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Appendix A: Abstracts of Kolmogorov's talks

Some talks at the meetings of Moscow Mathematical Society have short abstracts published in the journal
�Óñïåõè ìàòåìàòè÷åñêèõ íàóê� (Uspekhi matematicheckikh nauk, partially translated as �Russian mathe-
mathical surveys�; these abstracts were not translated). Here we reproduce abstracts of three talks given by
A.N. Kolmogorov devoted to algorithmic information theory (translated by Leonid Levin).

I. [vol. 23, no. 2, March-April 1968].

1. A.N. Kolmogorov, �Several theorems about algorithmic entropy and algorithmic amount of informa-
tion.�

Algorithmic approach to the foundations of information theory and probability theory was not developed
far in several years from its appearance since some questions raised at the very start remained unanswered.
Now the situation has changed somewhat. In particular, it is ascertained that the decomposition of entropy
H(x, y) ∼ H(x) + H(y|x) and the formula J(x|y) ∼ J(y|x) hold in algorithmic concept only with accuracy
O([log H(x, y)]) (Levin, Kolmogorov).

Stated earlier cardinal distinction of algorithmic de�nition of a Bernoulli sequence (a simplest collective)
from the de�nition of Mises-Church is concretized in the form of a theorem: there exist Bernoulli (in the
sense of Mises-Church) sequences x = (x1, x2, ...) with density of ones p = 1

2 , with initial segments of entropy
(�complexity�) H(xn) = H(x1, x2, ..., xn) = O(log n) (Kolmogorov).

For understanding of the talk an intuitive, not formal, familiarity with the concept of a computable
function su�ces.

(Moscow Mathematical Society meeting, October 31, 1967)

II. [vol. 27, no. 2, 1972]

1. A.N. Kolmogorov. �Complexity of specifying and complexity of constructing mathematical objects.�

1. Organizing machine computations requires dealing with evaluation of (a) complexity of programs,
(b) the size of memory used, (c) duration of computation. The talk describes a group of works that
consider similar concepts in a more abstract manner.

2. It was noticed in 1964-1965 that the minimal length K(x) of binary representation of a program spec-
ifying construction of an object x can be de�ned invariantly up to an additive constant (Solomono�,
A.N. Kolmogorov). This permitted using the concept of de�nition complexity K(x) of constructive
mathematical objects as a base for a new approach to foundations of information theory (A.N. Kol-
mogorov, Levin) and probability theory (A.N. Kolmogorov, Martin-L�of, Schnorr, Levin).

3. Such characteristics as �required memory volume,� or �required duration of work� are harder to free
of technical peculiarities of special machine types. But some results may already be extracted from
axiomatic �machine-independent� theory of broad class of similar characteristics (Blum, 1967). Let
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Π(p) be a characteristic of �construction complexity� of the object x = A(p) by a program p, and
Λ(p) denotes the length of program p. The formula KnΠ(x) = inf(Λ(p) : x = A(p),Π(p) = n) de�nes
�n-complexity of de�nition� of object x (for unsatis�able condition the inf is considered in�nite).

4. Barzdin's Theorem on the complexity K(Mα) of pre�xes Mα of an enumerable set of natural numbers
(1968) and results of Barzdin, Kanovich, and Petri on corresponding complexities KnΠ(Mα), are of
general mathematical interest, as they shed some new light on the role of extending previously used
formalizations in the development of mathematics. The survey of the state of this circle of problems
was given in the form free from cumbersome technical apparatus.

(Moscow Mathematical Society meeting, November 23, 1971)

III. [Vol. 29,. no. 4 (155), 1974]

1. A.N. Kolmogorov. �Complexity of algorithms and objective de�nition of randomness.�
To each constructive object corresponds a function Φx(k) of a natural number k � the log of minimal

cardinality of x-containing sets that allow de�nitions of complexity at most k. If the element x itself allows
a simple de�nition, then the function Φ drops to 1 even for small k. Lacking such a de�nition, the element
is �random� in a negative sense. But it is positively �probabilistically random� only when function Φ, having
taken the value Φ0 at a relatively small k = k0, then changes approximately as Φ(k) = Φ0 − (k − k0).

(Moscow Mathematical Society meeting, April 16, 1974)

Appendix B. Levin's letters to Kolmogorov

These letters do not have dates but were written after submission of [Zvonkin, Levin 1970] in August 1970
and before Kolmogorov went (in January 1971) to the oceanographic expedition (�Dmitry Mendeleev� ship).
Copies provided by L. Levin (and translated by A. Shen).

I.

