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Abstract

A central tool in constructing pseudorandom
generators, secure encryption functions, and
in other areas are “hard-core” predicates b
of functions (permutations) f , discovered in
[Blum Micali 82]. Such b(x) cannot be effi-
ciently guessed (substantially better than 50-
50) given only f(x). Both b, f are computable
in polynomial time.

[Yao 82] transforms any one-way function
f into a more complicated one, f ∗, which has
a hard-core predicate. The construction ap-
plies the original f to many small pieces of
the input to f ∗ just to get one “hard-core”
bit. The security of this bit may be smaller
than any constant positive power of the secu-
rity of f . In fact, for inputs (to f ∗) of practi-
cal size, the pieces effected by f are so small
that f can be inverted (and the “hard-core”
bit computed) by exhaustive search.

In this paper we show that every one-
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way function, padded to the form f(p, x) =
(p, g(x)), ‖p‖ = ‖x‖, has by itself a hard-core
predicate of the same (within a polynomial)
security. Namely, we prove a conjecture of
[Levin 87, sec. 5.6.2] that the scalar product
of boolean vectors p, x is a hard-core of every
one-way function f(p, x) = (p, g(x)). The re-
sult extends to multiple (up to the logarithm
of security) such bits and to any distribution
on the x’s for which f is hard to invert.

1 Introduction

One-way functions are fundamental to many
aspects of Theory of Computation. Loosely
speaking, one-way are those functions which
are easy to evaluate but hard to invert. How-
ever, many applications such as pseudoran-
dom generators [Blum Micali 82, Yao 82] and
secure probabilistic encryption [Goldwasser
Micali 82] require that the function has a
“hard-core” predicate b. This b(x) should
be easy to evaluate on input x, but hard
to guess (with a noticeable correlation) when
given only the value of f(x). Intuitively, the
hard-core predicate “concentrates” the one-
wayness of the function in a strong sense.

Clearly, permutations with hard-core pred-
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icates must be one-way. A natural question of
practical and theoretical importance is which
one-way functions have one. So far only par-
tial answers have been given:

1. [Blum Micali 82] showed that the dis-
crete exponentiation function, if it is one-
way, has a hard-core predicate.1 Analo-
gous results for the RSA and Rabin func-
tions (i.e. raising to a power modulo a
composite integer) have been shown in
[Alexi Chor Goldreich Schnorr 84].

2. [Yao 82] showed how any one-way per-
mutation f can be used to construct
another one-way permutation f ∗ which
has a hard-core predicate. The func-
tion f ∗ partitions its input into many
shorter inputs and applies f to each
of them in parallel: f ∗(x1 . . . xk3) =
f(x1) . . . f(xk3), ‖xi‖ = k. (For a proof
and more refined analysis see [Levin 87].)

The drawback of the first set of results is
their dependence on a specific intractability
assumption (e.g. the hardness of the discrete
logarithm problem). The second result offers
a function f ∗ with security smaller than any
constant power of the security of f .

This paper resolves the above question by
providing a hard-core predicate for every one-
way function. More specifically, for any s
(e.g. s(n) = n, or s(n) = 2

√
n), the follow-

ing tasks are equivalent for probabilistic al-
gorithms running in time s(‖x‖)O(1):

1. Given f(x) find x for at least a fraction
s(‖x‖)−O(1) of the x’s.

2. Given f(x) and p, ‖p‖= ‖x‖, guess the
Boolean inner-product B(x, p) of x and
p with a correlation (i.e. the difference

1Extended to all Abelian groups in [Kaliski 88].

between the success and failure proba-
bilities) of s(‖x‖)−O(1).

For any polynomial time computable f, b,
there is always the smallest (within a poly-
nomial) such s called the security of f and b,
respectively. The security is a constructible
function, and can be computed by trying all
small guessing algorithms. It is assumed to
grow very fast (at least n1/o(1)).

2 Conventions

Let S be the set of finite and Ω of infinite
strings in the alphabet {0, 1}; let ‖x‖ be the
length of x, Sn ⊂ S be the set of strings of
length n, and x ◦ y be the concatenation of
x and y. We identify S (in lexicographical
order) with IN = {0, 1, ...}.

For simplicity, we consider only length pre-
serving functions f : S → S, ‖f(x)‖ = ‖x‖.
Let F be the set of such functions. The
set of functions computable in polynomial
time is denoted P. We almost always refer
to predicates as having range {±1} instead
of {0, 1}. The Boolean value σ corresponds
to (−1)σ ∈ {±1}, and the exclusive-or of
Boolean values corresponds to multiplication.

