
How do humans succeed in tasks like proving Fermat’s Theorem
or predicting the Higgs boson?∗

Leonid A. Levin https://www.cs.bu.edu/fac/lnd/ †

Abstract
I discuss issues of inverting feasibly computable
functions, optimal discovery algorithms, and
the constant overheads in their performance.

Our computers do a huge number of absolutely
wonderful things. Yet most of these things seem
rather mechanical. Lots of crucial problems that do
yield to the intuition of our very slow brains are
beyond our current computer arts.

Great many such tasks can be stated in the form of
inverting easily computable functions, or reduced to
this form. (That is, finding inputs/actions that could
produce a given result in a given realistic process.)

We have no idea about intrinsic difficulty of these
tasks. And yet, traveling salesmen do get to their des-
tinations, mathematicians do find proofs of their the-
orems, and physicists do find patterns in transforma-
tions of their bosons and fermions ! How is this done,
and how could computers emulate their success?

Of course, these are collective achievements of
many minds engrossed in a huge number of papers.
But today’s computers can easily search through all
math and physics papers ever written. The limitation
is not in physical capacity.

And insects solve problems of such complexity and
with such efficiency, as we cannot dream of. Yet, few
of us would be flattered by comparison to the brain
of an insect. What advantage do we humans have ?

One is the ability to solve new problems on which
evolution did not train zillions of our ancestors. We
must have some pretty universal methods, not de-
pendent on the specifics of focused problems. Of
course, it is hard to tell how, say, mathematicians
find their proofs. Yet, the diversity and dynamism of
math achievements suggest that some pretty univer-
sal mechanisms must be at work.

Let me now focus on a specific technical problem:
Consider, for instance, algorithms that 3-color given
∗This article is based on a talk at STOC-2021

http://acm-stoc.org/stoc2021/STOCprogram.html
(video: https://www.youtube.com/watch?v=8-x1uIGboNc)
The whole 6/23 morning session (my part: minutes 27-46)
is at https://www.youtube.com/watch?v=UgGGXXkYqsM
†Boston University, College of Arts and Sciences,

Computer Science department, Boston, MA 02215.

graphs1. Is it true that every such algorithm can be
sped-up 10 times on some infinite set of graphs ?

Or, there is a “perfect” algorithm, that cannot
be outsped 10 times even on a subset of graphs ?

Note, there is a 3-coloring algorithm that cannot be
outsped by more than constant factors on any subset.
The question is, must these constants get really big?

But before further discussion, some history:

In the 50s, in the Russian math community there
was much interest in the works of Claude Shannon.
But many of Shannon’s constructions required
exhaustive search of all configurations. There was
an intense interest in whether these exponential
procedures could be eliminated (see [9]).

And Sergey Yablonsky wrote a paper that he
interpreted as showing that no subexponential
method could work on a problem that is, in today’s
terms, co-NP. It is a problem of finding a boolean
function of maximal circuit complexity.

Kolmogorov saw this claim as baseless since the
proof considered only a specific type of algorithms.
Unhappy with such misleading ideas being promoted,
Kolmogorov advocated the need for efforts to find
valid proofs for common beliefs that complexities of
some popular problems are indeed unavoidable.

This task required a convincing definition of the
running time. But Turing Machines were seen as too
restricted to use for meaningful speed lower bounds.
Kolmogorov formulated (see [6]) a graph-based model
of algorithms that had time complexities as they are
understood today.

He also ran a seminar where he challenged math-
ematicians with quadratic complexity of multiplica-
tion. And an unexpected answer was soon found by
Anatoly Karatsuba, and improved by Andrei Toom:
multiplication complexity turned out nearly linear.

This was an impressive indication that common
sense is an unreliable guide for hardness of computa-
tional problems, and must be verified by valid proofs.

1This is a complete problem, i.e. one to which all other
inversion problems are reducible.

1

https://www.cs.bu.edu/fac/lnd/
http://acm-stoc.org/stoc2021/STOCprogram.html
https://www.youtube.com/watch?v=8-x1uIGboNc
https://www.youtube.com/watch?v=UgGGXXkYqsM

2 Leonid A. Levin

I, at that time, was extremely excited by some other
work of Kolmogorov. He (and independently Ray
Solomonoff) used the Turing’s Universal Algorithm
for an optimal definition of informational complexity,
randomness, and some other related concepts.

