
No Better Ways to Generate Hard NP Instances than
Picking Uniformly at Random∗

Russell Impagliazzo†

Computer Science Department
University of Toronto

Toronto, Ontario, Canada

Leonid A. Levin‡

Computer Science department
Boston University

111 Cummington St. Boston

Abstract

Distributed NP (DNP) problems are ones
supplied with probability distributions of in-
stances. We can consider their hardness for
typical instances rather than just for the
worst case (which may be extremely rare).
Reductions between such problems must ap-
proximately preserve the distributions. A
number of papers show completeness of sev-
eral natural DNP problems in the class of
all DNP problems with P-time computable
distributions. This approach has been criti-
cized as too restrictive: hard instances may
be generated with samplable but not com-
putable in P-time distributions. There were
doubts whether natural problems (which all
have simple distributions) may be complete
for the class of all NP problems with sam-
plable distributions.
We show that every DNP problem com-

plete for P-time computable distributions is
also complete for all samplable distributions.
This rather surprising observation makes the
concept of average case NP completeness ro-

∗FOCS-1990
†Supported by NSF grant #CCR-88-13632
‡(e-mail to Lnd@cs.bu.edu) Supported by NSF

grant #CCR-86-07492, MIT and Sun Microsystems

bust and the question of the average case
complexity of complete DNP problems a nat-
ural alternative to P=?NP.
Similar techniques also yield a connection

between cryptography and learning theory.
Unless one-way functions exist, we can almost
always estimate the probability of any next
value of an unknown sequence generated in
a known polynomial time. The average-case
time taken to estimate this probability will be
polynomially related to the average-case time
to invert the hardest one-way function. Thus,
the results of the recursion-theoretic model of
inductive inference ([Solomonoff 64]; see also
[Li Vitanyi 89]) can be achieved within the
same complexity which suffice to invert one-
way functions. Since it is hard to extrapo-
late pseudo-random functions, the converse
follows from [Hastad Impagliazzo Levin Luby
90]. Thus, universal extrapolation is possible
precisely when cryptography is not.

1 Introduction.

A common misinterpretation of NP complete-
ness is that all NP-complete problems are
hard, it makes no sense to seek fast algo-
rithms. On this basis some such problems

1

generated much hope in cryptography: “To
cheat, an adversary will have to solve an
NP-complete problem.” [Karp 76] and oth-
ers (see [Johnson 84] for a survey) noticed
that this was naive. While worst case in-
stances of NP-complete problems defeat our
algorithms, such instances may be extremely
rare. In fact, fast on average algorithms were
found for a great many NP-complete prob-
lems. Still, some other NP problems resisted
such attacks. These issues turned out to be
subtle and it was not clear how a theory
could distinguish intrinsically hard on aver-
age problems.

Average case complexity is very sensitive to
the choice of a particular probability distri-
bution. Restricting the class of distributions
to those computable in polynomial time (P-
distributions), some natural problems were
shown to be average case complete. [Levin
86, Venkatesan Levin 88, Gurevich 87,89]
consider some NP problems with uniform
probability distributions: Tiling, Graph Col-
oration, Matrix Decomposition, etc. Their
random instances are as hard as those of any
P-distributed NP-problem.

Using one-way functions, however, one can
generate (sample) in polynomial time in-
stances with very weird distributions. These
samplable (generateable in P-time) distribu-
tions belong to #P and may be neither P-
time computable nor approximable by such.
In general, one cannot even distinguish effec-
tively outputs of maximal probability from
those of probability 0. See [Ben-David Chor
Goldreich Luby 89] for an analysis of this and
other issues concerning average-case com-
plexity. Although possibly strange, these dis-
tributions are precisely the type which can be
generated by realistic algorithms.

The class of samplable NP problems has
its own complete members, but until now

all known such problems were artificial. If
these problems have average P-time algo-
rithms, then there is no way in time t to gen-
erate NP instances of complexity more than
tO(1) and the P=?NP question becomes aca-
demic.

Still, one could imagine that all nice (P-
distributed) NP problems are easy, while
one-way functions exist (with uniformly dis-
tributed inputs but #P-distributed outputs)
allowing Cryptography, Pseudo-randomness,
etc.1 Were this gap possible, the concept of
completeness for P-distributed NP problems
would be too weak (even meaningless). At
the same time, completeness for samplable
NP problems would be too strong: natural
problems are P-distributed and why should
any of them be complete for samplable dis-
tributions?

