
1

1

Fair Computation of General Functions in Presence of

Immoral Majority

Shafi Goldwasser†

MIT
Leonid Levin‡

Boston University§, MIT

Abstract

This paper describes a method for n players, a majority of which may be faulty, to compute
correctly, privately, and fairly any computable function f(x1, . . . , xn) where xi is the input of
the i-th player. The method uses as a building block an oblivious transfer primitive.

Previous methods achieved these properties, only for boolean functions, which, in particular,
precluded composition of such protocols.

We also propose a simpler definition of security for multi-player protocols which still implies
previous definitions of privacy and correctness.

1 Introduction

The problem of performing a distributed computation in a fault-tolerant and private manner has
been addressed by many researchers in the past few years.

In a sequence of papers [Goldreich Micali Wigderson 87, Ben-Or Goldwasser Wigderson 88,
Chaum Crepeau Damgaard 88, Ben-Or Rabin 89] it has been shown that when both private channels
between pairs of players and broadcast channels are available, any distributed computation (e.g.
function or game) can be performed privately and correctly, in spite of worst case behavior of the
faulty players, if they are in minority.

When in majority, faulty players can be shown to be able to prevent the completion of certain
computations by quitting early. Moreover, they may quit while being “ahead”, i.e. having learned
more about the output than non-faulty players.

A special computation problem where quitting early is especially harmful was addressed by
[Luby Micali Rackoff 83]: the simultaneous exchange between two players of random secret bits.
Each player must be protected against the case the other player quits early. The fairness notion
they proposed (and achieved under the assumption the quadratic residue problem is hard) is that
the probability that player A knows the secret bit of player B is within an ϵ of the probability that
B knows the secret bit of A (the protocol is polynomial time in ϵ−1).

[Yao 86] proposed (and showed how to achieve under the assumption that integer factorization
problem is hard) the following notion of fairness for arbitrary two party boolean protocols. Suppose
two players A and B want to compute a boolean function f privately and correctly. Informally, a
protocol is fair if given any strategy of a faulty A, the non-faulty B has a strategy such that the
probability that B will learn f , given that A will learn f is at any time during the protocol is as high
as it is in the beginning of the protocol. The solution is based on the existence of trapdoor functions.

∗Annual CRYPTO Conference (IEEE/LACR) St.Barbara, August 1990 (Proceedings 1991).
†Supported by ARO grant DAAL 03-86-K-0171 and NSF PYI grant 8657527-CCR with IBM matching funds
‡Supported by an NSF grant , and the MIT laboratory of computer science.
§Computer Science dept., 111 Cummington St., Boston, MA 02215; e-mail: Lnd@cs.bu.edu

2

These results were extended in ([Galil Haber Yung 89, Brickell Chaum Damgaard VanDeGraaf 87])
to the multi-player case.

The drawback of the above fairness definition is its severe limitation on the power of the faulty
players. Since the strategy of the non-faulty players depends on the strategy of the faulty players, the
faulty players program strategy must be chosen first and can not change depending on the program
of the non-faulty players.

[Beaver Goldwasser 89] proposes a different notion of fairness, free from this limitation. A
protocol to compute function f is said to be fair: if there exists a strategy for player B such that for
any strategy of faulty subset of players A the ratio of the odds of B and A to compute the outcome
of f is (about) the same at any time during the protocol as it is in the beginning of the protocol.
It is shown how to achieve such fairness for multi-player protocols for boolean functions (as well
as different boolean functions for different participants). The solution in[1] is based on trapdoor
functions, and in [2] on the existence of an oblivious transfer primitive.

New Results. In this paper we show how to define and achieve fairness of any (not only boolean)
function from strings to strings. This allows iteration and composition of protocols preserving
fairness. In fact, we can achieve fairness for any interactive probabilistic computation, (i.e. games
– to be defined in the journal version of this paper). The solution is based on the existence of
an oblivious transfer primitive between every pair of players and a broadcast channel. The failure
probability of the the protocol we propose is exponential while previously known was a polynomial.

We also propose a simpler definition of security for multi-player protocols which still implies
previous definitions of privacy and correctness. [Kilian Micali Rogaway 90] have proposed indepen-
dently another set of definitions of security. The relationship between the set of definitions has not
been fully analyzed yet.

2 Conventions

Definition 1 • A interactive Turing machine is one equipped with a work-tape, input tape,
random tape, output tape and several read-only and write-only communication tapes. The
random tape contains an infinite sequence of random bits. Flipping a coin means reading the
next new bit from the random tape.

