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Abstract

We consider asynchronous general topology dynamic
networks of identical nameless nodes with worst-case
transient faults. Starting from any faulty configura-
tion, our protocols self-stabilize any computation in
time polynomial in the (unknown) network diameter.
This version sacrifices some diversity of tasks and ef-
ficiency for simplicity and clarity of details. Appendix
gives more efficient procedures in less detail.

1 Introduction

Networks can resist asynchrony by each node keep-
ing a step counter restricted to 0,±1 difference over
edges (i.e. advancing when no neighbor is behind). It
is often reduced mod 3 (we call it slope) if no self-
stabilization required. Faulty configurations, however,
can have inconsistent mod 3 counter: some cycles un-
balanced, with more up edges than down. Slope has
much greater utility when centered, i.e., has a unique
node, leader, with no down edges. It then yields a BFS
tree the construction/maintenance of which is known
to self-stabilize many basic network management pro-
tocols (we generalize this experience to all random-
ized linear space problems). Initiating an (uncentered)
slope is an easy task and Sec. 3 gives a simple fast de-
terministic algorithm for it (BFS with a few precau-
tions). For simplicity, it takes larger (log of diameter)
space per node than O(1) as done in Appendix.

The main task, leader election (i.e. modifying any
slope into a centered one), is much harder and known
to be impossible for deterministic algorithms. Our
main result gives a fast randomized algorithm for it,
using one byte per node and a pointer to a neighbor.
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The third protocol, Interface (using no additional
space) runs the first two as subroutines. It assures
that any (consistent with it) variation in either of the
first two protocols cannot affect the other one.

Smart distributed networks perform many orga-
nizational tasks with various costs and assumptions.
One can represent the network topology by a con-
nected graph G given (say, as an adjacency matrix) on
a read-only input tape. Then the computational power
of any network with total memory S is in the obvious
class Space(S). Our protocols assure that this trivial
upper bound can be reached, not only by the opti-
mistic models but also by much more realistic ones.

These models are asynchronous (i.e. no global clock
exists, all processors have separate, uncoordinated clocks)
and dynamic (i.e. the network can change in the run-
time of the protocols). Moreover, the protocols are
self-stabilizing, (this strong kind of transient fault tol-
erance is discussed below).

The use of randomness is essential, since no deter-
ministic protocols can elect a leader starting from a
configuration with a symmetry between existing lead-
ers [Dij74].1 Deadlocks (absence of leaders) detection
can be deterministic: no need to break symmetry.

1.1 Self-stabilizing protocols

A self-stabilizing protocol works “correctly” no mat-
ter what state it is initiated in. This implies highly
desirable fault tolerance: resilience against worst-case
transient errors and dynamic changes. Much theo-
retical and practical work has accumulated since the
pioneering work [Dij74] by Dijkstra. Self-stabilization
(at least partial) is an important component in the
existing networks, and has been a central issue in the

1[GL82] shows that even in a most general model of computa-
tion, no deterministic algorithm can reduce the input symmetry
by a non-constant prime factor.
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distributed computation research and other areas (see
for example [AKY90, APV91, AV91, DIM90, DIM91,
KP90, Var92, A+93, M+92, GKL78, K78, G86] and
the bibliographies therein).

Two general approaches were developed. [KP90]
proposed to self-stabilize any protocol by periodically
collecting distributed snapshots of the system in some
central node, which then locally decides if the confi-
guration captured by the snapshot is inconsistent, and
if it is, resets the protocol. A major drawback of this
technique was the centralization2; collecting the com-
plete configuration required that at least one node be
as large as the network.

Another general technique introduced by [AKY90]
in their Spanning Tree protocol replaced the global by
local checking. [AV91], [Var92] used it to develop com-
pilers converting synchronous deterministic protocols
into self-stabilizing versions. These compilers are less
general than those of [KP90], e.g. cannot automati-
cally handle randomized protocols. But [AV91] used
the technique on some problems (e.g. Leader Election).
The key idea was to combine local checking with (syn-
chronized) re-executing of the protocol.

[M+92] advocates the practical importance of con-
stant space per node protocols. But the methods re-
lying on local checking cannot be extended in a natu-
ral way to use sublogarithmic space per processor —
e.g. with constant space the local neighborhoods of
an inconsistent global configuration can look the same
as local neighborhoods of a consistent one. In fact,
[IJ90] proved a logarithmic lower bound on space for
self-stabilizing deadlock detection even on a ring. This
led to a commonly held belief that the general self-
stabilization with sublogarithmic space per processor
is impossible. However, this lower bound applies only
to a more restrictive model. In it a processor can
make transitions only if it has a “token”, determined
as a predicate of the neighborhood. Then, even a ring
of n processors has a deadlock configuration unless
each processor has Ω(log n) memory. Thus, no self-
stabilizing token management (preventing deadlocks)
is possible. If the “no deadlock” property is guaran-
teed externally, [M+92] gives a randomized constant
space protocol for token management on a ring in a
message passing model. The lower bound of [IJ90] no
longer applies if all processors act all the time (and
computing the token predicate is no easier than com-
puting the transition function).

A recent result of Awerbuch, Itkis and Ostrovsky
[I+92] gives randomized self-stabilizing protocols using

2As can be seen from the structure of our solution, the mere
existence of the central node significantly simplifies the task.

log log n space per edge for leader election, spanning
tree, network reset and other tasks. It was improved
to constant space per node for all linear space tasks
by Itkis, and Itkis, Levin [I+92, IL92]3. The present
paper is a detailization of [IL92]. These constructions
were later modified in [AO94] to extend the scope of
tasks solvable deterministically in O(log∗ n) space per
edge (beyond forest/slope construction, for which our
algorithms were already deterministic).

2 Model, Interface, theorems

2.1 Model

We consider a distributed network of diameter d. Each
node v communicates (via edges) with its neighbors
w ∈ E(v) in the system’s connected undirected re-
flexive communication graph G=(V,E). Each node’s
state consists of bits and pointers to immediate neigh-
bors. The bits of a node x are visible to any its neigh-
bor y as well as whether a pointer of x points to x or to
y. Nodes can detect a neighbor with a given property
of state, set a pointer to it,4 and change state based
on all above information.

Asynchrony is modeled by Adversary determining
a sequence of nodes with arbitrary infinite repetitions
for each. The nodes act in this order. A step is a time
interval until each node acts again at least once.

To define self-stabilization let each processor have
the following fields: read-only input, write-only output,
and read/write work and structure. A configuration at
time t is a quintuple ⟨G, I,Ot,Wt, St⟩, where functions
I,Ot,Wt, St on V represent the input, output, work
and structure fields respectively. The standard pro-
tocol running in St and the computation running in
the other fields are independent and interact only via
reading the slope fields of St. A problem P is defined
as a set of the correct i/o configurations {⟨G,I,O⟩}. A
deterministic protocol solves P with self-stabilization
in ts steps if starting from any initial configuration,
for any time t > ts the configuration ⟨G, I,Ot⟩ satis-
fies P . One cannot tolerate the worst case transient
faults having actual halting configurations: the system
could start in a wrong one.

Deterministic protocols cannot reach our goals and
must flip coins. Each node v has a sequence of “coin”
bits coin(v) as read-once input. It may be foreseen
or even skewed by Adversary. We only assume that

3using hierarchical constructions (Lemma 4 below) similar
to those developed originally by [K78] and [G86] in the context
of cellular automata.