We rule out such a gap: both concepts
are equivalent. Surprisingly, every samplable
NP problem reduces to a P-distributed one,
which makes the concept of average case com-
pleteness very robust.

The same techniques also yield a con-
nection between learning theory and cryp-
tography. We use the word “extrapola-
tion” rather than “learning”, both to distin-
guish our model from time-invariant mod-
els and because “learning” has distracting
psychological connotations. We implement
Solomonoff’s recursion-theoretic notion of ex-
trapolation in a complexity-restricted setting.
We observe that the average time needed for

1One should not be misled by the uniform dis-
tribution of coin-flips ω used to generate instance
x = h(ω) of a samplable problem x ∈?L ∈NP. The
apparently equivalent problem ω ∈?h−1(L) may, in
fact, be easier, since ω may contain more informa-
tion than x. Paraphrasing [Ben-David Chor Goldre-
ich Luby 89], the difference is that between generat-
ing problems that are hard for someone else and those
that are hard for oneself.

2

(either almost optimal or any useful at all)
universal extrapolation is polynomially re-
lated to the average time needed to invert the
hardest one-way function.
As pointed out in [Pitt Warmuth 88], the

pseudo-random functions of [Goldreich Gold-
wasser Micali 84] (if they exist) are unlearn-
able in any realistic sense. Since any one-way
function yields a pseudo-random one ([Has-
tad Impagliazzo Levin Luby 90]), we have a
natural necessary and sufficient condition for
universal extrapolation to be possible.2

In contrast to other complexity-based
learning models (e.g., [Valiant 84]), we ignore
the performance of extrapolation algorithms
in the worst-cases of very small probability
and do not assume time-invariance of the out-
put distribution of the unknown machine.

2 The Results.

Let Sn = {0, 1}n and S be the set of all
binary strings identified with integers when
needed. Let P be the class of functions over
S computable in polynomial time and pre-
serving the input length to within a polyno-
mial. Let distributions µ assign to every in-
terval A ⊂ S its probability µ(A) which can
be extended by additivity to all other sets of
integers. We will assume µ(A) to be a ratio-
nal number but we can deal with real-valued
distributions by approximating them (within

2Conceivably, the hardest one-way function may
take polynomial-time to invert on one infinite set of
input lengths, and exponential on another. Then the
extrapolation algorithm would also be fast on some
lengths, and slow on others. Thus, it might be that
neither universal extrapolation nor cryptography are
possible on all lengths of input. So the complemen-
tary relation between cryptography and universal ex-
trapolation holds separately for each length range:
any given level of technology is capable of either uni-
versal extrapolation or cryptography, but not both.

a constant factor) with rational-valued ones.
For convenience, we allow µ(S) < 1 by as-
suming that with some probability we may
get a nil ̸∈S outcome. We will call λ({x}) =
2−|x|/|x|(|x|+1) the uniform distribution. The
distribution of outputs of h : S → S on µ-
distributed inputs we denote h(µ).

Without loss of generality we will consider
NP-problems in the form of inverting func-
tions f ∈P: given y ∈ S find x ∈ f−1(y).
E.g., the Hamiltonian cycle problem may be
stated as inverting the function f(⟨G,H⟩)
which outputs the graph G, ifH is a Hamilto-
nian cycle (or 0 . . . 0 otherwise). If x = f(w),
we call w a witness that x ∈ f(S). A
DNP problem is a pair (f, µ) of a function
and a distribution of its outputs (instances
of the inverting problem). A DNP problem
is P-distributed if µ ∈P and samplable if
µ = h(ν), where h, ν ∈P.
We will show a randomized reduction R,Q

from any NP problem f on a samplable dis-
tribution to another, uniformly distributed,
NP problem g. It will work as follows. On
instance x of the first problem and random
string α, R produces either an instance y of
the second problem or “Nil′′. This y may or
may not be “good”; if it is, Q maps any wit-
ness that y ∈ g(S) to a witness that x ∈ f(S).
It need not be easy to check if y is good: given
any witness to y ∈ g(S) we can verify that it
indeed generates a witness to x ∈ f(S) and
for any “yes” instance x ∈ f(S), we require at
least a |x|−O(1) chance that y is good. Then,
repeating the reduction with a suitable poly-
nomial number of α’s, we almost surely get
a good y at least once; if an algorithm for
the second problem quickly finds a witness to
y ∈ g(S), then we find a witness to x ∈ f(S)
in a comparable time. To ensure that fast
on-average algorithms for the second prob-
lem work quickly on average for good y, we