• A multi-player protocol P⃗ = (P1, P2, . . . , Pn) is a tuple of n interactive Turing machines where
Pi starts up with xi on its input tape and ends up with some output yi on its output tape.
We call x⃗ = (x1, . . . , xn) the input vector to P⃗ .

Inputs. We assume that the number n of players and identity i of each player Pi are included in
its input. Initially coin-flips and inputs are independent. They may become correlated if their joint
distribution became conditional on the information (say their sum) released by the player. Such
coin-flips we call relevant. Players may want to keep them secret, to protect the privacy of their
inputs. Other irrelevant coins flips may be released after the end of the protocol. The third type are
unused coin-flips. They are kept, so that modifications of the protocol may use them and run with no
extra random sources. The protocol must separate the three types before any communication starts
and the unused flips must have at least constant density on the tape. We will treat the relevant
coin-flips as part of the complete input, unless we talk of the proper input.

Outputs. Also, each player’s output in non-faulty protocols consists of its input, relevant coin-flips,
and only one more string P (x⃗), common to all players. This assumption does not limit generality,

since we can always add one last step to any protocol P⃗ in which every player i uses a secret random
string pi and tells all other players the value of exclusive or: yi ⊕ pi. Then, the common output is

3

the concatenation of all yi ⊕ pi. The new protocol is, clearly, equivalent to the old one and retains
all its properties, like correctness, privacy, etc.

Notation 1 Let x⃗ = (x1, . . . , xn) be the input vector to protocol P⃗ = (P1, . . . , Pn). Then, P⃗ (x⃗)
will denote the random variable which maps the (uniformly distributed) contents of random tapes
αi of the Pi’s into the output vector y⃗ = (y1, . . . , yn) where yi is the output of machine Pi.

Let F ⊆ {1, . . . , n} be the set of (colluding) faulty players. An upper bound t ≥ |F | on their
number is included in the inputs of all players. The inputs and outputs of faulty and non-faulty
players we denote x⃗F , x⃗!F , P⃗F (x⃗), P⃗!F (x⃗), respectively.

Let us choose an arbitrary monotone unbounded security threshold S(k) < k and call func-
tions k−S(k)/O(1) negligible. If a family Y of random variables runs in expected polynomial time
EαTYk(α) = kO(1), we call it samplable.

Definition 2 A test is a probabilistic algorithm t(ω, y) which maps the tested string y into the result
{±1, 0}, using its internal coin-flips ω. Tests must run in expected polynomial time EωTt(ω,y) =

|y|O(1). A test t accepts a family Yk(α) ∈ {0, 1}k if its expected value tY (k) = Eω,αt(ω, Yk(α)) is
negligible. We call indistinguishable:

• two families of random variables, if every test accepts both or none of them.1

• protocols P⃗ , P⃗ ′, if P⃗ (x⃗), P⃗ ′(x⃗) are indistinguishable when x⃗ is generated by any samplable
family of random variables.

2.1 Faulty Versions of Protocols

Versions of a protocol capture deviations from it by the faulty players.

Definition 3 A version of protocol P is any protocol P ′, with P!F = P ′
!F .

Note, that no restriction is put on P ′
F . They may deviate from the PF at any time and freely

exchange messages among members of F . This raises two questions.

Question 1: How does a player become faulty and enter F?

Answer: We assume an adversary who points to a player and makes it faulty.

Question 2: How does such an adversary decide who to point to?

Answer: We consider two models for such adversary.

In the first model, the adversary, called the static adversary, chooses the set of faulty player
before the beginning of the computation.

In the second model the adversary is called the dynamic adversary. In this model the adversary
observes the broadcast messages and private inputs/communication of any (none at the start) players
which already became faulty. Based on this information, the adversary may, at any time and
repeatedly, choose new players to become faulty. Once a player is faulty it remains faulty and their
number is limited by t.

1For non-samplable Y, Y ′ one should require negligibility of tY − tY ′ .

4

2.2 Legal and Moral Faults

Some faults affect the input-output behavior of a protocol but, for trivial reasons, can never be
prevented by the non-faulty players.

For example, players in F may choose to misrepresent their inputs xF as x′
F and run PF accord-

ingly; also they may choose to replace their output yF with entirely different strings y′F . We refer
to such faulty behavior as immoral but legal.