4Proposition 2.1 requires deterministic choice of neighbor,
e.g. the first qualified, if the edges are ordered.
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starting from any step i no nodes get over O(log |V i|)
identical bits. But any larger bound only stretches the
Main Theorem time proportionally.

Our protocols are Las Vegas. Since they do not
halt, this means that after stabilization output is in-
dependent of the subsequent coin-flips. Stabilization
is the repetition of the non-St configuration after the
slope stops changing. The Las Vegas stabilization pe-
riod is then the expected stabilization time (from the
worst case configuration). Slightly more general defi-
nitions considered in the literature will be accommo-
dated in the final versions.

2.2 RSpace and centered slope

Proposition 2.1 Let P be a problem on a network
G with a centered slope. A self-stabilizing randomized
asynchronous protocol solving P on G with O(s) space
per node exists if and only if P ∈ RSpace(s|V |). The
protocol (stabilizes and) runs in time dO(1) times the
(known) upper bound of the RSpace algorithm.

We consider sequential TM but the arguments are
easy to extend to parallel computations. E.g., equally
fast we can simulate one step of a tape of cellular au-
tomata and even one sweep of a TM head throughout
the tape without changing direction.

A centered slope yields an obvious spanning tree
structure, through the up edges. So, a TM tape can
be embedded on a DFS tour of the tree.5 A read-only
(input) tape containing the adjacency matrix6 of G
can be simulated as follows. To read the entry (v, w) of
the adjacency matrix, find node v and mark it. Then
find node w and see if there is an edge coming from a
marked node. In the end, clear the mark of the node
v. A single look-up of the adjacency matrix can thus
be simulated in O(|V | log |V |) time. This time can be
further improved to dO(1).

So far we showed how to simulate a step of TM
from its arbitrary configuration. We may add a pointer
at each cell pointing towards the head, to guarantee
its existence and uniqueness. However, the network
may be initialized in some configuration correspond-
ing to a legal but unreachable configuration of TM.
Detecting this condition is in general impractical. In-
stead, we augment the TM with a clock containing a
sufficient amount of bits. The number of bits must be
at least logarithmic in the running time of the RSpace
algorithm and given, as an input or a simple function

5The (patented) idea to embed a tape (ring) in a spanning
tree from [OY90] was pointed out to us by R. Ostrovsky.

6The output must be correct for any numbering the graph
nodes used in the matrix.

of the tree size. Whenever the clock overflows, the
TM work fields are re-initialized and its computation
is restarted7 (so if the computation is randomized it
is important that the output does not depend on the
coins — only the running time does).

2.3 Interface

Here we present Interface running two subroutines:
Leader Election (LE) and Slope Initiation (SI) (Fig. 1-
3). The access by LE and SI to a node v is regulated
by field v.ctl∈{open, closed} (see interface rules). SI
initiates a slope in fields v.h3 ∈ Z+

3 . Then LE elects a
unique leader: makes the slope centered.

Let v.h3, (v.h3−w.h3 mod 3)∈{−1,0,1}. Then vari-

ance of a path v0 . . . vk is the sum
∑k−1

i=0 (vi+1.h3−
vi.h3 mod 3). So, a slope is an assignment of h3 fields
with all cycles balanced, i.e. of zero variance.8 It
defines a consistent partial orientation: a neighbor
w ∈ E(v) is under v (and v is over w) if v.h3 ≡ w.h3+1
(mod 3). The edge vw points down and wv up. This
test up(wv) is the only function of slope used by LE.

Interface prevents LE from breaking slope correct-
ness. However, SI still must keep and update the ev-
idence of it. To ease the updating, LE marks the set
of roots (potential leaders). LE may create tempo-
rary local minima with no path down the slope (to
a root). So, it supplies additional data to guide the
more efficient versions of SI to a root. These are float
flag, denoted v = F, subordinate to the slope, and
rank(v)∈{0,1,2,3,4,5}, superordinate to the slope.

Predicate root(v) tests if v is a root, defined as
rank(v)=0. A closed root is called a crash. Procedure
crash(v) and predicate cr(v) (for “closed root”) make
and test crash at v.

Interface rules: SI, LE can crash(v). LE makes
no other interface changes on a closed v, or without
closing it, or under roots, or near crashes. LE may
change rank or, unless in root or over a node, incre-
ment .h3. SI may open v except a root over non-roots,
and decrement .h3 of a crash not under non-roots.

LE is designed to run jointly with SI through the
interface. But, if slope correctness is guaranteed then
a “fake” SI suffice which just crashes non-roots under
roots and opens nodes when permitted by Interface.

7Necessity of such re-computing is argued in [AV91].
8A weaker condition suffices for most applications: the ab-

sence of long (especially, cycling) chains of up edges (contribut-
ing a delay factor). The max length of such chains can change
by at most 2d factor in any time period without crashes.
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2.4 Main theorem

We will prove the following statements about each al-
gorithm running jointly with an adversary which acts
as permitted by Interface to the other algorithm.

SI stabilization period is the longest time unbal-
anced cycles or crashes exist without adversary (act-
ing as LE) making new crashes. SI response period is
the longest time a node remains closed in absence of
crash nodes. After SI has stabilized it has no effect
whatsoever (except for the response period delays).

v=F is interpreted as “slightly lowering” v.h3, so

Up(vw)
def
= up(vw)∨(v.h3=w.h3&w=F ̸=v). Ranks

indicate direction (down on odd, up on even) towards a

root along forward edges vw: fwd(vw)
def
= [rank(v)<

rank(w)] ∨ [up(vw)&rank(v) = rank(w) ∈ {2,4}] ∨
[Up(wv)&rank(v)=rank(w)∈{1,3,5}]∨[v=w&root(v)].
Any forward cycle is a (possibly reversed) Up cycle.

Lemma 1 (Crash) After 1 step LE creates no new
crashes and any node v has a forward edge.

Lemma 2 SI responds in 1, stabilizes in d+ 4 steps.

Theorem 1 (Main) In dO(1) log |V | SI response pe-
riods after slope stabilizes, LE makes it centered.

2.5 Roots, pointers, LE theorems

LE maintains a pointer to a neighbor (self, iff root).
Sec. 4.1 will define legal edges and pointers. In par-
ticular, any legal pointer is forward. The legality can-
not be broken by actions permitted to SI. Root–root
edges are legal. LE crashes roots over non-roots and
any node with illegal edges/pointer. LE never creates
such nor crashes other nodes.

Proof of Lemma 1 (Crash). Neither adver-
sary, acting as SI, nor LE can break legality. So,
LE crashes make each edge/pointer legal and cease
within one step. LE cannot create non-crash roots.
LE pointer edges are forward.

Assume now SI has stabilized. Then, a path of up
edges is always the shortest: otherwise closing it with
a shorter path forms an unbalanced cycle. Forward
edges cannot increase rank, so their cycles are unbal-
anced. By Lemma 1, forward edge paths can termi-
nate at roots only. So, after SI stabilization any for-
ward path leads to a root. Since no new roots can now
be created (roots are created as crashes only) there is
a root r0 which stays root forever. Define height h(v)
of node v as the variance of paths from r0 to v plus d
(to assure 0≤h(v)≤2d). A node v is called grounded
in root r if there is an up edge path from r to v. When

(and only when) v.h3 is incremented (by LE), v en-
ters F. Floating refers to entering/exiting F. F do not
appear in roots or under non-F. Say, a root belongs to
non-F nodes grounded in it.