When the probability distribution of x is
clear from the context, Exf(x) denotes the
expected value of f . Thus, a Boolean predi-
cate P holds with probability ExP (x).

Time bounds of the (adversarial) algo-
rithms is assumed here to be huge compar-
ative to input lengths. Thus we allow this
preliminary draft to ignore factors of ‖x‖O(1)

in the running time. So time bound of
T (x) means that the algorithm may make
‖x‖O(1)T (x) steps. These factors are easy to
figure out from the context. This convention
makes the choice of model of computation not
so important.
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3 The Results

Below, the function d merely generates a
probability distribution of instances (and the
condition d ∈ F is not really essential). A
simple case of interest is d(x) = x.

Let I(ω, y) be a probabilistic algorithm
which attempts to invert f ∈ F, i.e. to com-
pute a list containing x from y = f(x), us-
ing ω∈Ω as the source of internal coin flips.
Its performance has two aspects: the running
time TI(ω, y) and the probability of success:

RI,f,d(n)
def
= Er,ω(x∈I(ω, f(x))),

where r∈Sn, x=d(r). We can combine these
two measures (i.e. absorb the running time
into RI,f,d) in the following way. Without loss
of generality, we require the mean running
time EωTI(ω, y) of all inverting algorithms to
be O(1). Any algorithm can be modified to
satisfy this requirement. For this purpose, I
may use its power of flipping coins to set itself
random time limits 2t with probability, say,
2−t/t2. This will decrease the probability of
success in proportion to I’s original running
time. Then RI,f,d accounts for running time
as well as the probability of success and is
called the inverting rate of I for f on d. It
reflects the reciprocal of the time needed to
notice by sampling the instances where I in-
verts f .

One-way functions are those invertible with
a negligible rate only. Namely,

Definition 1 (One-way Functions): A func-
tion f ∈ F is one-way on d ∈ F with se-
curity s : IN → IN if RI,f,d(n) = o(1)/s(n)ε,
for some ε > 0 and all probabilistic inverting
algorithms I. The security is strict if ε>1.

Let G(ω, y) ∈ {±1, 0} be a probabilistic
algorithm which, given y = f(x), attempts

to guess a predicate b(x) ∈ {±1}, b ∈ P,
using ω as the source of internal coin flips
(0 means a refusal to guess). As with in-
verting algorithms above, without loss of gen-
erality, we restrict its average running time:
EωTG(ω, y) = O(1). We define the guessing
rate R of G for b from f to reflect the recipro-
cal of the time needed to notice by sampling
the correlation between b and G, i.e. the num-
ber of trials needed to evaluate the expecta-
tion of their product. Due to the O(1) restric-
tion on expected running time, this number
accounts for both the running-time and the
correlation of G with b. The number of trials
is determined by the reciprocal of

RG,f,b,d(n)
def
=

(Eω,rb(x)G(ω, y))2

Eω,rG(ω, x)2
,

where r∈Sn, x=d(r), y=f(x), ω∈Ω.
Hard-core predicates of a function are those

that can be guessed from its output only with
a negligible rate. Namely,

Definition 2 (Hard-Core Predicates):
A predicate b is called a hard-core with se-
curity s for a function f ∈ F on d ∈ F if
RG,f,b,d(n) = o(1)/s(n)ε, for some ε > 0 and
all probabilistic guessing algorithms G.
The security is strict if ε>1.

We call padded a function f ∈ F of the form
f(x ◦ p) = f ′(x) ◦ p for ‖p‖ = ‖x‖. Double-
padded f has ‖p‖ = 2‖x‖. Let B(x, p) = ±1
depending on the inner product mod2 of the
Boolean vectors x and p, ‖p‖ = ‖x‖.

Theorem 1 Let f and d be arbitrary padded
functions and f be one-way on d with security
s. Then B is a hard-core predicate for f on
d (with the same security s).

The theorem follows from the following
Lemma, which efficiently reduces the task
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of retrieving x from f(x, p) to the task of
approximating B(x, p) given f(x, p). The
rate ε in the Lemma is chosen at random
with distribution assuring the O(1) average
running time. Let τ(p, y) = Eω|G(ω, y, p)|,
τ(y) = Epτ(p, y) and τ(y) = Epτ

2(p, y).
Note that the guessing rate of G does not
exceed the average over x of its local (i.e.
taken over fixed x, y = f ′(x)) guessing rates
R(x) = (Eω,pB(x, p)G(ω, y, p))2/τ(y).