Definition 4 A legal version of a multi-player protocol P⃗ = (P1, . . . , Pn) is a protocol P⃗ ′ =
(P ′

1, . . . , P
′
n) where P ′

i is identical to Pi except for

• Before any communication with non-faulty machines, the faulty players may pull together their
inputs and random tapes and transform them arbitrarily.

• Upon termination of P⃗ , all i ∈ F may pull together their inputs, outputs, and random tapes.
Then the outputs of faulty players may be replaced by a function of this pool.

Note: The dynamic adversary in the legal version is active only during the input and output
stages. In these stages he corrupts players choosing them on the basis of inputs (and at the end of
outputs as well) of those players he previously corrupted.

When in majority, faulty players have other non-preventable ways to affect the protocol’s input-
output behavior. Namely, if players quit early, they can prevent the good players from completing
the computation.

Definition 5 A legal-minority version of a multi-player protocol P⃗ is a legal version P⃗ ′ of a protocol
identical to P⃗ except that the players whose coin flips have 0k prefix may broadcast an abort message
before or during the protocol. Any such message preceding the protocol aborts it and players output
error. During the protocol such messages from n−t players also cause an abort and non-faulty players
append their output with the identity of the aborting players.

2.3 Robust and Fair Protocols

Definition 6 A protocol P⃗ = (P1, . . . , Pn) is robust (respectively semi-robust), if for every version

P⃗ ′ of P⃗ , there exists a legal (respectively legal-minority) version P⃗ ′′, of P⃗ , indistinguishable from

P⃗ ′.

While robustness is a “complete” quality, semi-robustness requires additional feature: quit-
fairness. It insures that interrupting the protocol does not give an unfair advantage in knowledge to
the perpetrating majority.

In addition to players 1, . . . , n, we will speak of player 0 to mean the coalition of faulty players
whose joint input is x0 = xF . (from here on i ranges from 0 to n).

For generality, we assume that not all output information has equal value. Some may be useless,
as the players may somehow get it for free upon termination of the protocol P⃗ . Suppose this free
information for player i is Vi(x⃗). The function V⃗ may not even been known to i during the protocol,
but could be known to the faulty players. (The reader may ignore this extra generality, assuming

V⃗ = 0.)
Let µ̄y(i) be the probability (over x⃗, α⃗) of output y = P (x⃗) given Vi(x⃗) and xi, and δ(i, x⃗, α⃗) =

1
µ̄P (x⃗)

Ey ̸=P (x⃗)(µ̄y) =
1

µ̄P (x⃗)

∑
y ̸=P (x⃗)

µ̄2
y

1−µ̄P (x⃗)
be the ratio of the average (over y) probability of a wrong

answer to the probability of a correct answer (from the point of view of player i).
Let hx⃗,i,t,α⃗ be the history seen by player i up to step t on input x⃗, and coin tosses α⃗.
Let µt(i, x⃗, α⃗) denote the probability of the correct output P (x⃗) (taken over x⃗, α⃗) given Vi(x⃗)

and hx⃗,i,t,α⃗ (from the point of view of player i).

5

Let rt(i, x⃗, α⃗) =
(1−µ)

µ be the ratio of the odds of wrong and correct values for P (x⃗) (from the

point of view of player i)
Let Rt(i, x⃗) be the expectation (over α⃗) of rt and Dt(i, x⃗) be its standard deviation.

Definition 7 A protocol is quit-fair if

• for all i, t, x⃗, α⃗ either log rt+1(i,x⃗,α⃗)
rt(i,x⃗,α⃗)

< 1
|x⃗|

2 or hx⃗,i,t,α⃗ ∈ Hx⃗,i,t where Hx⃗,i,t is a set of histories of

exponentially small probability over α.

• Rt+1(i,x⃗)
Rt(i,x⃗)

does not depend on i.

• Dt(i, x⃗) is O(
√
δ(i, x⃗, α⃗)Rt(i, x⃗)).

A protocol is robust for minority if it is semi-robust and quit-fair.

2.4 Stable Functions and Commitment Protocols

Definition 8 A function f is stable if f(x⃗′) is either nil or f(x⃗), for all x⃗ in its domain and x⃗′, s.t.
x′
!F = x!F .

Note 1 Faulty players can not affect the value of stable functions by misrepresenting their inputs.