A node v is called overrooted if some of its neigh-
bors lack some of its roots. A node could only loose
a root by some node (including itself when entering
F) floating on its up path from the root, or by root
dying (changing rank and pointer). Only the later is
permitted by Interface. Similarly, the only way v can
acquire a root r is by exiting F, i.e. only if there are no
F under v. But then there must be a grounded non-F
neighbor under v which thus has been overrooted be-
fore v exited F. So, “overrootedness” only propagates
up (increasing height). Roots of (non-F) neighbors are
called linked. A node is called idle when it is a root
not flipping (popping) coin(), or is neither grounded
nor floating, or is an F with no F under it.

Main Theorem Proof. After 1 step forward
paths lead to roots, which thus exist. The poly-d
bound on idle time is computed in Sec. 5. Corr. 4.4
proves the identity of coin flips of linked roots. Assum-
ing the adversary cannot so distort the coin flips as to
make two roots flip≫ log |V | identical coins from some
step on, the following Claim yields Main Theorem 1.

Claim 2.2 Let no node be idle for t steps and no
linked roots flip k coins. Then at most one root re-
mains after 2td(k+4) steps.

Proof. Any path between roots has overrooted nodes.
Let v be lowest (min h) overrooted. No grounded F
have height ≤h(v): otherwise, overrooted nodes exist
closer to the root. So, any set of roots acquired by
v’s neighbors includes the roots of v. While v stays
overrooted it keeps at least one root, say r. Within kt
steps, all neighbors of v are ungrounded (and float over
v in 2t steps) or grounded in r. All (also ungrounded)
F under them float in t more steps. Within another
t steps they exit F (acquiring the roots of v). Thus,
in t(k+4) steps v seizes to be overrooted. The least
height of overrooted nodes may increase < 2d times,
which implies the Claim.

3 Slope Initiation lemma

We assume now LE creates no roots. Slope Initia-
tion checks (and creates, if broken) the slope and some
certificate of its correctness. The simplest certificate
would be a map of net nodes into the sequence of con-
secutive integers (“actual heights”). The map must
preserve edges and labels mod3. Running alone, SI
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Command Test [w ∈ E(v)] Action at v (if Interface allows)
1. Zeroing low(v) ∨ root(v)& ∀w [root(w) ⇒ w∗h≥v∗h>0] crash(v); v.h← 0
2. BFS ∃w : w∗h < v∗h− 1 crash(v); v.h← minw w∗h+1
3. Match h3, h v.h3← (v∗h mod 3); v.h← v∗h
4. Exit ∀w (w.h3≡w∗h mod 3 & |w∗h−v∗h|≤1) v.ctl← open

Figure 1: Slope Initiation. low(v)
def
= ¬root(v)&∃w : [(w∗h>v∗h&root(w)) ∨ (v∗h=w∗h&up(wv))].

could repair such map (if broken) with simple BFS.
Also our SI must conform to Interface and take a few
precautions: to tolerate any adversarial actions of LE,
permitted by Interface.9

This simple protocol for SI is given in Fig. 1. It has
a field v.h interpreted as height (possibly outdated).
Function v∗h (updated height) equals v.h for crashes
and exceeds v.h by (v.h3−v.h mod 3)∈{0,1,2} for other
nodes. Then v∗h ≡ v.h3 (mod 3) for any non-crash v.
(Interface may delay v.h3 updates for BFS’ed crashes.)
Call v a zero if v∗h=0, and an edge vw long if |v∗h−
w∗h|>1. Say, v is h-over w∈E if v∗h > w∗h.

A local minimum root must be a zero: otherwise
it is (crashed and) zeroed (tr.1m). So are non-roots h-
under roots (tr.1c) or over but not h-over crash (tr.1h).
BFS crashes and shortens long edges (tr.2). Whenever
the interface allows, v.h3, v.h are matched (tr.3, possi-
bly by two .h3 decrements). Similarly, a node is opened
when there are no v.h3, v.h mismatch or long edges in
its neighborhood (tr.4).

SI uses O(1)+log d space since nodes on distance i
from a zero10 can gain at most 2i height (by induction
on i) in any time interval. If a node is initialized in a
higher space s it stays within space s+O(1) eventually
dropping it to O(1)+log d.

Claim 3.1 SI creates no zeros (tr.1) after 2 steps.

Proof. The initial long edges with a non-crash lower
end are reversed or made short (by BFS) within the
first step. SI can only decrease v∗h. It is increased
only when LE increments v.h3 which has no neighbors
under. Thus, after the first step, long edges can be
created only by SI , all with a crash lower end.

9The integer sequence requires log space per node. Ap-
pendix A.1 explains how a special bit sequence α can be used
instead. Like integer line, α cannot have loops and allows fast
(log time) detection of errors.

10Each step the slowest node makes one action. It can be
used instead of zero until permanent zero appears in the first
two SI steps: After any LE step, forward paths end in roots
or unbalanced cycles, thus, containing long edges adjacent to
roots. The lowest roots are zeros.

LE creates no new roots, and SI creates them now
only h-over other roots (BFS) or as zeros (tr.1). So,
all local ∗h minima roots are zeros after the next step.

Tr.1c,h can only be triggered within first two steps
by edges created in the first step: for tr.1c by BFS to
the non-root under long edge; for tr.1h by BFS or tr.1
on a node h-over a long edge to a non-root.

Claim 3.2 BFS (tr.2) terminates within d+2 steps.

Proof. If no crashes or long edges exist, the Lemma
is proven. Otherwise, after the second step there is a
zero. Let k>0 be the smallest such that after k+2 steps
there is a long edge vw, w∗h > v∗h < k (by Claim 3.1,
v is a root). After the second step, only BFS (tr.2)
creates long edges. So, after k+1 steps there was a
long edge uv, v∗h > u∗h < k−1, contradicting the
minimality of k.

Let vw be a long edge closest to a zero after d+2
steps. Then its higher end w has a path to a zero
which is a long edge wv followed by < d short edges,
so v∗h < d which contradicts the above.

Without long edges, all cycles are balanced. After
d+2 steps no new crashes appear.

Claim 3.3 After d+4 steps all roots are open.

Proof. Consider a crash v with v.h3 ̸≡ v∗h mod 3
after d+2 steps. Suppose there is a non-crash w over
v. But then w∗h ̸= v∗h + 1. So, either w∗h ≤ v∗h
(cannot happen after the first step) or w∗h > v∗h+ 1
(making vw long: cannot occur after d+2 steps). So,
no such w may exist, and tr.3 is not blocked by the
interface. After no long edges or .h3, .h mismatches or
roots h-over (and thus over) non-roots exist, any crash
is opened within one step by tr.4.

So, after d + 4 steps SI only opens (immediately)
any closed node without any other changes and the h3
labeling is a consistent slope, which proves Lemma 2.