I noted that similar constructions yield an optimal
up to a constant factor algorithm for a problem now
called Tiling, and thus for any search problem, as
they all have a straightforward reduction to Tiling.

To my shagreen, Kolmogorov was not impressed
with the concept of optimality, saw it as too abstract
for the issue at hand. (Indeed, finding specific bounds
did not look as hopeless then as it now does.) But he
was much more interested in my remark that Tiling
allows reduction to it of all other search problems.
He thought I should publish that rather than the
optimal search.

I thought it would only be worth publishing if I
can reduce it to some popular problems. My obstacle
was that combinatorics was not popular in Russia,
and my choice of problems that might impress the
math community was rather limited. I saw no hope
for something like factoring, but spent years in naive
attempts on things like graph isomorphism, finding
small circuits for boolean tables, etc.

Meanwhile an interesting angle was added to the
issues. In 1969 Michael Dekhtiar, a student of Boris
Trakhtenbrot, published a proof [3] that under some
oracles inverting simple functions has exponential
complexity. In the US, Baker, Gill, and Solovay did
this independently [1].

Later I ran into problems with communist author-
ities. And friends advised me to quickly publish all I
have while the access to publishing is not yet closed
to me. So I submitted several papers in that 1972,
including the one about search [7] (where Kolmogorov
agreed to let me include the optimal search). I guess
I must thank the communists for this publication.

But the greatest developments by far were going
on in the United States. S. Cook [2], R. Karp[5], and
Garey and Johnson [4] made a really revolutionary
discovery. They found that 3-SAT reduces to great
many important combinatorics problems.

Combinatorics received much attention in the West
and these results became a coup !

Kolmogorov asked several questions at that time, still
open and interesting. One was: Are there polynomial
time algorithms that have no linear size circuits ?
We knew that some slow polynomial time algorithms

cannot be replaced by faster algorithms. But can
linear-sized circuits families replace all of them ?

His other interesting comment was a bit more in-
volved. We proved at that time that mutual informa-
tion between strings is roughly symmetric. The proof
involved exponential search for short programs trans-
forming a strings x into y. Kolmogorov wondered if
such search for short fast (meant in robust terms, tol-
erating +O(1) slacks in length and in log time) pro-
grams would not be a better candidate than my Tiling
to see if search problems are exponentially hard.

He said that, often, a good candidate to consider is
one that is neither too general, nor too narrow. Tiling,
being universal, may be too general, lacking focus.
Some other problems (say, factoring) – too narrow.
And search for fast short programs looked like a good
middle bet to him. It still does to me ! :-)

Such search is involved in another type of prob-
lems that challenge our creativity: extrapolating the
observed data to their whole natural domains. It is
called by many names, “Inductive Inference”, “passive
learning”, and others. Occam Razor is a famous prin-
ciple of extrapolation. A version attributed to Ein-
stein suggests: hypothesis need be chosen as simple
as possible, but no simpler :-).

Ray Solomonoff gave it a more formal expression:
The likelihoods of various extrapolations, consistent
with known data, decrease exponentially with the
length of their shortest descriptions. Those short pro-
grams run about as fast as the process that had gen-
erated the data.

There have been several technical issues that re-
quired further attention. I will stay on a simple side,
not going into those details. Most of them have been
clarified by now, if we ignore the time needed to find
such short fast programs. This may be hard. Yet, this
is still an inversion task, bringing us back to the is-
sues of optimal search. I have a little discussion of
such issues in [8].

Now, back to my focus. The concept of optimal al-
gorithm for search problems ignores constant factors
completely. So, it is tempting to assume that they
must be enormous.

However, this does not seem so to me. Our brains
have evolved on jumping in trees, not on writing math
articles. And yet, we prove Fermat’s Theorems, de-
sign nukes, and even write STOC papers. We must
have some quite efficient and quite universal guessing
algorithms built-in.