By running a commitment protocol on inputs x⃗ we will transform any function f into a stable
function f ′ (on possible outcomes y⃗ of the commitment protocol), such that f ′(y⃗) = f(x⃗′) for some

x⃗′, x′
!F = x!F .

3 The Merits of the Definitions

Traditionally, several properties are required of a protocol such as privacy, correctness, independent
choice of the inputs by faulty players, when a minority is faulty. And, additionally, quit-fairness,
when majority is faulty.

All versions of robust protocol satisfy all these properties:

Proposition 1 Any version of a robust protocol P⃗ satisfies the following properties:

• Correctness: In a legal version, by definition, the non-faulty players output P!F (x⃗′), and
x′
!F = x!F . Now, since there exists a legal version which is indistinguishable from an illegal

one and in that the good guys outputs are correct, we are practically guaranteed correctness
for illegal version of P⃗ .

• Privacy: Several definitions of privacy exist. We recall one of them and demonstrate it for
a robust protocol. Let V IEWF be the random variable which takes on as value the entire
history of communication and coin tosses as seen by the players in F . Call a protocol private
if there is a polynomial time algorithm M , s.t. (M(xF , αF , yF), x⃗, y⃗) is indistinguishable from
(V IEWF , x⃗, y⃗).

Now, any version P⃗ ′ of protocol P⃗ , can be modified by making its faulty players to output the
V IEWF . There exists a legal version P⃗ ′′ of P⃗ , with an output distribution indistinguishable
from P⃗ ′. In a legal version, the faulty players compute their output based only on their
inputs/outputs for P⃗ . It follows that V IEWF can be generated given only the inputs xF and

outputs yF for P⃗ of a faulty coalition.

2This can be made arbitrarily small by padding the input x⃗.

6

• independent commitment to inputs: By definition, in a legal version of the protocol the faulty
players decide on which value x′

i to use independently of the values of non-faulty players.
Since for every illegal version of the protocol, there exists a legal version with the same output
distribution, the values that faulty players choose in the illegal version would have been chosen
by faulty players in a legal version independently of non-faulty inputs.

Proposition 2 Any version of a robust for minority protocol P⃗ satisfies privacy, correctness, inde-
pendent commitment to inputs, and quit-fairness.

Proof: Privacy and independent commitment to values are shown as above. The definition of
correctness for a faulty majority is an extension of correctness in the faulty minority case. Namely,
we allow non-faulty players to output the special “error” output when faulty players quit in the
middle of the protocol. For this extended definition, the same argument used for correctness in
above theorem will work. Fairness is guaranteed as part of the definition of robust for minority
protocols.

Now previous theorems in the literature can be cast in this terminology:

Theorem 1 ([Ben-Or Goldwasser Wigderson 88, Ben-Or Rabin 89])
If |F | < n/2, any protocol can be modified into a robust one with same outputs.

Especially interesting is the case of P⃗ computing stable functions, since in all versions of robust
protocols for a stable function, non-faulty outputs are the same.

4 Main Result: Robust for Minority Protocols

Theorem 2 (Main) If an oblivious transfer primitive exists and a broadcast channel exists, any
protocol can be modified into one robust for minority, with same outputs.

Note 2 No restriction is made on the number of faults in the theorem. The oblivious transfer con-
dition has previously been shown necessary for a general protocol transformation preserving privacy
for a majority of faults.

In addition to players 1, . . . , n, we will speak of player 0 to mean the coalition of faulty players
whose joint input is x0 = xF . (from here on i ranges from 0 to n).

The xi’s for player i are chosen at random with some (not necessarily easy computable) dis-
tribution. Recall that we assume the original protocol to compute one common output P (x⃗) (in
addition to xi and relevant coin flips). This is so since at the end of the original protocol each player
can choose a random string pi, and send all other players yi ⊕ pi. The common output will the
concatenation of all pi⊕ yi. Clearly, the same privacy properties hold. Thus, from here on we speak
of a protocol to compute a single output.