4 Leader Election

Besides slope (and .ctl), at each node v, LE uses only
two fields: v.p and v.s. v.p points at one of the neigh-
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Figure 2: LE ranks and safety. Pointer v.p=w must have either root(v) & v∈{A,B,C,D0} or fwd(vw). Also,
for non-root v∈{A,B,C,D0,E2,F1}, up(wv). Unsafe edges: (B,D0), (B0,D); and up from w to v, as above right.

infect(w, v)
def
= v∈E(w) & v∈{C,D0} & [w=A ∨ (w=C1&v=C0) ∨ (w ∈ {E,D1}&up(vw))]

Order Test (required for some w∈E(v), preferably, w=v.p) Action (if safe v results)
1. Float up(wv)& [w ̸=E ∨ v=E0] v.p← w

v({C,D} 7→ E, ∗ 7→ E0
h3++7−→ F 7→ F1)

2. Basic w∈{A,C1} ∨ [root(v)&(v=D ∨ coin(v))] v({D,F} 7→A,B0 7→C1); v.p← w
cycle ̸ ∃u : [infect(v, u) ∨ infect(u, v) ∨ v=A&u=F1 &up(vu)] v(A 7→B1 7→B0 7→C0,C 7→D0)

3. Infect infect(w, v) v(D 7→D1,C 7→E); v.p← w

Figure 3: Leader Election. v(X 7→ Y,X ′ h3++7−→ Y ′, . . .) changes v: X into Y , X ′ into Y ′ (also incrementing v.h3),
etc.; the entire action is un-applicable to other states. coin(v) returns the next random bit.

bors of v and v.s is in one of 13 states listed and ranked
in Fig. 2. We drop states’ indices where irrelevant and
.s in formulas like v.s=A. Assume SI stabilized. Node
v is above w (w is below v) if there is a path of up edges
from w to v. No node is above itself.

Say, vk . . . v0(vi.p = vi−1) is a p-chain; and node v
leads to w if there is a p-chain from v to w.

4.1 Safe and legal edges

LE crashes illegal edges according to sec. 2.5. It also
has an internal safety version of legality (Fig. 2), and
a state A used akin to crash. An edge/pointer is le-
gal if it is safe, or root–root, or up edge from A, or
producible from those by crash and/or lowering the
non-lower root end. A node is legal/safe if all its edges
and pointer are. LE changes safe nodes to safe and,
if legal, unsafe nodes to A, preferably non-root.

No non-roots are under roots now. Fig. 2 implies
these properties of safety: (i) Unsafe A–A edges are
from roots down; (ii) Entering legal A preserves safety
of edges, except upward or to unsafe roots; Unsafe
legal node can legally change to A, if it is (iii) a root
or (iv) all its root neighbors are A or safe; (v) Setting
pointer down from A to A preserves safety; (vi) Legal
pointers are safe unless to unsafe non-A roots.

Claim 4.1 All edges are safe after 2d+2 steps.

Proof. Nodes change only to safe or (legal) A. Safe
roots have no down edges and cannot become unsafe

(ii). Unsafe roots become A within a step (iii), making
all pointers safe (vi). After next step any root to non-
root edge is safe: roots remain A until safe; non-roots
are safe or enter A, saving the edge (i). So, after 2
steps only two kinds of unsafe edges are possible: r-
edges (A-root to A-root up) and n-edges (A-non-root
to non-A-non-root up). The interface (and (v)) al-
low saving the highest r-edges, by turning the upper
pointer down, say to the lower end of the r-edge. So,
the max height of the r-edges decreases. Unsafe n-
edges become safe (A–A) in a step (iv). Any n-edge
has n-edges under it the previous step: otherwise, it
becomes safe and must (ii) remain so. Thus min height
of n-edges increases each step.

From now on assume there are no crashed or unsafe
nodes or unbalanced cycles. LE cannot create those.
Any p-chain leads to a root.

4.2 States: intuition, mnemonics

The transitions of LE are given in Fig. 3. Altering
v.ctl, as required by Interface, is left implicit.

The basic cycle starts with a root spreading up an
“activating” signal A, which changes into a “strong
back” state B1 when there is nowhere else to prop-
agate. The backing is completed by entering “weak
back” B0 (from leaves down to the root). After col-
lecting all B0 signals, the root chooses at random a
“coin” C0 or C1 and spreads it up. This is acknowl-
edged by “done” D0 and the cycle is repeated. This
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cycle is similar to Dijkstra’s 4-state token ring [Dij74].
Any two roots will, at some point, broadcast dif-

ferent signals. When this is detected, infection starts:
the “weaker” nodes enter (from C) “exit” states E, or
(from D0) “infected done” D1 (a basic cycle state, as
it may return to A without floating). Infection prop-
agates down and kills the root(s) below. Then float-
ing starts, gently elevating ungrounded nodes, until
grounded. F is entered (from E0) if and only if .h3 is
incremented. F may return to A when there are no F
under it (signaled by entering F1).

A root is dying if there is an E above it. A node
is dying if all roots below it are. Dying nodes enter F
(float), before re-entering A.

4.3 Linked roots

Call v, w in synch while their sequences of C0,1 states
(except possibly the first and last) are identical.

Claim 4.2 A node is in synch with its roots.
Dying roots never again flip coins.

Proof. Dying roots float before flipping any coins.
Indeed, F have no roots, so let v ̸=F. Only A,B are safe
over B0 and only A,D over D0. Any transit from {A,B}
to {A,D} either holds A or includes B0 7→ C 7→ D0.
If v holds A, infect blocks C 7→ D0 under it. So,
while r does B0 7→C 7→D0 any non-float v over (and
by induction above) it does the same. E must float
(having no down edges) before entering C.

Only C,E are safe under C. While v exits and
enters C, it must pass through A. So, any non-dying
node under (and by induction below) v does the same
or dies (if in C, as v passes through A).

If v = C and w is below v, then (from vertical
compatibility) w.s=v.s or w is dying within a step.

Claim 4.3 Basic states neighbors are in synch.

Proof. Call an edge live if its both ends are in ba-
sic states, except edges (A,C), (C0,C1) (dying in one
step, tr.3). The following is the exhaustive list of tran-
sitions between live edge states: (C,C) 7→ (C,D) 7→
(D,D) 7→ (D,A) 7→ {(A,A), (B1,D1)} 7→ (A,B) 7→
(B,B) 7→ (B,C) 7→ (C,C). So, obviously the sequence
of the C0,C1 states in the two ends are identical except
possibly first and/or last.

Corollary 4.4 Linked roots have identical coin flips
except possibly the first and last two.

5 Idle times

Here we prove a poly-d bound on any node’s idle time

(not optimal, but simpler to prove). By v(S
t−→T ) we

denote that if v is in a state of S (any, if S= ∗) then
it is or within t steps will enter a state of T .

5.1 Floating

Claim 5.1 If v is a rank 5 non-root, then up((v.p)v)

and v=E0 ∨ v.p ̸=E within tf
def
= 8d steps.

Proof. The claim is satisfied within a step (by tr.1) if
v∈ {B0,C0,D0} or v has a down edge vw such that ei-
ther v=E0 or w ̸=E. Otherwise, v must enter/exit E0

to satisfy the claim. v.p, (v.p).h3 cannot change with-
out satisfying the claim. v may exit or (since F cannot
point up) enter E0 at most twice while v.p keeps .h3.

Entering/exiting E0 can be blocked by nodes under
(but then the claim is satisfied in a step). Otherwise,
exiting can be blocked only by down pointers from
non-E, and entering by pointers from E0. Consider
the tree of all p-chains of alternating (̸=E)/E0 leading
to v. If the tree contains only v then in a step v can
enter/exit E0 or claim be satisfied.