How do humans succeed in tasks like proving Fermat’s Theorem or predicting the Higgs boson? 3

So, I repeat a formal question on these constants:
Can every algorithm for complete search

problems be outsped 10 times on an infinite
subset ? OR, there is a “perfect” one that

cannot be, even on a subset ?

Of course, careless definitions of time can allow fake
speed-ups. For instance if we ignore the alphabet size
and reduce the number of steps just by making each
step larger due to the larger alphabet. Or if we ex-
clude the required end testing of the input/output
relation, and choose a relation that itself allows a non-
constant speed-up. But it is easy to carefully define
time to preclude such cheating.

Let me now go into some little technicalities to see
what issues are involved in understanding these con-
stant factors. We look at the optimal search for an
inverse w of a fast algorithm f , given the output x
that f must produce from w.

We refine Kolmogorov Complexity with time,
making it computable. The time-refined complexity
Kt of w given x considers all prefixless programs p
by which the universal algorithm U generates w from
x in time T . (T includes running f(w) to confirm it is
x.)Kt(w|x) is the minimum of length of p, plus log T .

The Optimal Inverter searches for solutions w in
increasing order of this complexity Kt of w given x,
not of length of w. For instance, shorter proofs may
be much harder to find, having higher complexities.
The Inverter generates and checks in time 2k all w
up to complexity k.

Btw, the optimal search makes the concept of com-
plexity applicable to individual instances of search
tasks, not just to families of instances which we now
call “problems” and complexities of which we study.
So we can ask how hard is, say, to find a short proof
for Fermat’s theorem, not for theorems in general.
Would not this notion fit tighter ?

The big catch here is that each wasteful bit U re-
quires of p doubles the time. We would need a very
“pure” U , frugal with wasting bits. Do our brains have
such a one built-in ? It seems so to me. We do seem to
have little disagreement on what is “neat” and what is
cumbersome. There are differences in our tastes, but
they are not so huge that we could not understand
each other’s aesthetics. But this is just a feeling.
The formal question remains:
Is there an algorithm for a complete search
problem that cannot be outsped ten times,

even on an infinite subset ?
(Of course, this 10 is a bit arbitrary, can be replaced
with your favorite reasonable constant.)

References
[1] T.P.Baker, J.Gill, R.Solovay. 1975. Relativiza-

tions of the P=NP question. SIComp 4/4:431-442.
[2] Stephen Cook. 1971. The Complexity of Theorem

Proving Procedures. STOC-71, pp. 151-158.
[3] M.Dekhtiar. 1969. On the Impossibility of

Eliminating Exhaustive Search in Computing
a Function Relative to its Graph. In Russian.
Proc. USSR Academy of Sciences, 14:1146-1148.

[4] Michael R. Garey, David S. Johnson. 1979.
Computers and Intractability: A Guide to
the Theory of NP-Completeness. W.H.Freeman.

[5] Richard M. Karp. 1972. Reducibility Among
Combinatorial Problems. In Raymond E. Miller,
James W. Thatcher, eds. Complexity of Computer
Computations. Plenum. pp. 85-103.

[6] A.N.Kolmogorov, V.A.Uspenskii. 1958. On the
Definition of an Algorithm. Uspekhi Mat. Nauk,
13/4:3-28. AMS Transl. 1963. 2nd ser.29:217-245.

[7] Leonid A. Levin. 1973. Универсальные Задачи
Перебора [Universal search problems]. In Russian.
Problems of Information Transmission,
9/3:115-116. English Translation in [9].

[8] Leonid A. Levin. 2013. Universal Heuristics:
How Do Humans Solve “Unsolvable” Problems?
Algorithmic Probability and Friends. Bayesian
Prediction and Artificial Intelligence.
David L. Dowe, ed. LNCS 7070:53-54. Springer.
Also in a CCR/SIGACT workshop report
“Visions for Theoretical Computer Science”.
https://thmatters.wordpress.com/universal-heuristics

[9] B.A.Trakhtenbrot. 1984. A survey of Russian
Approaches to Perebor (Brute-Force Search)
Algorithms. Annals of the History of Computing,
6/4:384-400.

https://thmatters.wordpress.com/universal-heuristics