The protocol consists of four stages: preprocessing, commitment, computation, and revelation.
Preprocessing

If the number of potential faults is in minority the preprocessing stage is skipped. If the number
of potential faults is in majority, then first the entire network engages in a preprocessing phase,
independent of the inputs. The outcome of the preprocessing phase is either error or the protocol
proceeds to stages of commitment, computation and revelation. An error implies that the protocol
is aborted. A majority of faulty players can always force an early abort, but their decision to cause
an early abort is independent of the non-faulty players inputs.
Commitment

The commitment stage reduces the problem to computing a stable function P (x⃗). It also creates
a sequence of (committed to but hidden) coin-flips α (each the sum mod2 of coin-flips of all users).
Computation

7

The computation stage reveals the sum (taken over Z
|P (x⃗)|
2) of P (x⃗) with random password w

(chosen based on α). Fairness is not an issue at this stage, because any player can (were the protocol
interrupted) make this sum totally random by erasing her coin-flips.
Revelation

At the revelation stage w is revealed. Privacy is not an issue at this stage, since w has no
information about the inputs (beyond what the function value reveals).

Let ε = 1/|x⃗|. The revelation protocol consists of T < 2|w| macrosteps in which the protocol

reveals next unused portion of α and interprets it as a vector vT ∈ Z
|w|
2 . It then reveals a sequence

of ε−3 independent bits (one per micro step) bt(α) chosen such that bt = (vT ·w) (the inner product
of vT and w) with probability 1/2 + ε. At the end of the macro-step the actual value of (vT · w) is
revealed.3

Clearly the logarithm of rt(i, x⃗, α⃗) (see Definition 7) cannot change by more than O(ε) per micro-
step. After going through ϵ−3 micro steps with an exponentially small probability the majority of
the coin flips differs from vT · w. Thus, at the last step of the macro step when vT · w is revealed,
rt+1 − rt is changed negligibly unless this exponentially rare failure of majority has happened. This
takes care of the first requirement of quit-fairness.

Assume for generality sake that at termination of the protocol player i may even be given an
extra information Vi(x⃗). (The function V⃗ to be later handed out may not necessarily be known to
the non-faulty players during the protocol but could be known to the faulty players).

One can easily show that Rt decreases with almost the same speed for all x⃗, i, V⃗ . Indeed, let the
computation stage output y = P (x⃗)⊕w. At the outset of a macro-step T , let ST (y, α) be the set of
w′ with (vT ′ · w′) = (vT ′ · w) for all T ′ < T . Let p(Y) be the probability at the outset (over x⃗ with

given xi and Vi(x⃗)) of y ⊕ P (x⃗) ∈ Y . Then at the end of macrostep T , rt =
1−µt

µt
= (p(ST)−p(w))

p(w) .

Each w′ has a 2−T chance to satisfy all T of the above randomly chosen vT · w boolean linear
equations and so fall in ST . Moreover, each u falls in or out of ST pairwise independently of
any u′ ̸∈ {u, u⊕w}. Thus, the expectation at the end of a macro step of p(ST) − p(w) (over α) is

(1−p(w))/2T , and therefore the expected value of 1−µt

µt
is (1−p(w))

p(w)·2T . No change in the expected value

occurs at a micro step. Thus Rt is independent of i and the second requirement of quit-fairness is
satisfied.

The standard deviation of p(ST) − p(w) is smaller than the square root of the mean of p({a})
by a factor of 2−T/2/O(1), and therefore DT ≤ O(

√
δRT). (Recall that δ (in the definition of

quit-fairness) is the ratio of the average probability of wrong answer to correct answer.)4

5 How to Use the Oblivious Transfer Primitive

5.1 The Oblivious Transfer Assumption

We assume that every two players can perform an oblivious transfer.
An oblivious transfer [Rabin, Blum, Fischer Micali Rackoff, Even Goldreich Lempel 82] between

two players A and B denoted by 1
2 − OTAB(b0, b1, c) is a process by which player A who has bits

b0,b1 transfers bit bc to player B, where c is chosen by B. The transfer is done obliviously: player A

3The purpose of not revealing (vT · w) immediately is to assure that by quitting early the faulty players can only
receive one coin flip more than non-faulty ones toward the value of (vT · w). After 2|w| macrosteps, w itself can be
revealed.

Sometimes the faulty coalition can be restricted to a polynomial number of possible combinations (known to all
parties). Also the parties may be confident at the start that their inputs are random and completely secret. Then a
more sophisticated procedure could be used to discriminate against possible coalitions, which “know too much”. We
ignore this issue for now.

4The fairness requirement does not prevent erratic behavior at the end of the protocol, thus in special cases when
it is detectable that the players doubts are concentrated on a logarithmic number of outputs we can do better by
tossing a cube of all possible answers slightly biases toward the correct one.