The tree depth is ≤2d. No nodes can join the tree
(nor change branches) until v enters/exits E0: pointers
with both ends of max (5) rank are set only by tr.1;
and such pointer edges u⃗w can change states to have
exactly one end in E0 only by w entering/exiting E0.

Also, leaves leave the tree in a step: a leaf can
either change pointer or enter/exit E0. So in 2d−1
steps only v remains in the tree and in 2d steps either
claim is satisfied for v or v enters/exits E0.

Claim 5.2 If v∈{D,E} for ≥3d steps, then only max
rank and D,E nodes lead to v and only tr.1 may change
pointers on nodes leading to v.

Proof. Call a node w sterile if w ∈ {D1,E123}, no
C,D0 exist under w and no C1 point at it.

Only tr.1 can set pointers on a sterile w: tr.2 sets
pointer only on A,C1; tr.3 requires either w ∈ {A,C}
or C,D0 to be under w (both contradicting sterility).
{C,D0} come only from B0, unsafe under D,E. C1

can point only down, is unsafe over D and cannot
change pointer to E. So, a node can loose sterility
only by changing to A or E0 (D1,E123 can change to no
other states); And any w∈{D1,E123} is sterile within
a step: by tr.1 C1 pointing at w(=E) either changes
pointer or enters E, and by tr.3 C,D0 under w are
infected and change to D1,E also within a step.

Max rank children of sterile w can decrease rank
only if changing pointer. Non-max (1–4) rank children
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u of a sterile node w can only be in D1,E123 (u=C1

contradicts sterility of w; the others’ rank is either 5
or too low), and so are sterile within a step.

Let v ∈ {D1,E123}. Consider the tree of all non-
max rank p-chains leading to v (i.e. containing only
w∈{C1,D1,E123} and of depth at most 3d: d for each
rank). Sterile tree nodes can loose sterility only by
exiting the tree: A cannot lead to D,E, and E0 has
max rank. And non-max rank children of sterile nodes
become sterile in a step, and no new such children
appear. Thus, the minimal depth of non-sterile tree
nodes increases each step.

Corollary 5.3 Let td
def
= 8d+(3d+2)tf .

Then v({D1,E,F}
td−→ {A,F}) with up((v.p)v).

Proof. E0 is safe under any node and over only E.
w(∗ 7→ E) (tr.1) preserves safety of w.p and of up
edges. It may be prevented by safety of down edges to
non-E; w(F 7→ E0) is also prevented by pointers from
E0. Nothing else prevents the change to E. E can only
change to F with no nodes over.

Let v ∈ {D1,E} and let w ̸∈ {D1,E} be a highest
such below v. By safety, w ̸∈ {B,F}. If w = A then

v(∗ d−→ A) (E is unsafe over A, and D 7→ A by tr.2).
Finally, w({C,D0} 7→ {E,D1}) by tr. 3. So, either after
d steps only D1,E (thus, no roots) remain below v or
in 2d steps v enters A.

Let only D1,E be below v. After 3d steps only
D,E or max rank nodes may lead to (and only tr.1
may change pointers on) each of them (Claim 5.2).
Existing pointers from max rank are down in tf steps
(Claim 5.1). New ones can be set only down (tr.1;
Claim 5.2). Pointer from non-max rank cannot be set
on E,D1 by tr.1. So, if w∈{D1,E123} is the last such

leading to or below v, w({D,E} tf+1−→ E0) (tr.1). Thus,
in 7d+3dtf steps v and all below it enter E0. Pointers
on E0 must be down and those from ̸= E0 disappear
in tf steps (Claim 5.1; pointers on E0 can be set only
down from E0, tr.1). Now, maximal down paths from
v get shorter each step (tr.1). So, in 8d+3dtf+tf steps
v enters F.

If v=F then up((v.p)v) within tf steps (Claim 5.1).
Since h3 changes only when entering F, v enters F as
up((v.p)v) becomes true.

Corollary 5.4 Ungrounded nodes float in td+d steps.

Proof. If u ̸=F is ungrounded, then each lowest non-
E below u changes to E (tr.1), so within d steps u (and

all below it) are E. E
td−→ F by cor. 5.3.

Let u= F be ungrounded. Consider u′ = F below
(or equal) u with w.p= u′, w=E0 (by safety, w.h3=

u′.h3). Such pointer can result only from u entering
F and becoming above u′. Otherwise, the transition
must be at u′ or w. But tr.2,3 cannot result in a
pointer with such endpoints; tr.1 sets pointers only
down; and w could not enter E0 (no other state can
safely point at F from the same h3); if u′ enters F it
increments h3 floating from below u. So, while u stays
F, no new such edges w⃗u′ can be created for any u′ (=
or) below u=F. The existing such edges disappear in
tf states (claim 5.1, E0 is unsafe over F). After that,
each lowest non-E below u enters E in a step (tr.1,
similar to above). So, ungrounded F float in tf +d
steps.

5.2 Basic cycle

Claim 5.5 v({A,B} ta−→{C,E0}), for ta
def
= td+5d.

Proof. v(A
2−→ B1). Indeed, let v =A and for w ∈

E(v) let (i) up(vw) and w∈{D,F1}, or (ii) w∈ {C,D0}
(and ¬up(vw)). If no such w, v(A

1−→ B). If (i)

then w({D,F1}
1−→ A) (tr.2). If (ii), w({C,D0}

1−→
{E,D1,A})). New such w do not appear: due to the
order in Fig. 3, new F1,C,D as above change to A,E,D1

within the same transaction.
v({A,B} td+3d−→ B0). Indeed, let v ∈ {A,B1}. The

pointers of A,B1 never change; A is entered only with
the pointer down on A, unless in root (tr.2). So, in
each 2 steps the lowest A leading to v enter B. Their
min height cannot decrease: new such A can appear
only over the existing ones. So, after 2d steps no A lead
to v, unless v exited and entered A, passing through
C or E0. In td steps more all E,F pointing at and D1

adjacent to B1 leading to v change to F with pointer
down (or to A not leading to v; Cor. 5.3). C can-
not safely point at B. So then maximal p-chains of
B1 leading to v get shorter each step (tr.2; B1 7→ B0

preserves edge safety and pointer safety from the B,
pointers on the last B leading to v are now only down
from max rank nodes, and so remain safe too).

Finally, let v ∈ {A,B}. At any time, let set x
consist of v and all A,B,D nodes below v. D0 is safe
only under {A,D,F} and immediately infected under
A,D1. So, D0 cannot be entered under A,B,D1 and, in
a step, highest D0 below v enter D1 (tr.3), or A (tr.2 if
there is an A under it) or E (tr.1). In d steps x contains
no D0. Then, no new nodes enter x ({A,B,D1} are
entered only from F, unsafe below v, or from D0). In
td+3d steps more, all nodes in x enter B0 (or leave x).
Now each lowest node of x leaves x in a step (tr.2, C
is safe wherever B0 is, except over elements of x). So,
within d more steps v ∈ {C,E0}.
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Claim 5.6 v({C,D} tc−→{A,E}) for tc
def
= 2dta.