Dear Andrei Nikolaevich! Few days ago I've obtained a result that I like a lot. May be it could be useful to
you if you work on these topics while traveling on the ship.

This result gives a formulation for the foundations of probability theory di�erent from Martin-L�of. I
think it is closer to your initial idea about the relation between complexity and randomness and is much
clearer from the philosophical point of view (as, e.g., [Yu. T.] Medvedev says).

Martin-L�of considered (for an arbitrary computable measure P ) an algorithm that studies a given se-
quence and �nds more and more deviation from P -randomness hypothesis. Such an algorithm should be
P -consistent, i.e., �nd deviations of size m only for sequences in a set that has measure at most 2−m. It
is evident that a number m produced by such an algorithm on input string x should be between 0 and
− log2 P (x). Let us consider the complementary value (− log2 P (x)) − m and call it the �complementary
test� (the consistency requirement can be easily reformulated for complementary tests).

Theorem. The logarithm of a priori probability [on the binary tree] − log2 R(x) is a P -consistent com-

plementary test for every measure P and has the usual algorithmic properties.

Let me remind you that by a priori probability I mean the universal semicomputable measure introduced
in our article with Zvonkin. [See [Zvonkin, Levin 1970].] It is shown there that it [its minus logarithm] is
numerically close to complexity.

Let us consider a speci�c computable measure P . Compared to the universal Martin-L�of test f (speci�c
to a given measure P ) our test is not optimal up to an additive constant, but is asymptotically optimal.
Namely, if the universal Martin-L�of test �nds a deviation m, our test �nds a deviation at least m−2 log2 m−c.
Therefore, the class of random in�nite banry sequences remains the same.

Now look how nice it �ts the philosophy. We say that a hypothesis �x appeared randomly according to
measure P � can be rejected with certainty m if the measure P is much less consistent with the appearence of
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x than a priori probability (this means simply that P (x) < R(x)/2m. This gives a law of probability theory
that is violated with probability at most 2−m. Its violation can be established e�ectively since R is [lower]
semicomputable [=enumerable from below]. But if this law holds, all other laws of probability theory [i.e., all
Martin-L�of tests] hold, too. The drawback is that it gives a bit smaller value of randomness de�ciency (only
m − 2 log2 m − c instead of m), but this is a price for the universality (arbitrary probability distribution).
The connection with complexity is provided because − log2 R(x) almost coincides with complexity of x. Now
this connection does not depend on measure.

It is worth noting that the universal semicomputable measure has many interesting applications besides
the above mentioned. You know its application to the analysis of randomized algorithms. Also it is ofter
useful in proofs (e.g., in the proof of J.T.Schwartz' hypothesis regarding the complexity of almost all trajec-
tories of dynamic systems). Once I used this measure to construct a de�nition of intuitionistic validity. All
this show that it is a rather natural quantity.

L.

II.

Dear Andrei Nikolaevich!
I would like to show that plain complexity does not work if we want to provide an exact de�nition of

randomness, even for a �nite case. For the uniform distribution on strings of �xed length n the randomness
de�ciency is de�ned as n minus complexity. For a non-uniform distribution length is replaced by minus the
logarithm of probability.

It turns out that even for a distribution on a �nite set the randomness de�ciency could be high on a set
of large measure.

Example. Let

P (x) =

{
2−(l(x)+100), if l(x) ≤ 2100;
0, if l(x) > 2100.

Then | log2 P (x)| −K(x) exceeds 100 for all strings x.

A similar example can be constructed for strings of some �xed length (by adding zero pre�xes). The
violation could be of logarithmic order.

Let me show you how to sharpen the de�nition of complexity to get an exact result (both for �nite and
in�nite sequences).

De�nitions. Let A be a monotone algorithm, i.e., for every x and every y that is a pre�x of x, if A(x)
is de�ned, then A(y) is de�ned too and A(y) is a pre�x of A(x). Let us de�ne

KMA(x) =

{
min l(p) : x is a pre�x of A(p);
∞, if there is no such p

The complexity with respect to an optimal algorithm is denoted by KM(x).
Let P (x) be a computable distribution on the Cantor space Ω, i.e., P (x) is the measure of the set Γx of

all in�nite extensions of x.

Theorem 1.

KM(x) ≤ | log2 P (x)|+ O(1);

Theorem 2.

KM((ω)n) = | log2 P ((ω)n)|+ O(1)
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for P -almost all ω; here (ω)n stands for n-bit pre�x of ω. Moreover, the probability that the randomness

de�ciency exceeds m for some pre�x is bounded by 2−m.