8

can not distinguish between the case player B received b0 and the case B received b1; player B can
not distinguish between bc̄ = 0 and bc̄ = 1.5 An oblivious transfer of one bit, means that the other
bit is 0 and the (random) order of bits is revealed after the transfer is performed.

An oblivious transfer can be implemented if trapdoor functions exist and A and B are computa-
tionally bounded [Even Goldreich Lempel 82]; or can be derived from the existence of noisy channel
and other physical means even in the presence of infinitely powerful A and B [Crepeau Kilian 88].

We show how to use an 1
2 − OTAB(b0, b1, c) protocol between every pair of players A and B to

implement the preprocessing, commitment, and computation stages specified in section 4. Thus, we
start with a legal protocol and transform it to one which is robust.

Many of the ideas in the transformation which lead to semi-robustness property (not quit-fairness)
are similar to ones used in previous results of [Goldreich Micali Wigderson 87, Galil Haber Yung 87,
Ben Or Goldwasser Wigderson 88, Kilian 88, Beaver Goldwasser 89].

In [Beaver Goldwasser 89a] a version of a protocol achieving semi-robustness for boolean functions
based on the existence of trapdoor functions, is described. Here, we describe a protocol based on
the existence of oblivious transfer, in which the error probability is improved from the previously
known 1/polynomial [Beaver Goldwasser 89b] to 1/exponential.

We let t be the number of potential adversaries, k denote the security parameter.

5.2 Preprocessing Stage

5.2.1 Global Commitment and Decommitment

Each player globally commits to a library of 0’s and 1’s. A global commit has properties similar
to a commit between two players. In fact, many of the the ideas are similar to the two party
bit-commitment of [Kilian 88].

In particular, preprocess-global-commit(A,v,J) is a protocol for player A to globally commit to a
bit v such that if the preprocessing stage is completed successfully, then there exists a unique value
v̂ associated with J such that

• v̂ = v if A is non-faulty.

• At any time player A can decommit v̂ (or v̂1 ⊕ v̂2 where v̂1, v̂2 are two previously committed
bits) to a subset S of players such that either all non-faulty players in S will receive the correct
value, or all non-faulty players will broadcast that A is faulty, or an exponentially rare event
will happen. In the case of decommitting v̂1 ⊕ v̂2, the privacy of v̂1 remains intact for the
entire network.

• If non-faulty A committed a v randomly chosen in {0, 1} then the probability that the faulty
players guess the value of v before it is decommitted to one of them is negligible.

This is achieved as follows.
Notation: We let rep(v) be a set of k boolean vectors {vi}, 1 ≤ i ≤ k such that for each vi =
(vi1, ..., vik) the ⊕jvij = v. We say that rep(v) = (v⃗1, ..., v⃗k) is invalid if for some s, t the ⊕jvsj ̸=
⊕jvtj . To choose a rep(v) at random means to pick the vij ∈ {0, 1} as above at random. To
broadcast or obliviously transfer rep(v) means to broadcast or run oblivious transfer each of the
vij ’s. We let the function all({bi}) = b1 if for all i, j, bi = bj , otherwise it assumes an error value.

Preprocess Global Commit(A,v,J):

Step 1. For 1 ≤ i ≤ ka : A chooses vLi , v
R
i ∈ {0, 1} at random and sets vi = vLi ⊕vRi . A chooses

a rep(vLi) = (viL1 , ..., viLk) and rep(vri) = (viR1 , ..., viRk) at random; For every player B, A oblivious
transfers to B rep(vLi) and rep(vRi).

6

5This form of oblivious transfer was shown equivalent to the original one proposed by Rabin.
6each bits vi is represented by a pair vRi , vLi such that vi = vRi ⊕ vLi .

9

Step 2. The network chooses at random7a set I containing half of the i’s. For all i /∈ I, A
broadcasts rep(vLi) and rep(vRi). If for some i, d player B gets an invalid rep(vdi) or inconsistent with
information B received then B broadcasts a complaint and the protocol is aborted.8 Otherwise, A
broadcasts a set {ci = vRi ⊕ vLi ⊕ v|i ∈ I}.

Step 3.9 Repeat for every player B k times: B broadcasts indexes i, j chosen at random in I;
A broadcasts b = vLi ⊕ vLj ; B chooses d ∈ {L,R} at random; A broadcasts rep(vdi) and rep(vdj);

if b ̸= vdi ⊕ ci ⊕ vdj ⊕ cj , then B broadcasts a complaint and the protocol is aborted, otherwise
I = I − {i, j}.

