oon

4. The information calculus @ 1nf. Let £{n) be an absolute predi{:até with a single
free variable 7. A finite binary sequence P of length & is said to be compatible with
P if, for any 7 < &, the nth number in p is zero if -and only if P(n) holds (we denote
this fact by writing p.C ?). The abbreviation [(a: %) will be taken to mean
sup Ka: p): p C ?. ObViously_the statement I{a: f})) < wE cafl, for each concrete ?, be

written in the form of an absolute predicate with free variables @ and ¢.

The principle of conservation of information is an axiom schema (# is the para-

meter of this schema). Using the abbreviations ‘ntroduced above, this principle can

he written as

Vele (o P)=<ec. (4.1)

& . : . oy &
One more statment relative to the theory of information must be valid in ({ Inf.

We give it below as the last axiom of the theory, but we cannot prove its independence
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(it may turn out that its double negation is a consequence of the preceding axioms). In

$3 we defined the notion of a complete sequence. The property of "‘being complete’ is
ate Hla)

"l._.-""q..l":ﬁ

2 % i 1 4
Our last axiom demands that for secuences

L

)

expressible by an absolute pred:
of our theory the completion mentioned in Proposition 3 must exist within the bounds of
this theory:

Vo 8y (e, 7). (4.2)

The double negation of this axiom follows from the weaker statement
Td vy (e, ), inasmuch as we can use the existence of a “universal’’ sequence by
Axiom (2.3). Analogously, the double negation of the principle (4.1) follows from the state-

ment 13a Y I{a: ¥) > c¢. For our purposes it would be sufficient to limit ourselves

to these weaker versions of the axioms, but we chose the formulations (4.1) and (4.2)

because they are simpler.

5. Absoluteness. (onsistency and é@mpleteness relative to classical arithmetic.
Definition. We shall say that a theory G 1is absolute if for every closed formula
® there is an absolute (see $2) formula P such that G — 17D & P).

Constructive analysis is an example of a theory known to be absclute. This 1s the

theory obtained from (f by replacing (2.3) with Church’s thesis (CT):

VB akVn B(n)=u(k, n), (5L

where u(k, ) 1s a universal partially recursive function. ((5.1) is obtainable from (2.3)
by imposing the condition of general recursivness on a.) QOur theory (f Inf is of course
wot absolute, inasmuch as the formula ! (CT) is not deducible in it, nor is it refutable,

nor can it be reduced to any absolute formula. This formula, however, 1s the only one

of this sort; namely we have the

Basic Lemma. For any closed formula @ there exist four absolute formulas P,

‘Dz’ Paj 94 such that these statements are deducible in (£ Inf:

"7—'(P1\/Pz\/Pa\/P4); T_I(Pi:’@); kL (Pz‘:)_i(}))_;
(P, (Dos (CT)); (P> (Do H{CT))

To get a "‘complete’ theory it is necessary to take an axiom implying the truth
or the falsity of (CT). It turns out that this is sufficient as well. The theory ({ Inf

+ (CT) is equivalent to constructive analysis, and 1s consequently absolute. It is of

little interest for our purposes, since by admitting of Church’s thesis we exclude from
consideration those sequences not specifiable by algorithms (for instance, the random
sequences). To the degree that (CT) is a very strong axiom, the axiom "HCT) is,
inversely, very weak, Thus it is unexpected, but the theory (f Inf+ WCT) is also

absolute. This fact follows from the Basic Lemma and is strengthened in the followi'ﬂg

theorem.

Theorem 1. The class of absolute closed formulas deducible in (f Inf+ " (CT)

coincides with the class of absolute theorems of classical arithmetic (of the first
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oraer). No esseniial extension (i.e. one containing new theorems of the fo;rm—!
. 5 T . 4 T N1 s '

ihe theory & Inf+ (CT) has this property.

I Inf+ YCT)is in a definite sense compiete and has a property
which can be called consistency and completeness relative to classical arithmetic. The

basic goal of the construction of this theory was the study of the axiom schema (4.1).
We wished to &emonstraff the strength of this schema when added to a theory satisfying
Theorem 1. This doeéjje?tclude the possibility of making such an addition in some other
natural fashion. We chose this one by analogy with the usual axiomatic constructive
analysis. |

A number of discussions rendered a helpful influence on the present article: in the
seminar of A. A. Markov (Corresponding Member of the Academy of Sciences of the USSR)
during 1969—73, at the symposium on the foundations of mathematics at Obninsk in 1971,
1n A. G. Dragalin’s seminar and elsewhere. The author expresses his deep gratitude

to all the participants of these discussions. He 1s grateful to G. Gargov for bibliographical

references,
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