Lemma 1 (Main): There exists an algo-
rithm I that given a subroutine G, the coin-
flip source ω ∈Ω, and inputs y ∈S, ε∈ (0, 1],
outputs a list of τ/τε strings including all
x ∈ S‖y‖ with R(x) ≥ ε. I(ω, y, ε) may fail
for ε fraction of ω. The first of the two stages
of I takes 1/ε steps of I and G. The second
stage does not call G and takes (τ/τε)2 < ε−2

steps.

The proof is in Section 4. It seems likely
that the second stage can also be sped up
to 1/ε steps. The computation can be paral-
lelized using ε−O(1) processors in − log ε time.

The theorem extends to log s(n) secure
bits. For c ∈ {0, 1}, a0, a1 ∈ S, define
Prc(a0, a1) = ac.

Definition 3 (Hard-core function): A func-
tion h: S→S in P is called a hard-core (with
security s) of f ∈ F on d ∈ F if b(x, r, c) =
(−1)c is a hard-core predicate (with secu-
rity s) on d for the function fh(x, r, c) =
f(x) ◦ Prc(r, h(x)) ◦ 0, ‖r‖=‖h(x)‖.

So, given f(x), the output of a hard-core
h(x) should be indistinguishable in feasible
time from a randomly chosen string r.

A Toeplitz matrix is a matrix M such that
for all i, j, Mi,j = Mi+1,j+1. Let k : IN→ IN
and Mp be k(n)× n Boolean Toeplitz matrix
with the first row and column determined by

the corresponding bits of p, ‖p‖ ≥ k(n) +n−
1. Let Boolean vector Hk(x, p) be the matrix
product Mp times x, for ‖p‖ = 2‖x‖.

Corollary 1 Let f, d be arbitrary double-
padded functions and f is one-way on d with
security s ∈ P. Then, for some ε > 0,
k(n) = ε log s(n), Hk is a hard-core function
for f on d with the same security s.

The proof is in Section 5. This number
of pseudorandom bits cannot be improved
without additional assumptions or a major
breakthrough in complexity theory. The rea-
son is that a one-way function with secu-
rity s may act only on log s(‖x‖) of the bits
of x and leave the rest unchanged.2 A re-
striction of the “optimality” claim to bits ex-
tractable through linear transformations (as
in the Corollary) can be easily proven.

4 Proof of Main Lemma

Our inverting algorithm I(ω, y, ε) lists all
strings x for which G guesses B with a lo-
cal rate R(x) = (Ep,ωB(x, p)G(ω, y, p))2/τ(y)
≥ ε. I constructs the list L containing these
strings and all their prefixes bit by bit, in
n = ‖y‖ rounds. The k-th round of I gener-
ates Lk = L ∩ Sk. During the next round I
examines all one-bit extensions of strings in
Lk, discards some of them and keeps the rest.

Throughout the proof y, k, ε are fixed and
used implicitly. So, let g be the matrix with
components gr,s = EωG(ω, y, rs), and b be
the matrix with components bz,r=B(z, r) for
r, z∈Sk.

2To exclude this possibility one must rule out the
existence of one-way functions f with security 2εn.
Otherwise fs(x

′x′′) = f(x′)x′′, ε‖x′‖ = log s(‖x′x′′‖)
has security s.
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Note 1 Matrix 2−k/2b is symmetric and or-
thonormal, i.e. b = bT = 2kb−1.

Proof: Indeed,
∑
r(B(z, r))2 = 2k. When

z1, z2 differ by i-th digit, let z = z1 ⊕ z2 and
r′ be r with i-th digit changed.

Then
∑
r B(z1, r)B(r, z2) =

∑
r B(z, r) =

0, since B(z, r) = −B(z, r′).
We discard prefixes z from L using an up-

per bound c(z) for R(x)τ(y), x = zz′. It

is c(z)
def
= Es(Er,ωB(zz′, rs)G(ω, y, rs))2 =

Es(ErB(z′, s)B(z, r)gr,s)
2, which then sim-

plifies to Es(ErB(z, r)gr,s)
2 = Es(2

−kbg)2z,s,
since B(z′, s) = ±1.

The number of z ∈ Sk with c(z) > ετ(y)
remains limited:

Lemma 2
∑
z c(z) = Er,sg

2
r,s ≤ 1.

Proof: Any matrix multiplied by orthonor-
mal matrix 2−k/2b preserves its mean square
of the elements. So,

∑
z c(z) = 2kEzc(z) =

Ez,s(2
−k/2bg)2z,s = Er,sg

2
r,s.