Proof. r(C
2dta−d−→ {A,E}), for root r. Indeed, let root

r=C. It can change only to D (and then immediately
to A) or to E. If any node above r enters E then
it, and thus r, will float in td steps (cor. 5.3). Let
set x at any moment contain r and nodes w above r,
w.s= r.s (only C,E are safe under/below C,E; so any
down path from w ∈ x to r contains only C, or r floats
in td steps). The min height of B over x increases each
ta steps (Claim 5.5; new B, coming from A, cannot
appear over C; new elements of x come only from B
over x). So, after dta steps no such B remain, and
no new nodes join x (assuming r has not changed).
After ta steps more no B are adjacent to x (claim 5.5,
new B come from A which would infect the adjacent
C of x), and no pointers on x can appear, except from
max rank down (new C come from B and old weaker
C0 are already infected, so only tr.1 can set pointers
on x, only down and only from x or max rank). In td
steps more, E pointing on x enter F with pointer down
(cor. 5.3). Now only C over can prevent nodes from
exiting x, so in d more steps x contains only r ̸=C.

Let v ∈ {C,D0}. In 2dta−d steps either v is un-
grounded (and all pointers on v or below are down,
cor. 5.3) or some root of v is A. B,F are unsafe under
C,D,E. So, the highest w ̸∈ {C,D,E} below v (if any)
must be A (under D). Thus, the max height of A or
min height of C,D below v increases each step.

Corollary 5.7 No node is idle for ta+tc+2td+d steps.

Proof. v is idle when it is a root not flipping coins
(≤ ta+tc steps: claims 5.5, 5.6), or an F with no F
under it, or ungrounded but not floating. Let v = F
with no F under it. No F can appear under v, so v
exits F0 in 1 step. F1 enters A whenever A appears
under it (A cannot exit under F1). Any node under v
will be E or A in ta+tc steps (claims 5.5, 5.6). E float
from under v within td steps and ungrounded v floats
in td+d steps (Cor. 5.4).
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Appendix

A O(1) space Slope Initiation

The algorithms below use in each node O(1) bits and
pointers to neighbors. A simpler implementation (de-
tailed in sec. A.4) runs in time |G|O(1). A more careful
(sketched in sec. A.5) implementation stabilizes (and
responds) in time polynomial in d and degree.

The Slope Initiation of sec. 3 used a map of net
nodes into the sequence of consecutive integers, which
requires log d space per node. Below we describe a
special bit sequence α which can be used instead. Like
integer line, α cannot have loops and allows fast (log
time) detection of errors.11

Namely, α is an O(1) bits12 per node no-loop cer-
tificate, such that any string of the form ss has an ille-
gal subsegment of length O(log |s|)2. A loop-detector
algorithm will run permanently in constant size spe-
cial fields. It will not affect other fields when (its fields
and) the certificate is consistent. It will discover and
break in poly-log parallel time pointer cycles. Some
algorithms will use modified α preserving the loop-
detecting property. Also polylog segments of α encode
information similar to the height in log space SI.

First, sec. A.1–A.3 consider Slope Initiation on graphs
of degree bounded by 2 (i.e. cycles and simple paths).
In the case of a simple path, any .h3 assignment is a
valid slope, and the task is trivial.

Lemma 1 guarantees forward edges. We extend
definition of forward to include edges to roots from
crashes and upper roots. SI at each node v uses for-
ward pointer v∗p (somewhat similar to v.p of LE).
Say v is a zero if v = v∗p (corresponding to zeros of
sec. 3).

Loop detector will catch and break a zero-less cycle
Then to guarantee the cycle balance, a stronger prop-
erty will be assured: any path from zero has variance
≥0. Each zero-zero path in the cycle graph simulates
a single TM (Prop. 2.1) checking/restoring its balance
and absence of nodes under zeros.

A.1 No-loop certificate: claims

Now we discuss detecting/breaking of zero-less (∗p-)
cycles. This will be central to the SI implementation.

Pointer chain acyclicity is simple to certify by a
sequence of increasing integers. However, we look
for constant space certificates. No such certificates

11Handling α requires awkward bit programming, so some
intuitive but tedious details will fit only in the journal version.

12Actually, 2 bits per node suffice, but we use more to avoid
non-essential coding issues.
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can be 1-step verifiable [IJ90]. (Interestingly, a two-
dimensional analogue — aperiodic tiling — is possible
[Ro71].) But we present O(1) space certificates verifi-
able on poly-logarithmic neighborhoods.

A slower-working certificate could be the Thue (or

Thue-Morse) sequence µ(k)
def
=

∑
i ki mod 2, where ki

is the i-th bit of k [Thu12]. It has no overlapping
segments, which are equal except for a shift (thus no
substrings of the form sss). Thus, any loop can be
detected after three rounds. Our sequence α(k) not
only has no segments of the form ss, but any such
segment contains an impossible in α subsegment of
nearly-logarithmic length13. Let us cut off the tail of
each binary string k according to some rule, say, the
shortest one starting with 11. Let us fix a natural
representation of all integers i > 2 by such tails ı̂ and
call i the suffix of k. Then α(k) = ⟨α[k], µ(k)⟩. Here
α[k] is ki if i ≤ |k|, otherwise symbol #.14 Let Lα be
the set of all segments of α. It can be recognized in
polynomial time.

Lemma 3 (Loop-catch) Any string of the form ss,
|s|>2, contains segments y ̸∈ Lα, |y|=(log |s|)2+o(1).

We say string x = x1x2 . . . xk is asymmetric if it
has a k bits segment of µ embedded in its digits (say,
as xi mod 2). For simplicity, we ignore other possible
means of breaking symmetry.

Let Ak(x) be a chain of k cellular automata A
starting in the initial state with unchanging input string
x. Ak rejects x if some of the automata enter a reject
state. Language L is t-recognized by A if At(|y|) re-
jects (1) all strings x with a segment y ̸∈ L, within
t(|y|) steps, and (2) no strings x with all segments
in L. For asynchronous self-stabilizing automata, re-
quirement (1) extends to arbitrary starting configura-
tion and to chains closed in a cycle; requirement (2)
extends to the case when a tail/head of the chain is
cut off during the computation.

Lemma 4 (Parallel Detection)
(i) Polynomial time languages of asymmetric strings
are polynomially-recognizable by cellular automata.
(ii) Same for asynchronous self-stabilizing automata.

A.2 No-loop certificate: proofs

A standard (respectively, shifted) i-interval of µ is an
interval of length 2i whose starting (resp., center) po-

13Instead of f(i) = i2 used below, let f be any such that∑
i>0

1/f(i) < ∞. Then α can be redefined so that any string

ss contains an impossible in α segment of length f(log |s|).
14Inclusion of µ in α is useful only for < 40-bit segments.

Also, µ(k) could be used instead of # if i > |k| in α[k], but this
complicates the coding and thus is skipped.

sition is divisible by 2i. Any two adjacent standard
i-intervals form either a standard or a shifted (i+ 1)-
interval. We need to distinguish which. Since any
standard interval is identical or complementary to an
initial segment, it is convenient to represent a stan-
dard or shifted interval (of given length) by its first
bit. Interestingly, such representation yields back the
same sequence µ. No standard interval and one of
any two adjacent shifted (i + 1)-intervals consists of
two identical standard i-intervals. So shifted (i + 1)-
intervals are recognizable, if the standard i-intervals
are determined correctly. The standard intervals of µ
naturally induce those of α. In arithmetic operations
below, #, is treated as 0. For a standard i-interval

x of α define D(x)
def
=

∑
j≥i:̂ȷ<2i

2j . D(x) equals the

distance mod 2j , for j : ȷ̂ < 2i, of the starting point
of x in α from the start of α.