3

must show that the distribution of R(x, α)
(for x with its samplable distribution, and
random α) is at most uniform within a factor
of |y|O(1). Thus, good y = R(x, α) are un-
likely to fall in the small set of harder-than-
most instances.

Our reductions are between search rather
than decision problems. However, [Ben-
David Chor Goldreich Luby 89] reduce any
distributed search problem “invert f” to a
decision problem of existence of x ∈ f−1(y),
Ax= 0 with uniformly distributed rectangu-
lar matrix A.

In the formal definition of randomized re-
duction between DNP problems, we separate
the randomized reduction into a randomiz-
ing step, followed by a deterministic reduc-
tion. Thus, we refer to one problem having a
randomization which is reducible to another
problem, rather than being random reducible
to the problem.

We define (randomized) reductions of DNP
problems by simplifying slightly [Venkatesan
Levin 88]. A reduction of DNP problem (f, µ)
to DNP problem (g, ν) is a pair of algorithms
R,Q ∈P with the following conditions. Let
D = {x : µ({x}) > 0}. Then R,Q preserve:

1. the distribution: R(µ) ≤ ν,

2. the solvability: R(f(S)∩D) ⊆ g(S), and

3. the witnesses: if R(x) = g(w), x ∈ D
then x = f(Q(w)).

So, typical instances are mapped into typ-
ical ones and average case complexity is
preserved.3

3These requirements can be weakened: Q may
have x as an extra input, R may run only in average
polynomial time, many instances of g may be used to
invert one instance of f , etc.

In many cases reductions should be ran-
domized. To allow that we supplement the in-
stances of the original problem with random
padding (ignored by f but useful for making
random decisions in the reductions). A DNP
problem (f ′, µ′) is a randomization of DNP
problem (f, µ) if

• f ′(⟨w, α⟩) = ⟨f(w), α⟩ and

• µ′({⟨x, α⟩}) is either 0 or µ({x})λ({α}).

Here Dx
def
= {α : µ′({⟨x, α⟩}) > 0, or µ(x) =

0} ⊂ S|x|c (with a constant c) must be a set
of polynomial measure: λ(Dx) = |x|−O(1).
(Intuitively, Dx is the set of random inputs
which produce “good” y’s). There is no need
to require α ∈ Dx to be easy to test, since
we can check directly whether the witness
produced by the reduction is valid (i.e. x′ =
f ′(Q(w′))) without verifying x′ = ⟨x, α⟩ ∈ D.

Definition 1 DNP problem (f, µ) is sam-
plable complete if every samplable NP prob-
lem has a randomization reducible to (f, µ).

Theorem 1 There exists a P-distributed NP
problem which is samplable complete.

Consequently, Graph Coloration, Matrix
Decomposition, Tiling and other problems
complete for P-distributed NP problems are
complete in the above strong sense.

3 Intuitive Idea.

Consider any samplable problem (f, h(ν)).
Assume without loss of generality |h(x)| ≤
|x|. Padding and reductions from [Levin 86]
can reduce it to the case with ν = λ.
The idea of the proof is that either the

problem “given p, invert f on h(p)” is hard,
or else p must yield some information that

4

h(p) does not. If the first holds, we have a
hard problem on the uniformly distributed p.
If the second, h must be a one-way function
of a kind, in that, given x = h(p) it should
be difficult to generate a random p′ with
h(p′) = x. This kind of function was called a
distributionally one-way function in [Impagli-
azzo Luby 89], who show how to construct a
normal one-way function from a distribution-
ally one-way function. Thus, we have either
a hard average-case problem, or a one-way
function.