Theorem 3. The sequences ω such that KM((ω)n) = | log2 P ((ω)n)|+ O(1),
satisfy all laws of probability theory (all Martin-L�of tests).

Let me use this occasion to tell you the results from my talk in the laboratory [of statistical methods in
Moscow State University]: why one can omit non-computable tests (i.e., tests not de�nable without a strong
language).

For this we need do improve the de�nition of complexity once more. The plain complexity K(x) has the
following property:

Remark. Let Ai be an e�ectively given sequence of algorithms such that

KAi+1(x) ≤ KAi(x)

for all i and x. Then there exists an algorithm A0 such that

KA0(x) = 1 + min
i

KAi(x).

Unfortunately, it seems that KM(x) does not have this property. This can be corrected easily. Let Ai

be an e�ective sequence of monotone algorithms with �nite domain (provided as tables) such that

KMAi+1(x) ≤ KMAi(x)

for all i and x. Let us de�ne then

KMAi(x) = min
i

KMAi(x).

Among all sequences Ai there exists an optimal one, and the complexity with respect to this optimal
sequence is denoted by KM(x). This complexity coincides with the logarithm of an universal semicomputable
semimeasure [=a priori probability on the binary tree].

Theorem 4. KM(x) is a minimal semicomputable [from above] function that makes Theorem 2 true.

Therefore no further improvements of KM are possible.
Now consider the language [=set] of all functions computable with a �xed noncomputable sequence

[oracle] α. Assume that α is complicated enough, so this set contains the characteristic function of a
universal enumerable set [0′].

We can de�ne then a relativized [�ÿçûêîâóþ� in the Russian original] complexity KMα(x) replacing
algorithms by algorithms with oracle α, i.e., functions from this language.

De�nition. A sequence ω is called normal if

KM((ω)n) = KMα((ω)n) + O(1).

For a �nite sequence ωn we de�ne the �normality de�ciency� as

KM(ωn)−KMα(ωn).

Theorem 5. A sequence obtained by an algorithm from a normal sequence is normal itself.

Theorem 6. Let P be a probability distribution that is de�ned (in a natural encoding) by a normal

sequence. Then P -almost every sequence is normal.

This theorem exhibits a law of probability theory that says that a random process cannot produce a non-
normal sequence unless the probability distribution itself is not normal. This is a much more general law
than standard laws of probability theory since it does not depend on the distribution. Moreover, Theorem 5
shows that this law is not restricted to probability theory and can be considered as a universal law of nature:
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Thesis. Every sequence that appears in reality (�nite or in�nite) has normality de�ciency that does
not exceed the complexity of the description (in a natural language) of how it is physically produced, or its
location etc.

It turns out that this normality law (that can be regarded as not con�ned in probability theory) and
the law corresponding to the universal computable test together imply any law of probability theory (not
necessary computable) that can be described in the language. Namely,the following result holds:

Theorem 7. Let P be a computable probability distribution. If a sequence ω is normal and passes the

universal computable P -test, then ω passes any test de�ned in our language (i.e., every test computable with

oracle α).
Note that for every set of measure 0 there exists a test (not necessary computable) that rejects all its elements.

Let us give one more iunteresting result that shows that all normal sequences have similar structure.
Theorem 8. Every normal sequence can be obtained by an algorithm from a sequence that is random

with respect to the uniform distribution.

III.

(This letter has no salutation. Levin recalls that he often gave notes like this to Kolmogorov, who rarely
had much time to hear lengthy explanations and preferred something written in any case.)

We use a sequence α that provides a �dense� coding of a universal [recursively] enumerable set. For
example, let α be the binary representation of [here the text �the sum of the a priori probabilities of all
natural numbers� is crossed out and replaced by the following:] the real number∑

p∈A

1
p · log2 p

where A is the domain of the optimal algorithm.
A binary string p is a �good� code for x if the optimal algorithm converts the pair (p, K(x)) into a list of

strings that contains x and the logarithm of the cardinality of this list does not exceed K(x)+3 log K(x)−l(p).
(The existence of such a code means that x is �random� when n ≥ l(p).)

We say that a binary string p is a canonical code for x if every pre�x of p either is a �good� code for x
or is a pre�x of α, and l(p) = K(x) + 2 log K(x).

Theorem 1. Every x (with �nitely many exceptions) has a canonical code p, and p and x can be

e�ectively transformed into each other if K(x) is given.

Therefore, the �non-randomness� in x can appear only due to some very special information (a pre�x of
α) contained in x. I cannot imagine how such an x can be observed in (extracted from) the real world since
α is not computrable. And the task �to study the pre�xes of a speci�c sequence α� seems to be very special.
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