Proof of Lemma 3. Let x and y be two standard
i-intervals, such that xy is a substring of α. Then
x[̂ı] ≡ y[̂ı]+ 1 mod 2. Moreover, D(y) = D(x)+2i

(mod 2j) for any j > i, ȷ̂ < 2i. This condition is
violated for any ss by picking (the smallest) i, j such
that i > log ȷ̂, j > log |s|.

Proof of Lemma 4 (i). Let L be a polynomial
time language of asymmetric strings: there is a Turing
Machine M testing x ∈ L in time |x|c, c = O(1).

Let C be a chain of |C| cellular automata contain-
ing some string s in the input fields. We need to show
that C(s) will detect substrings x ̸∈ L, |x|c < |C|, in
time |x|O(1). Denote as µs the sequence (supposedly
µ) embedded in the digits of s. Using the embed-
ded µ(s) sequence C organizes a hierarchy of (shifted)
intervals. The possible corruption of µs is either de-
tected or has no effect on the hierarchy construction.

Each shifted i-interval (for all i in increasing or-
der) simulates M(x) for all substrings x, |x|c < 2i.
Since any standard (i−1)-interval is contained in some
shifted i-interval, and a string of length < 2j is con-
tained in some shifted or standard (j+1)-interval, any
substring x ̸∈L will be detected in time |x|O(1).

Proof of Lemma 4 (ii). Each standard interval
is a trivial case of a tree. Thus, Prop. 2.1 provides self-
stabilizing simulation of computation of any standard
interval by asynchronous automata. Now, extension
of Lemma 4(i) to cycles is trivial since no effect of
the closing edge on the opposite side of the cycle can
propagate to the short substring y ̸∈ L in time of its
detection. Extension to the head/tale cut off is just by
restarting computation on the intervals cut. The only
problem in generalizing (i) to (ii) is that the intervals
of all levels of the hierarchy must run simultaneously.
(Otherwise, short strings y ̸∈ L cannot be detected
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in time |y|O(1) since the relevant intervals must wait
termination of computations of much larger intervals
whose turn may be first in an adverse starting confi-
guration.) So, we arrange the nested shifted intervals
to simulate (repeatedly) their corresponding compu-
tations at the same time.

The main difficulty in such an arrangement is that
the computations checking i-intervals for different i
must use the same (constant) automata. So, we al-
locate (recursively) space for each i with density, say,
1/O(i2). Below we consider the details of space allo-
cation and its use for simultaneous checking of over-
lapping (nested) intervals.

Say, cell number k inside a standard i-interval be-
longs to level j if k’s tail (as in definition of α, say the
shortest starting with 11) is ȷ̂ (representing j). If k
contains no tail (no substring 11) the cell’s level re-
mains undetermined. If a cell belongs to level j in
some i-interval, its level is the same in all larger inter-
vals. Also, if an i-interval contains cells of level j then
it also contains the cells of all levels < j.

Each level uses its cells to perform its computations
(e.g. those described above). In addition, some levels
(called serving) provide services to some higher levels.
Each cell has a special bit marking whether the cell
belongs to a serving level or not.

Let level i be serving level j > i. Then inside
each shifted i+1-interval the first ⌈log i⌉+1 of level j
cells are specially marked as address cells. These cells
are used to address an arbitrary location in the i+1-
interval, which is then read into them by the level i.
Using these functionalities (provided by lower levels)
each level can perform its computations (which are
described above).

Let i be marked as a serving level. Then in addition
it must provide services to some higher levels (using
half of its fields). Level j > i is served by i if a shifted
i+1-interval contains > log i cells of level j. The cells of
the highest such j are marked by i as serving (for the
higher levels). The levels j are served by i one after
another introducing at most a polynomial slow-down
in computations of levels j.15

A.3 SI for degree 2

Now we give details of SI for degree 2 networks. Its
main part, α-checker, merely employs Lemma 4 to as-
sure correctness of the no-loop certificate α. Accord-
ing to Lemma 3, α cannot loop and thus grows from

15By reducing the number of levels served by each serving
level this slow-down could be reduced. We avoid it for the sake
of simplicity. As a side remark, with the above implementation
there are O(log∗ i) serving levels < i for any i.

a zero. After α-checker stops creating new zeros, SI,
just simulates a TM (Prop. 2.1) checking and correct-
ing the slope on each zero-zero interval. When ranks
change, α-checker may replace the current α with an-
other one, possibly growing from a different node.

Each node v has two internal α-checker fields (at
most one of which may be empty): old, v.a0, and new,
v.a1, each containing a digit of α, rank, and a pointer
p(v.ai) to a w.ai (v ̸= w ∈ E(v) or p(v.ai) = v.ai).
These fields will be used by α-checker to guarantee
zeros. Two copies are needed to build new α (keeping
the old one until the new is finished) when dictated by
(external) node rank changes. Define v∗p to point at
the same node as v’s oldest pointer (p(v.a0) if v.a0 is
not empty, p(v.a1) otherwise). If p(v.ai) = v.ai then,

its α digit is ignored (“correct”) and rank(v.ai)
def
= 0.

α-checker 0-crashes (sets p(v.a0)=v.a0, rank(v)=
rank(v.a0) = 0, and v.a1 to empty) the nodes vio-
lating the following conditions: Any string of same
rank α digits along .ai-pointers is in Lα (checked us-
ing Lemma 4). rank(v.ai) ≥ rank(p(v.ai)). p(v.a1)
point at non-empty .a1 and p(v.a0) at non-empty .a0
or at .a1. If p(v.a0) points at a w.a1 then v.a1 must
be empty, p(w.a0) ̸= v.ai, and if w.a1 is empty then
p(v.a0) considered to be on w.a0 (it is reset to that
when v acts).

Changes to .ai violating the above are blocked (α-
checker verifies the above condition before and after
each change). Therefore, after polynomial time zeros
exist and α-checker stops 0-crashing (LE create no
crashes after a step, Lemma 1; no zeroing is used for
the slope correction nor for α maintenance).

The new α grow and replace the old according to
the following local rules (based on [Dij74]): If v.a1 is
empty, p(v.a0)=u.a0 for some u, p(x.ai)=v.a1 for no
x, either w.a1 is non-empty and rank(v) ≥ rank(w)
for some w ∈ E(v) or rank(v) = 0 and p(v.a0) =
v.a0 then v.a1 gets the pointer to w.a1 (v.a1 if zero),
rank max{rank(v), rank(w.a1)} and the appropriate
α digit. v.a0 is emptied when not blocked (v.a1 is
non-empty and no pointers on v.a0). v.a1 is emptied
into empty v.a0 when no neighbor w has empty w.a1,
p(w.a0) ̸=v.a1, and rank(w)≤rank(v.a1) (and no .a1
point at v.a1). If rank(v)=rank(v.a0), v.a1 is empty
and v is closed, then v is opened.