However, a one-way function does not au-
tomatically yield a hard average-case prob-
lem. We invert h on x = h(p), where p, rather
than x, is chosen at random. However, if
we can approximate ∥h−1(h(p))∥, then tech-
niques of [Hastad Impagliazzo Levin Luby
89] allow to convert h into a one-way func-
tion h′ which is almost always one-to-one
and approximately length-preserving. We let
h′(p, g1, g2) = g2(h(p) ◦ g1(p)) ◦ g1 ◦ g2, where,
for l = log ∥h−1(h(p))∥, g1 is a hash function
mapping |p| = n bit strings to l + O(log n)
bit strings, and g2 is a hash function from
strings of length at most n + l + O(log n) to
n + O(log n) bit strings. The idea is that
g1 provides a random “label” determining,
with h(p), the value of p without revealing
any useful information. Thus, adding g1(p)
makes h almost one-to-one. g2 then com-
presses this information, making the function
almost length-preserving, without losing se-
curity or making it significantly less one-to-
one. Since h′ is almost length-preserving and
one-to-one, its range is not too far away from
the uniform distribution: a random string
will have a good chance of having a pre-image
under h′, and this pre-image will often be
hard to find. This will be our hard average-
case problem.

A problem remains that it may be infea-

sible to approximate l = log(∥h−1(h(p))∥).
This problem is solved simply by guessing a
value at random from 1 to n; there is a good
chance we are right.

The proof outline above has several steps
and cases. It turns out possible to combine
most of these steps and cases into a single,
simple reduction. The above sketch might
be helpful to keep in mind when reading the
proof below, but is not followed to the letter.

A few of the differences between the proof
outline above and our actual construction are
as follows. First, instead of needing our one-
way function to be one-to-one with high prob-
ability, it will suffice that it is one-to-one with
a reasonable chance (for any fixed value of x).
Therefore, we can remove the O(log n) terms
in the number of bits we hash to.

Second, instead of using hash function g1 to
provide l bits of information about the p used
to generate x, we will use a length-increasing
hash function g′ mapping k = n− l bits to n
bits so that the p generating x is in the range
of g′, i.e., x = h(g′(r)) for a k bit string r.
This simplifies slightly the construction, and
is basically equivalent: since a 1/2l fraction
of n bit strings are in the range of g′, the
fact that x is in the range reveals l bits worth
of information about x. (To better see the
equivalence, consider the special case when g1
is a random n× l matrix, and g′(r) = Mr+v,
where M is a random n− l×n matrix, and v
is a random vector of length n. Then knowing
that g1(p) = s for some fixed s or that p is
in the range of g′ both convey precisely the
information that x is an element of a skew-
subspace of dimension l.) Before, the role of
g2 was to condense an n+ l bit string, h(p) ◦
g1(p), that is determined by the n bit string
p, back into an n bit string. Now we have a
string g′(r) for r a n− l bit string, so we will
instead want g2 to compress this n bit string

5

into its information content of n− l bits.
Third, we will combine the problems of in-

verting h′ and of finding a witness for x.

4 Construction/Proof.

For concreteness, we will use the following
family of simple hash functions.
Let Gn be the set of pairs of n bit strings.

We can interpret such strings as elements of
GF(2n) (the finite field of cardinality 2n). Let
x≤k denote the k-bit prefix of x. Then, for
any k ≤ n, we can think of r ∈Sk as describ-
ing the first 2k elements of the field, andGn as
a family of maps Sk → Sn by g(a,b)(r) = ar+b.
We can also think of an element (c, d) of Gn

as determining a hash function Sn → Sk by
g(c,d)(x) = (cx + d)≤k. In some cases when
we care only about collisions of different x,
we need not b and set it to 0. In either con-
text, Gn is a standard example of a family
of pairwise independent universal hash func-
tions ([Carter Wegman 79]). The proofs be-
low hold equally well for any such family.
However, Gn is convenient: simple, concrete,
easy to compute, and has 2n-bits elements.
We reduce DNP problem (f, h(λ)) to a

P-distributed (F, λ). The inputs to F are:
w, a, b, c ∈ Sn, r ∈ Sk−1, k ≤ n. F outputs
0 . . . 0 if h(ar+b) ̸= f(w). Otherwise it out-
puts (f(w)c)≤k, a, b, c.
Thus, to invert F one first must find r, by

inverting the function h′(r, a, b, c) = ((h(ar+
b)c)≤k, a, b, c), and then invert f on h(ar+b).
The proof that the reduction is valid basically
shows that h′ is a frequently one-to-one func-
tion which is as hard to invert as it is to find
random pre-images of h.
The randomization supplements instances

x of (f, h(λ)) with a random padding
α = (k, a, b, c) restricted to a set Dx de-
scribed below. The reduction R(x, α) yields

((xc)≤k, a, b, c), while Q(w, r, a, b, c) = (w, α).

