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Abstract

Many interesting combinatorial problems were found to be NP-complete. Since there is little hope to
solve them fast in the worst case, researchers look for algorithms which are fast just “on average”. This
matter is sensitive to the choice of a particular NP-complete problem and a probability distribution of its
instances. Some of these tasks were easy and some not. But one needs a way to distinguish the “difficult
on average” problems. Such negative results could not only save “positive” efforts but may also be used
in areas (like cryptography) where hardness of some problems is a frequent assumption. It is shown
below that the Tiling problem with uniform distribution of instances has no polynomial “on average”
algorithm, unless every NP-problem with every simple probability distribution has it. It is interesting to
try to prove similar statements for other NP-problems which resisted so far “average case” attacks.

Conventions: A random problem is a pair (µ,R), where R ⊂ {1, 2, ...}2 is an “instance - witness” (or
input-output) relation, and µ : {1, 2, ...} → [0, 1] is a probability distribution function on inputs (i.e. µ(x)
is the probability of all instances not exceeding x). Its density µ′(x) = µ(x) − µ(x − 1) is the probability
of a particular input. A problem is in NP, if both R and µ are computable in time polynomial in length
|x| = ⌈log x⌉ of input. A machine independent notion of a polynomial on average problem (µ,R) assumes
R(x) ⇐⇒ ∃yR(x, y) to be computable in time polynomial in t where t(x)/|x| is bounded by a constant on
average i.e.

∑
µ′(x)t(x)/|x| < ∞. Domination µ ⪯ µ1 means ∃k∀x µ′(x)/µ′

1(x) < |x|k. A polynomial time
algorithm f reduces a problem (µ1, R1) to (f(µ2), R2), if µ1 ⪯ µ2 (thus, likely inputs of one problem are
mapped into likely inputs of the other) and R1(x) ⇐⇒ R2(f(x)). Here f(µ) is the distribution of outputs
of f and maps x to

∑
f(y)≤x

µ′(y).

Reductions are closed under composition, and if A(x) is a fast on average algorithm for (f(µ2), R2)
then A(f(x)) works at most polynomially slower for (µ1, R1). The polynomials |x|k in domination and in
reduction time may be replaced by a polynomial on average tk(x) to get weak reducibility. The definitions
can also be modified for a more elegant “inverting” formulation of NP problems: to actually find y for which
x = r(y).

Definition:
A random NP problem is complete, if every random NP problem is reducible to it.

Example: Tiling. A tile is a square with a latin letter in every node. Tiles with matching letters can
be joined. An instance (u, v, s) of the Tiling Problem, has a subset u of tile types considered “legal”, a
string v = 0n of 0’s, and a string s of matching legal tiles. The problem is to extend s to a square of n2

matching legal tiles. The joint probability, of u, n and k = |s| < n is, say, O(n−3) and every tile in s is
chosen sequentially with equal probability for all “legal” tiles matching the previous one.
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Proposition: Tiling is an NP-complete random problem.

Proof: Padding makes (µ1, R1) computable in time, say, |x|2. We first reduce (µ1, R1) (no matter how
special µ1 may be) to a problem with “almost uniform” distribution. If µ ⪰ µ1 then f(x) = x reduces
(µ1, R) to (µ,R). Thus, using µ1(x) := µ1(x)/2 + 1/2 − 1/2x, we get µ′

1(x) > 1/2x2. Now, by a linear
number of successive roundings, µ1 is replaced by a perfectly rounded µ > µ1/4, which means that µ(x) is
the shortest binary rational within (µ(x− 1), µ(x+ 1)). As all perfectly rounded measures, µ has integer
m(x) = µ(x)/µ′(x) and log2 µ

′(x). Monotone µ is computable and invertible (by binary search) in polynomial
time. And so is m, since µ(x)/m(x) = µ′(x) is a power of 2 and 1/2 < µ(x) < 1. The resulting probability
of z = m(x) is µ′(m−1(z)) = µ′(x) = µ(x)/m(x) < 1/m(x) = 1/z. Thus, m(µ) is “almost uniform”.

Let p be the program for a universal Turing machine U with time bound O(|x|3) for which R(x, y) =
U(0|x|1pm(x), y). Let λ′(0n1s) = O(n−3)/s for |s| < 3n. Then f(x) = 0|x|1pm(x) reduces (µ,R) to (λ,U),
since λ′(f(x)) = λ′(0|x|1pm(x)) = O(|x|−3)/pm(x) ⪰ 1/m(x) ≥ µ′(x). Finally, (λ,U) is reducible to the
tiling problem in a standard way: the tiled square corresponds to the space-time history of the Turing
computation accepting U(w, y), where w is chosen randomly and y is guessed non-deterministically. A tile
letter represents either the tape symbol and the direction (left or right) to the head or the head state and
the direction to the neighboring cell it looks at.

Corollary:
For every ε < 0, Tiling is polynomial on average iff it has a polynomial time algorithm for a 1 − nε

fraction of instances (by the “padding” argument) and only if such are all NP random problems.

Random NP problems look like “fair games” between suppliers of questions and answers (if both are
restricted to a polynomial-time probabilistic machine). Thus, their average hardness seems to be a more
balanced question than “P=NP?”.

Essential intuitive comments and an excellent survey of the area may be found in [1]. The author is
grateful to R. Rivest for encouragement and discussion, to D. Johnson for valuable corrections and to U.
Vazirani and Z. Galil for improvements of the account.
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