Step 4. Each player stores I, {ci, i ∈ I} and the information he received during the global commit
of player A to vLi , v

R
i , i ∈ I in BIT − COMMIT (A, J)10 and the Jth bit is declared committed.

(The value of this bit is all(vRi ⊕ ci ⊕ vli), i ∈ I)).

At the outset of the preprocessing stage, every player runs the protocol preprocess-global-commit
for a sufficient number of values v = 0 and v = 1 as will be necessary for A to commit bits during
the life time of the protocol.

During the protocol player A globally commits to bit v by broadcasting index J , such that the
bit committed during the preprocessing global commit stored in BIT−COMMIT (A, J) is m. Once
an index J is broadcast it is never reused.

To decommit to a subset S of the players, a committed bit stored in BIT − COMMIT (A, J),
A runs the following protocol.

Global Decommit(A,S,J):

Let v be the bit committed in BIT − COMMIT (A, J) and S the subset to which it should be
decommitted.

Step 1: A sends in private to each player in S, for all i ∈ I, rep(vRi) and rep(vLi). Players in S
set v = ci ⊕ vRi ⊕ vLi for the smallest i ∈ I.

Step 2: If any player B ∈ S gets for some i, d an invalid rep(vdi) or inconsistent with information
B received during the oblivious transfer stage, then B broadcasts a request that player A should
broadcast rep(vRi), rep(v

L
i) for all i ∈ I.

Step 3: If any player C detects that the information A broadcasts in step 2 is ”inconsistent” or
invalid, then C broadcasts that A is faulty, otherwise the value of v is taken to be the bit ci⊕vLi ⊕vRi
where vLi , v

R
i are defined by the information which A has broadcast at step 2.11

5.2.2 Decommitting Sums of Globally Committed Bits

During the protocol player A will need to prove that various bits globally committed are the same.
Let v and u be two previously globally committed bits stored in BIT − COMMIT (A, v, Jv) and
BIT − COMMIT (A, u, Ju).
Recall: Bit v has associated with it Iv, {cvi|i ∈ Iv}, rep(vLi), rep(vRi) for all i ∈ Iv, and bit u has
associated with it Iu, {cui|i ∈ Iu}, rep(uL

i), rep(u
R
i) for all i ∈ Iu.

Protocol Prove-Equality(A,u, v)

Repeat for every player B k times: B broadcasts indexes i ∈ Iv and j ∈ Iu chosen at random; A
broadcasts b = vLi ⊕ uL

j ; B chooses d ∈ {L,R} at random; A broadcasts rep(vdi) and rep(ud
i) (if any

7It suffices that players alternate in choosing elements in I
8if the protocol is aborted during an execution of preprocess-global-commit, then all non-faulty players output

error.
9In this step A proves to each player B in turn that for all remaining i, j ∈ I vi ⊕ ci = vj ⊕ cj .

10Clearly each player may have received different bits during the oblivious transfer and thus has different information.
11By the properties of our global commit protocol all non-faulty players will either declare A faulty or agree that a

bit of the same value has been decommitted.

10

C finds these invalid, then C broadcasts that A is faulty); if b ̸= vdi ⊕cvi⊕ud
j ⊕cuj , then every player

broadcasts that A is faulty, otherwise every player updates Iv to be Iv − {i} and Iu to be Iu − {j}.

In fact, general properties of data globally committed can be proven in zero-knowledge using the
protocols of [Kilian 89, Ben-Or et al [4]]. We chose the parameter a in the preprocess-global-commit
protocol so to allow repeated zero-knowledge proofs about globally committed bits.

5.2.3 Private Communication Lines

During the protocol players A and B will need to privately communicate and yet be able to prove to
other players that the messages they send privately were computed correctly with respect to their
committed inputs and previously received messages.

If encryption functions were available this would present no problem, however we only have the
ability to perform oblivious transfers between every two players.

Thus, in the preprocessing stage every pair of players prepare and globally commit to a supply
of 0’s and 1’s known to A and B alone which both can globally decommit. These bits will be used
later for private communication.

This is done by running the following protocol.

Protocol Preprocess-Private-Communication(A,B,J)

A randomly chooses b ∈ {0, 1} and runs an identical protocol to Preprocess−Global−Commit(A, b, J)
with the exception that the information stored normally in BIT − COMMIT (A, J) is stored
in PRIV ATE − COMMIT (A,B, J). Next A decommits b to player B by running Global −
Decommit(A, {B}, J); (Note now that both A and B can decommit the bit store in PRIV ATE −
COMM(A,B, J).)