We need to define Dx, the “good” random
supplements for x, so that the reduction con-
ditions are satisfied. Intuitively, Dx is the set
of supplements where we guess the value of k
correctly, and then pick a, b, c so that h′ has
a unique pre-image on the problem reduced
to. Note, that there is no need for member-
ship of Dx to be easily decidable. For each
α = (k, a, b, c) ∈ Dx we require that:

1. there are “good” r, s.t. h(ar+ b) = x
(then R preserves the solvability), and

2. for all “bad” r, (h(ar+b)c)≤k ̸= (xc)≤k

(so, (xc)≤k determines x and Q preserves
the witnesses); and

3. k = 1− ⌊log λ(h−1(x))⌋
(then R preserves the distribution, as x
is unique and h(λ)(x) = O(2−k)).

So, one only needs to show λ(Dx) =
|x|−O(1), i.e., the reduction has a polynomial
chance of being good. The clause 3 deter-
mines k and has, obviously a 1/n chance.

Given clause 3, the first clause holds for
most (a, b). Let X = h−1(x). ∥X∥ ≥ 2n+1−k.
There are ≥ 2n pairs r ∈ Sk−1, p ∈ X.
For each (r, p) there are 2n pairs (a, b), s.t.
ar + b = p. For each two distinct pairs
(r, p), (r′p′) at most one pair (a, b) satisfies
both equations. So, by inclusion-exclusion, at
least 2n2n − 2n(2n − 1)/2 > 22n/2 pairs (a, b)
satisfy ar+b = p for some r ∈Sk−1, p ∈ X.

Finally, for each a, b, clause 2 holds on most
c. Indeed, (h(ar+b)c)≤k − (xc)≤k = ((h(ar+
b)−x)c)≤k is uniformly distributed over c, for
any given a, b, r, x ̸= h(ar+b). Thus, at most
2−k fraction of pairs r, c can violate clause
2. So, for most c, clause 2 holds with all
r ∈Sk−1.

6

5 Extrapolation.

One-Way Functions Defeat Universal
Extrapolation. The above technique also
helps to clarify whether the universal abil-
ity of extrapolation is computationally feasi-
ble. This depends entirely on the existence
of one-way functions. If there exist a func-
tion f ∈P which is infeasibly hard on average
to invert, then one can construct a pseudo-
random function gs(x) (see [Hostadt Impagli-
azzo Levin Luby 90, Goldreich Levin 89]).
Such function cannot be distinguished from
random functions G(x) by an observer which
can query it for any number of values of x
but does not know s and does not have com-
putational power huge enough to invert f(s)
for average s. Obviously then, any attempt
of such observer to learn something (in any
meaningful sense of the word) about gs will
be absolutely fruitless. We will see, on the
other hand, that if all f ∈P are easy on aver-
age to invert, than our power to extrapolate
probabilistic functions from P is pretty strong
and universal.

Recursively Enumerable Extrapolation
In [Solomonoff 64] the concept of a Univer-
sal probability distribution is proposed which
should provide a foundation for extrapolat-
ing unknown probabilistic functions. This
Universal measure U(x) proposes an a pri-
ori probability that the binary sequence pro-
duced by an unknown probabilistic process
has x as a prefix. The approach is based on
several insights.

First, distributions, according to which x
is random, are not unique and should include
some defined by short programs. E.g., if dis-
tribution µp is complicated due to its depen-
dence on a messy random parameter p, then
x is, as well, random with respect to a simpler

distribution µ, which first chooses p at ran-
dom and then generates x according to µp. U
is an upper bound, within a reasonable con-
stant factor, for µ that have short programs.

Second, while U({x})/µ({x}) can take ar-
bitrarily large values c, this can happen only
with the small probability 1/c for x generated
according to µ. So, U is likely to produce
both reasonable upper and lower bounds.

