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ON THE NOTION OF A RANDOM SEQUENCE
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In [1] A. N. Kolmogorov offered a definition of a random object. The necessity for
introducing such a notion is connected with a number of difficulties in justifying prob-

ability theory as a natural science theory. In the indicated paper the quantity &(x),

the algorithmic complexity of an object x, was introduced, and those objects were con-
sidered random for which k(x) differed little from the logarithm of the probability of x.
(Their difference is called randomness deficiency.)

However, this approach.in its original form was suitable only for a finite number of
equiprobable objects. Passing to the nonequiprobable case (which.is always unavoid-
able when considering a random variable with:an arbitrary integral value or a count-
able sequence of random variables) resulted in difficulties. "To overcome these diffi~
culties P. Martin-Lof gave up the introduction of an invariant (independent of a prob-
ability distribution) quantity of the type k(x) and introduced a separate criterion (test)
of randomness (cf. [2] for each.computable distribution. However, the randomness de-
ficiency defined by Martin-Lof was not expressed in 2 natural way by a probability

distribution and some invariant quantity. Kolmogorov’s original definition has an ad-

vantage in this respect which it would be a pity to lose. We shall show in particular how
this definition can be improved so that it is suitable for the most general case.

Of the already well-known results on this subject mention should be made of
Schaoorr’ s result (cf. [4]), which gives a criterion of weak randomness in terms of the
usual Kolmogorov complexity, and of P. Ga&’s results 16].

We shall consider sequences of natural numbers, finite (corteges) and infinite. We

call a sequence in which only the numbers 0 and 1 appear, binary. We call two se-
quences x and y, one of which.is the beginning of the other (x Cy or y C x), coordi=

nated. We recall that a denumerable set A of pairs of corteges (x, y) such that, if
(x, y) € A and (x', y') € A and x is coordinated with. x ', then y is coordinated with.
y " is called a computable operator (cf. [1])-
" Let a be a finite or infinite sequence. Then all corteges y such that for some
x Ca the pairs (x, y) € A are the beginnings of a sequence B (finite or infinite),

which is called the image of the sequence o (8 =-A(Q)) 1)
Definition. The minimal length of a binary cortege x such that A(x) 2y is called

the monotone complexity of the cortege y with respect to the operator A (km 4(y))-

Theorem 1. Among all computable operators an ““optimal one’’ exists with respect

AMS (MOS) subject classifications (1970). Primary 94A15.
(1) The definition of a computable operator was encountered in this form by Ju. T. Medvedev.
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to which complexity is minimal to within an additive constant. We denote this complex-

ity by km(x).

Let P be an arbitrary computable probability distribution on the set of sequences

of natural numbers. (P(x) is the probability that a sequence begins with the cortege x.)

Theorem 2. a) For any sequence(?) a

km (o) < |loge P(an) |.
b) For P-almost all a

km (ca) X |logz P(an) |,

and the probability that [log2 P(an)[ —-:km(an) will be greater than m does not exceed
2™,

c) Those a for which km(a )X fiog2 P(a,ﬂ)[, and only they, satisfy all “‘efficient’’
laws of probability theory (i.e. they withstand any test in the Martin-Lof sense).

Thus the Kolmogorov approach will be corrective in the general case if k(x) is re-
placed by km(x). |

In [3] Levin introduced a universal semicomputable measure R(x), which we also
call the a priori probability of the sequence x. We denote the absolute value of its
binary logarithm by AM(x). .

An underlying relationship exists between km(x) and AM(x). In particular it has
not been known until. now whether these quantities coincide. (Only their asymptotic
coincidence is well known.) |

It 1s, however, easy to prove that &m(x) > AM(x). At any rate, it is possible to
show that AM(x) also satisfies all items of Theorem 2, it being the minimal semicom-
putable function satisfying item b) of that theorem. Expounding item c¢), we obtain the

following assertion.

Theorem 3. A sequence Q is random with respect to the distribution P in the
Martin-Lof sense if and only if the probability ratio P(an)/R(an) is bounded below.

This theorem gives an intuitive definition of randomness: a sequence is random
with respect to the distribution P when its probability with respect to that distribu-
tion 1s not too small (in comparison with the a priori probability, i.e. that P(an)/R(tln)
is bounded).

If a cortege x is not m-random with respect to the distribution P, it is easy to
establish this fact effectively; however, it is not in general possible to establish the
converse fact effectively. (The situation here is the same as with possibility of estab-
lishing the applicability of an algorithm.) It 1s interesting to consider weaker defini-
tions of randomness, but with better algorithmic properties.

In conclusion we consider the notion of a sequence which is random relative to a

class of distributions. Martin-Lof introduced the notion of a ‘‘Bemoulli sequence’’.

Let us agree to denote by B, the Bemoulli measure on binary sequences with the

(2) (a,) is the cortege of the first n numbers of a: the sign < denotes less than or equal

to, to within an additive constant; the sign X denotes equal to, with the same accuracy.
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probability p of one appearing (different trials are independent). Martin-Lof constructed
a computable test which is correct relative to all measures B, (Recall that Martin-
Lof called the set of pairs (x, n), where x is a cortege and »n is a number denoting
the lower bound of the ‘‘randomness deficiency’’, a test. A sequence withstands a test

if all numbers encountered in a pair with its initial fragments are bounded (above). A
test 1S Lco-mpmabfe if its set of pairs is denumerable. A test is correct relative to a
measure P if the set of sequences for which the test has randomness deficiency > m
has P-measure < 27™.) He showed that if a sequence withstands this test, it is a
von Mises collective relative to some p. This result can be strengthened by showing
that a sequence withstands a Martin-Lof Bemoull: test if and only if there 1s a p for
which the sequence withstands any test which is correct relative to the measure B,
and computable relative to p. What i1s more, this stronger result can be proved 1n a
very general case. We call a set of measures P which satisfy a condition of the form
F Pl s v v o RSP UEOSE),
where x., -+, x_1s a finite collection of corteges, a cylindrical set. We call the
union of a denumerable totality of cylindrical sets constructively opern and the comple-

ment of the constructively open sets, constructively closed. (These are all standard

notions of constructive topology.)

Theorem 4. Let M be a constructively closed class of measures.

Then there is a computable test T which is correct relative to all measures in M
and such that for every sequence withstanding it a measure P € M exists such that

the sequence withstands any test which is correct relative to p and computable rela-

tive to it.

Note that classes of measures which are not closed cannot be considered, since

for every computable test the class of measures relative to which it 1s correct will be

constructively closed.

The last theorem is important when the type of a random process is given (e.g.,
Markov) but its parameters are not given and we are interested in randomness for some
parameters.

The results of the present article were announced at the symposium on algebraic
complexities (Erevan, May 1971) and the All-Union symposium-school on the founda-
tions of mathematics (Obninsk, June 1971). The author is grateful to all the partici-

pants of these symposia who took part in the discussion.
The author express particular gratitude to Academician A. N. Kolmogorov, as

well as to M. 1. Xanovié and N. V. Petr1 for valuable discussion.
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