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1. In the theory of complexity we find the definition of a series of concepts:

complexity, randomness, ase information content eé}a priori probability (see, for ex-
ample, [1]-[9]). In this paper we propose a unique approach to concepts of this kind

starting from a general system of constructions. With the help of such constructions

we can apparently define many other useful quantities.
The work is based on the fact that instead of constructing separate tests of ran-

domness for every computable measure (as is done in [2]), we develop a general

test d(w/P)—the deficiency of randomness of a sequence @ Wwith respect to an arbi-
trary measure P. This test 1s applicable not only to computable but to arbitrary proba-
bility distributions; in particular, what is significant for us, the test applies to semi-
computable (what we call here enumerable) distributions. It turns out that with respect

2 G S 3 :
to & universal egumerable distribution M all sequences are random, and therefore it

deserves the name a priori probability. We note that the very existence of a measure

with respect to which all sequences are random is inevitable if we wish to define the

concept of a ‘‘sequence , random relative to a measure P’’ so that the set of all

pairs (@, P) is closed and for every P the set of @ random with respect to P has

positive measure. [f we now rake a distribution on pairs of random variables (a, B)
which are independent and have individually the same universal distribution M, then it 1s
natural to regard the deficiency of randomness d((a, B) /M x M) of the pair of sequences
(a, [3) with respect to the distribution M x M as the ‘‘deficiency of independence’” of

these sequences, or the information content I(a : B). Considering other natural semi-

computable distributions, we may define many other interesting quantities, for example,

I{a: B/y), the information in o about B knowing }’:I and so on.

9. Terminology. Our presentation is given for the space of infinite binary se-

quences §); however, it is adaptable for automatic transfer to any other "‘good’ com-
pact space with a countable base. Since connected topological spaces, unlike §2, do

not have a basis of open-closed sets, it will be more convenient for us to consider a

seasure not as an additive set function, but as a linear functional on continuous func-

tions (as is done in contemporary analysis).
tion on {), given in the form of a table and with set of values

onal numbers, will be called elemen-

A continuous func

consisting of a finite number of nonnegative rati

tary. The set of elementary functions will be denoted by § and the set of continuous

real functions by K.
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A monotone linear functionar F from K to R will be called a measure and a mono-
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operator (or measure) is computable if the following two sets are enumerable: the set of

: R O Fovaosupbo. o : 1 . 2 - /
pairs of elementary functions [, g such that [ < Alg) and the set for which /> Alg

is obvious that every deterministic operator (in the usual sense) from {J to {}, which 1s
continuous, computable, and defined everywhere, corresponds tc a stochastic operator,
and that the class of computab% measures 1s closed under compm:luon with comput-

able stochastic operators. To consider operators i - {} not defined every where, we

have to introduce the concept of ‘‘semimeasure’’. A semimeasure is a concave functional P
(P(a /+ B g)>a P(f)+ B P(g) for a, 8 > 0) from K to R that is monotone. A semimea-
sure is called enumerable if the set of elementary functions [/ such that P{f) > 1 is
enumerable. An enumerable semimeasure is analogous to a semicomputable measure in the old
terminology (see [51). With every elementary function { # 0 there is == aasecmted Seml-
measure, which we will denote by Pf, defined by the expression P (g) mmmg(m)/ flw)

By the symbols >,<and X we shall denote mequalitles and equlvalence to within an

additive constant.

3. Tet us define the concept of a uniform test of randomness. This test will give

the deficiency of randomness log, t(w/0Q) of the sequence w with respect to the prob-

ability distribution (semimeasure) Q. It will be more convenient for us to use the quantity
(P/Q) = [, #w/Q) 4P.

Definition. ILet /(f/g) be a semicomputable, homogeneous, nonnegative functional,
i.e. such that E(C . f/¢5 vg) = (C /e ); (//g) and the set of pairs (/, g) for which
t(f/g) > 1 is enumerable. Let I(P/Q) be the smallest function on pairs of semimeasures

P, 0, monotonically decreasing (nonstrictly) with respect to O, increasing and concave

relative to P (zf(P1 + Pz/Q) > I(Pl/Q) + Z(PZ/Q)) and such that

<P(Pf> Q;>)> r(.)

And suppose the inequality t(P/P) <1 holds for all P. Then the function ¢ 1s called a uni-

form test of randomness.

The first two statements of the following theorem can be proved by analogy with

Kolmogorov’s theorem (see [1]) on the existence of an optimal algorithm for the com-

plexitjf of words.

Theorem 1. a) Among all uniform tests there exists a largest to within a multi-

plicative constant. Its binary logarithm (optimal with additive precision) will be de-

noted by d(P/Q), and for P (f) = f(w) we shall write d(w/Q).

b) Among all enumerable semimeasures there exists d largest to within a multi-

plicative constant, denoted by M.
The quantity [ — log, M(f/max__ f (o)) will be denoted by KM(f).
c) The function dlw/M) (and A(P/M) for normalized P: P(1)=1) 1S uniformly

bounded, i,e. all sequences are random with respect to M.

Statement c) presents some technical difficulties, and the thrust of its proof consists

of the application of the following lemma of Sperner.
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set of vertices of the same Simgjfrﬁ:{ sych th

some dimensSion 1S mapped into one of the vertcies of the same [ace, there
ex1SLs d Szmpfex of decomposiiion on whose vertices this mapping 1s one-10-0n¢e.

From this lemma follows ‘he existence of a measule with respect to which every

sequence IS random (1) the rest 1s easily proved.
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Theorem 2 (invariance of randomness). For an arbitrary’stochastic operaror A and

e have the inequality

d(p-A/Q-A)=<d(P/Q). '

the semimeasure Mx M on the set

semimeasures P, Q w

of pairs (., ,8) g G s &l
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