Finally, while the ratio between U and µ
is likely to be not very large, it will not be
small either. However, it can be ignored in
comparison with huge (typically exponential
in |x|) ratios of probabilities of x under dif-
ferent distributions.

The ideas of [Solomonoff 64] were deep
but technical implementation was imper-
fect: sums in its formulas diverge, limits
do not exist etc. A better implementation
was proposed in [Zvonkin Levin 70, Levin
73]). There, universal distribution was de-
fined as an enumerable semi-additive func-
tion (semimeasure) m(x) ≥ ∑

i m(x, i), x =
x1, ..., xk rather than an additive measure
U(x) =

∑
iU(x, i). There is a Universal

semimeasureM , dominating all others within
a constant factor. Extrapolation of sequence
x according to this distribution (if it were pos-
sible) would indeed be powerful. One would
make no more mistakes than the length of
the shortest program generating x. Besides,
if x is generated with computable (or enumer-
able) distribution µ then µ(x) = O(M(x))
and the chance of M(x) > cµ(x) is at most
1/c. The problem is: M is not computable!

Space-Restricted Extrapolation. [Kol-
mogorov 65] proposed to impose computa-
tional restrictions on algorithms with re-
spect to which Kolmogorov Complexity is de-
fined (formalized as complexity majorants in
[Zvonkin Levin 70]). This covers M also,

7

since | logM(x)| is a version of Kolmogorov
Complexity. There is a samplable in space S
version MS(x) of M . It dominates within a
constant factor all distributions samplable in
space S − 1/o(1). If x is generated (within
space so restricted) by a probabilistic algo-
rithm with probability µ(x), then the state-
ments of the previous paragraph hold for MS

as well as for M . MS can be computed in
probabilistic space O(S), but unfortunately,
this may take time 2S.

Time-Restricted Extrapolation. Real-
istic extrapolations should take a bounded
(polynomial) time. The previous paragraph,
however, cannot be modified by simply re-
placing ”space” with ”time”. Possible exis-
tence of one-way functions (and their pseu-
dorandom offspring) would prevent the time
restricted version MT from being easily com-
putable. Suppose, however, that one-way
functions do not exist, i.e. all f ∈P are invert-
ible in small (say polynomial) average time.
Then MT can be estimated by a fast on aver-
age probabilistic algorithm and used for ex-
trapolation in the above manner. Indeed, let
U be the Universal Turing Machine which
interprets the prefix p of its binary input
α = pα′ as a description of an arbitrary Tur-
ing Machine P and simulates up to T steps
of P (α′). In the course of this computation
it will write the output bits of UT (α) on its
write-only output tape. Let MT (x) be the
probability that x is a prefix of UT (α) and
k = ⌊− logMT (x)⌋.
Then one can apply the same reasoning as

in the previous section. Let a, b ∈ GF(2T)
and the complexity Ka,b(x) be the minimal
|r|, s.t. U|a|(ar+b) has x as a prefix. Then
|Ka,b(x) + logMT (x)| ≤ 3 for each x and
at least 2/3 of a, b. So, one can estimate
MT (x) by trying to invert the transforma-

tion (a, b, r) → (a, b, |r|, U|a|(ar+ b)). This
yields extrapolation method akin to “Occam
Razor” principle: the likeliest are strings of
the smallest complexity. All benefits of the
above paragraphs will then be applicable to
the time-restricted version MT of the univer-
sal distribution.
This can be summarized as follows:

Definition 2 Let s : S → S be a time-
constructible, monotone function. We say a
function t is s-feasible if t(n) ≤ s(nO(1))nO(1).
A probabilistic algorithm A(ω, x, ε), running
in time TA(|x|/ε) is s-feasible if TA is. A
function f ∈P is s-one-way if no s-feasible
algorithm A can, for every length n, invert
f on y = f(x) (i.e., f(A(ω, y, ε)) = y) with
probability 1− ε over random x∈{0, 1}n.

The above definition differs slightly from
standard treatment of the inverting proba-
bilities of one-way functions, but a trivial
padding argument shows their equivalence.