Next, we show that each node is opened in poly-
nomial time. Consider a zero-zero interval with end-
points z, z′ of rank 0. Let w be the last with w.a1 lead-
ing to z.a1 (by .a1 pointers) and v be one further from
z. If p(v.a0)=w.a1 then the chain of .a1 leading to z.a1
shrinks each step (w.a0 is emptied and immediately
gets w.a1 and, similarly, the for others). If p(v.a0) =
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u.a1 for u ̸= w then within two steps p(v.a0) = u.a0.
If rank(v) ≥ rank(w), v.a1 is empty, p(v.a0) = u.a0,
then within a step there are no pointers on v.a1 and
then v.a1 gets filled. Finally, if rank(v) < rank(w)
then v must have a path to another zero, which does
not increase rank. If this path ceases to be rank non-
increasing then w must change rank to ≤ rank(v), w
will not be able to increase rank after that until it is
opened; v will get non-empty v.a1. If a path from v to
z′ stays rank non-increasing then by the above v gets
non-empty v.a1 in linear time.

So, any node fills and empties .a1 within polyno-
mial time. A node v may get v.a1 of rank(v.a1) ̸=
rank(v) only if p(v.a1) = w.a1 with rank(w.a1) ̸=
rank(w). Thus the second time a closed node fills
.a1 it has the rank of the node and thus the node will
be opened when .a1 is emptied.

SI simulates a TM on each zero-zero interval ver-
ifying correctness of the slope on the interval. This is
independent of the .ai fields and is straight-forward.
This TM can also provide a simpler way to coordinate
opening of the nodes on the zero-zero interval when
all slope and ranks of .ai fields are correct.

A.4 Sequential SI for any degree

For general graphs, SI keeps a forest of forward ∗p
pointers. Acyclicity is assured by employing degree 2
SI (sec. A.3) on the DFS tour of each tree. Each ∗p-
tree runs a TM simulating SI of sec. 3. Its BFS turns
the forest into a BFS forest with a natural slope on it.

Each degree 2 graph (embeded along dfs) runs α-
checker of sec. A.3, using ord∈{zero, low,med, high},
zero < low < med < high, as ranks (zero, denoted by
v∗p = v, marks zeros). Height v∗h is defined as the
variance of the ∗p-chain from v to the zero, for crashes
using the distance by tree edges mod3 as the slope.

A TM (along the dfs tour) is maintained by each
tree and provides all functionalities described below
(α-checker not included). Two special marks, server
and client, move around each dfs tour, each marking
a (non-tree) edge. The path of .ai pointers from each
mark to zero (along the dfs tour; not passing through
the other mark) must have rank low and the path con-
necting the two marks (say, directed from server to
client) have rank high.

Whenever there is no client on the other end of its
current edge, a server moves on to the next edge. A
client waits to be served (by server on the other side
of the edge) before moving on to the next edge.

When an edge vw is marked on both sides (by a
client at v and a server at w) a new degree 2 graph
is formed by joining the server’s and client’s cycles

(possibly both on the same dfs tour). A version of
the slope-checker, simulating SI of sec. 3, is run on
this new cycle. First, for both trees simulate tr.1 on
all tree edges for 0-crashing (no long tree edges are
possible here). Then, if vw is not a long edge (with w
at the lower end) both marks proceed to the respective
next edges. (Pointers which are no longer forward can
be corrected if both trees involved have found no long
edges nor 0-crashed any nodes.)

Otherwise, if v∗h>w∗h+1 the tree pointer of v must
be changed to w. This requires constructing new α.
First, the server of the v’s tree is pushed out of the
subtree rooted in v, ignoring the client requests there.
Then the dfs tour of the subtree of v (the path from
v to its old zero) changes rank to med. When this
is done, the pointer of v could be changed to w in a
step (making the obvious adjustments at w and the
old parent of v). But such a step of bfs can lower v’s
descendants in an undesirable way. So, before com-
pleting the pointer change the new slope needs to be
computed for them, in a way simulating bfs on all of
the subtree’s edges. The height change of a node is
equal to the height change of its parent if the par-
ent was lower, one smaller if the parent used to be at
the same height and two less if the parent was higher.
Thus simulating bfs as above on all the subtree nodes
we can complete the change of pointers (e.g. in a way
similar to α-checker).

Consider a long edge vw with a lowest endpoint w.
The server at w would never deny services to the client
at v (both marking vw), since no ancestor of w has a
long edge. Any server is moving along the dfs route
spending only polynomial time on each edge and will
thus in polynomial time appear on the other end of
any waiting client. The server still may at that point
deny services (if it is being pushed out from its own
server’s subtree). A client remaining in the same tree
visits every tree node (and its edges). Every time a
node switches the tree its distance to the zero (along
tree edges; ≥height) is reduced. Therefore, after poly-
nomial time vw will cease to be long.

A.5 Parallel SI

Finally, we sketch how the techniques introduced above
are used to simulate SI of sec. 3. As opposed to the
logarithmic version (where v.h was stored directly in
a node) and to the sequential version (where v∗h was
computed using the whole path from node to its zero)
we will now compute v∗h using µ and α digits. Namely,
.ai fields will now contain (a modified, as described
below) α(v∗h). Lemma 4 can be generalized to trees
(rather than linear arrays) of automata.
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We need to relax α: otherwise changing height
will involve rebuilding the whole of the following α
string (which may be linear in the size, rather than
diameter). The relaxed α will still posses the quick
loop-detecting properties, but will allow some “gaps”,
compared to α (which will allow to update only to the
nearest allowed “gap”, rather than the whole contin-
uation of the old certificate).

A.5.1 Relaxed certificates

Intuitively, to construct relaxed certificates, α(k) is
augmented to encode, in addition to the digits of k,
also digits of its length, ⌈log k⌉. Then, a subsequence
α̃ of (the augmented) α is a relaxed certificate if any
two adjacent standard i-intervals in α̃ are adjacent in
α or the first encodes a smaller length of the distance.
In the definitions below, intuitively, an interval of the
(augmented) α is complete (resp. semi-complete) if it
encodes the distance (resp. the length of the distance).
The formal definitions follow.

A standard i-interval x of α is complete if x[ȷ̂]=#
for some j, with the tail representation ȷ̂ < 2i. 16

Augment α with one more field β, encoding the
size of the smallest complete interval, similarly to the
way α encodes the distance from the start. Namely,
β[k] = ri, where i is the suffix of k (i.e. k ends with
ı̂), and ri is the i-th bit of the smallest r, such that
the standard r-interval containing k is complete. Also,
similarly to the complete intervals, define a standard
i-interval y to be semi-complete if it contains the com-
plete encoding of the length of the complete interval:
namely, if y[ȷ̂] = # for some j with suffixless encoding
ȷ̂ < 2i. For a standard i-interval x of the augmented α

define L(x)
def
=

∑
j≥i:̂ȷ<2i

βx[ȷ̂]2
j , where βx[ȷ̂] denotes

the ȷ̂-th β field of the interval x.
The (semi-)complete intervals are recognizable lo-

cally (first, recognize the corresponding i-interval of µ,
and then check that for some j (ȷ̂ < 2i), this interval
contains # in the ȷ̂-th position of α for completeness,
in β for semi-completeness (counting from the begin-
ning of the interval).

A subsequence α̃ of the augmented α is a relaxed
certificate if for any standard i-interval x followed im-
mediately by a standard i-interval y in α̃, if xy is a
(standard or shifted) (i+1)-interval of the (augmented)
α, or x is semi-complete and L(x)<L(y) (or y is not
semi-complete). Lemma 3 can be extended to relaxed
certificates, and L

α̃
is polynomially-recognizable.

16Assume the suffixless representation of integers by tails to

be monotone. Then k̂ < 2i for all k ≤ j (< 2i).
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