All the above does not yield an efficient al-
gorithm, since the straightforward computa-
tion of c(z) takes exponential time. However,
the exact value is not needed, a good approx-
imation suffices:

Let τp = τ(p, y) for ‖p‖=n, τs = Erτrs for
‖rs‖ = n; τ s = Erτ

2
rs.

Lemma 3 There is a probabilistic algorithm
A(ω, z, y, δ) (using ω for its internal coin
flips) that outputs an approximation c̃(z) to
c(z) with accuracy O(δ) and probability of
failure δ3. A halts within τ/δ steps, includ-
ing the steps of the subroutine G. Only its
last τ/δ steps depend on z.

Proof Sketch: The approximation, c̃(z),
is computed as

∑
i 4
−iEs(cs(z) > 2−i). If we

get estimates with standard deviation α, re-
peating them l = O(− log δ) times and taking

the median gives an approximation deviating
from cs by 2α with exponentially small, in l,
probability. For every i we will need (within
log factors) 4−i/δ samples of s and 4iτs sam-
ples of (r, ω′), of which 4iτ 2s will produce a
±1 guess. These “productive” samples may
be reused for each z.

A speed up may be achieved by computing
c̃(z) simultaneously for many z.

Clearly all steps of passing from Lk to Lk+1

can be made in parallel. Still each k ≤ n
takes a sequential iteration. A parallel speed-
up can be obtained by keeping the lists of
candidates for all substrings of a particular
length. Let Li,l be the list of candidates for
the l-bit long substring of x starting at lo-
cation i. Then Li,2l is formed by all strings
z in the concatenation of Li,l, Li+l,l having

ci(z)
def
= Es′,s′′(ErB(z, r)gs′rs′′)

2 > ετ .

5 Proof of the Corollary

Corollary 1 is a special case of the following
Lemma 4, as its conditions are obviously sat-
isfied by the family of Toeplitz matrices. An-
other simple case is a family of all Boolean
matrices. Let a, k : IN → IN be in P. Let
{Mp : p ∈ Sa(n)} be a family of k(n) × n
Boolean matrices, P (u, q, ω) be an algorithm
selecting (on inputs u, q and coin tosses ω) an
index p such that uMp = q, and MP (u,q,w) be
computable in polynomial time.

Lemma 4 Suppose M,P are as above and,
for each u 6= 0, Eq,z(p = P (u, q, z)) = 2−‖p‖.
Then the function H(x, p) = Mpx is hard-
core for f on d with strict security s, if the
predicate B(x, q) is hard-core with strict se-
curity s(n)4k(n).

The proof of Lemma 4 is based on the idea of
[Vazirani 87]. It also incorporates the “XOR
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condition” of [Vazirani Vazirani 84], proving
that a function is hard-core iff the exclusive-
or of any non-empty subset of its bits is.
Proof: The orthonormal functions Bu: r 7→
B(r, u) form a linear basis in the Euclidean
space of all real functions on Sk. So, any func-
tion can be expressed as g(r) =

∑
u cuBu(r),

where cu = EvB(v, u)g(v). A general form
for the case c0 = Erg(r) = 0 is g(r) =
NEu6=0,vB(v, u)g(v)B(r, u), with N = 2‖r‖−1.

Let an algorithm Gω,y,p(rc) guess (−1)c

with correlation ε given (y, p) = f(x, p) =
(f ′(x), p), the source ω of internal coin flips
and rc = Prc(Mpx, r). Without loss of gener-
ality we may assume Eω,rGω,y,p(r) = 0, which
may be achieved by modifying G so that
with probability 1/2 it is applied to a ran-
dom string instead of its argument r and the

sign of the output changed. Then Gy,p(r)
def
=

EωGω,y,p(r) = NEu6=0,vB(v, u)Gy,p(v)B(r, u).
G’s correlation is: E(−1)cGf ′(x),p(rc) =

NE (−1)cEu6=0,vB(v, u)Gf ′(x),p(v)B(rc, u),

where rc = Prc(Mpx, r) and E averages over
x, p, r, c. For c=1, it is

−NEu6=0,v,x,p,rB(v, u)Gf ′(x),p(v)B(r, u) = 0,

since ErB(r, u) = 0, for each u 6= 0.
For the term c = 0, we use B(Mx, u) =

B(x, uM) and express (1/N of) it as

Eu6=0,v,x,pB(v, u)Gf ′(x),p(v)B(x, uMp)

= Eω′,x,qg(ω′, f ′(x), q)B(x, q),

where g(ω′, y, q)
def
= B(v, u)Gω,y,P (u,q,w)(v),

with u 6= 0, v, w, ω generated with uniform
distribution from ω′. So, g guesses B(x, q)
with correlation ε/N .
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