Lemma 1 If there are no s-one-way func-
tions, then, for every polynomial-time com-
putable function F and any samplable dis-
tribution µ, there is an s-feasible algorithm
which, on input y = F (x), ε for x selected ac-
cording to µ, with probability at least 1−ε,
computes µ(F−1(x)), within a factor of 1+ε.

Applying the lemma to a polynomial-time
universal machine U as above, we get:

Proposition 1 The following is equivalent
to the non-existence of s-one-way functions:
there is an s-feasible algorithm which, on in-
put y, 1T and ε, computes MT (y), within a
factor of 1+ε, with probability 1−O(ε), when
y ∈ {0, 1}n is selected according to any un-
known distribution µ, samplable in time T .

Details of proofs and applications to ex-
trapolation will be given in the final paper.

8

6 Acknowledgements.

We are grateful Mike Luby, Yuri Gurevich,
and Shai Ben-David for helpful conversations.

References

[1] Shai Ben-David, Benny Chor, Oded Gol-
dreich and Michael Luby. On the Theory
of Average Case Complexity. ACM, 21st
Annual Symposium on Theory of Com-
puting, 1989, 204-216.

[2] J. Carter and M. Wegman. Universal
Classes of Hash Functions. JCSS 18:143-
154, 1979.

[3] O.Goldreich, H.Krawcyzk, M.Luby. On
the Existence of Pseudorandom Genera-
tors. FOCS, 1988, 12-24.

[4] O. Goldreich, L. Levin. A Hard-Core
Predicate for all One-Way Functions.
ACM, Symp. on Theory of Computing,
1989, pp. 25-32.

[5] Yuri Gurevich. Complete and Incom-
plete Randomized NP Problems. FOCS,
1987, pp. 111-117. Also to appear in J.
Comp. Sys. Sci. as “Average Case Com-
plexity”.

[6] Yuri Gurevich. The Challenger-Solver
Game. Bull. of Europ. Assoc. for Theor.
Comp. Sci., Oct. 1989.

[7] Yuri Gurevich. Matrix Decomposition
Problem is Complete for the Average
Case. These Proceedings, 1989.

[8] J. Hastad, R. Impagliazzo, L. Levin,
M. Luby. Pseudo-Random Generators
from Any One-way Function. To be pub-
lished. Preliminary versions in STOC
1989 pp. 12-24, and 1990 pp. 395-404.

[9] D.Johnson. The NP-Completeness Col-
umn – an Ongoing Guide. Journal of Al-
gorithms 5:284-299, 1984.

[10] R. Karp. The Probabilistic Analysis of
some Combinatorial Search Algorithms.
Algorithms and Complexity. J.F. Traub,
ed., Academic Press, NY 1976, pp. 1-19.

[11] A.N. Kolmogorov. Three Approaches to
the Concept of the Amount of Informa-
tion. Probl. Inf. Transm., 1(1), 1965.

[12] L. Levin. On the Notion of a Random
Sequence. DAN SSSR = Soviet Math.
Dokl. 14(5):1413-1416, 1973.

[13] L. Levin. Average Case Complete Prob-
lems. SIAM Journal of Computing 15:
285-286, 1986.

[14] Ming Li, Paul Vitanyi. A Theory of
Learning Simple Concepts under Simple
Distributions and Average Case Com-
plexity for the Universal Distribution.
FOCS, 1989.

[15] L. Pitt, M. K. Warmuth. Reductions
among prediction problems: on the dif-
ficulty of predicting automata. Structure
in Complexity, 1988, pp. 60-69.

[16] R.J. Solomonoff. A Formal Theory of In-
ductive Inference. Information and Con-
trol 7(1):l-22, 1964.

[17] Adi Shamir. A Polynomial Time Algo-
rithm for Breaking the Basic Markle-
Hellman Cryptosystem. FOCS 1982.

[18] L. G. Valiant. The theory of the learn-
able. Comm., ACM, 27(11):1134-1142,
1984.

9

[19] R. Venkatesan and L. Levin. Random In-
stances of a Graph Coloring Problem are
Hard. STOC, 1988.

[20] A.K. Zvonkin, L. Levin. The Complex-
ity of finite objects and the Algorith-
mic Concepts of Information and Ran-
domness. UMN = Russian Math. Sur-
veys 25(6):83-124, 1970.

10