During the protocol A sends private message m = m1, ...,mk to player B by broadcasting indexes
Ji such that for every i = 1, ..., k the value of the bit committed in PRIV ATE −COMM(A,B, Ji)
is mi. (Once an index J is broadcast it is never reused.)

5.2.4 Global Oblivious Transfers

During the protocol every pair of players (A,B) will need to engage in an oblivious transfer in such
a way that A and B can prove to to the rest of the network that indeed they have fed the correct
inputs to the oblivious transfer process, and have received claimed outputs.

This is achieved by having every pair of players (A,B) prepare a supply of oblivious transfers in
which the inputs and the outputs have been globally committed.

Let i ∈ {0, 1}3. Say that an oblivious transfer is of type i = i0i1i2 if b0 = i0, b1 = i1 and c = i2.
To prepare at least L oblivious transfers of each type i ∈ {0, 1}3, every pair of players (A,B) execute
the following protocol O(L+ k) times.

Protocol Preprocess-Oblivious-Transfer(A,B, J)

Step 1. For j = 1, ..., ka: Player B globally commits to cj randomly chosen in {0, 1}; Player A
globally commits to bj0, b

j
1, r

j randomly chosen in {0, 1}. Players A and B run an OTAB(bj0⊕ rj , bj1⊕
rj , cj); Player B globally commits to r̂j which he received as a result of the oblivious transfer.
(Clearly, if A and B are non-faulty, r̂j should equal bjcj ⊕ rj).

Step 2. The network chooses at random 12 a set I of half of the j’s. For all j /∈ I, A globally
decommits bj0, b

j
1, r

j to the entire network; B globally decommits cj and r̂j to the network. If any

player complains during these global commits or rj ⊕ bjcj ̸= r̂j , the protocol is aborted. Otherwise,
player B globally commits to randomly chosen c ∈ {0, 1}, broadcasts set I1 ⊂ I such that I1 =

12It suffices that players alternate in choosing elements in I

11

{j|cj = c}, and proves that cj = c iff j ∈ I1 (using the Prove-Equality procedure defined above.)
Player A globally commits to randomly chosen b0, b1, r ∈ {0, 1}, broadcasts set I2 ⊂ I1 such that
I2 = {j|bj0 = b0, b

j
1 = b1, r

j = r}, and proves that bj0 = b0, b
j
1 = b1, r

j = r iff j ∈ I2 (using the
Prove-Equality procedure). If for some i, j ∈ I2 r̂j ̸= r̂i A broadcasts a complaint and the protocol
is aborted, otherwise A globally commits to r̂ such that r̂ = r̂j , for all j ∈ I2 and proves this fact
(using the Prove-Equality procedure). Each player stores I2 and the information obtained during
the global commits of bj0, b

j
1, c

j , rj , r̂j , for j ∈ I2 in its copy of OT − COMMIT (A,B, J).

During the computation stage when A and B need to engage in an oblivious transfer with
parameters B0, B1 known to A and parameter C known to B they run the following protocol.

Protocol Global-Oblivious-Transfer(A,B,B0, B1, C)

B selects a J such that the set {bj0, b
j
1, c

j , rj , r̂j , j ∈ I2} stored in OT − COMMIT (A,B, J) is such
that cj = C for all j ∈ I2 (a fact B proves to the network), and broadcasts J to the network. If
B0 = bj0 and B1 = bj1 for all j ∈ I2 (a fact A proves to the network), A decommits rj , j ∈ I2 to B,
else J is cast out and the step is repeated. B sets BC = all({rs ⊕ r̂s, s ∈ I2}).

5.3 Input Commitment and Computation Stages

At this stage every player A needs to globally commit to its input xA and a sequence of coin flips
αA.

Let xAαA = y1A...y
m
A (in binary). Player A broadcasts13 indexes J1, ..., Jk such that the bit

committed in GLOBAL− COMMIT (A, Ji) is y
i
A.

Set α =
∑

player A
αA mod 2.

5.3.1 Computation

Let CP be the arithmetic circuit over field of elements F computing the legal protocol P (assuming
that P has already been modified to output single output to all players). Let γB ∈ F be a unique
element associated with player B.

In order to allow the network to compute with inputs xA (and αa), player A secret shares xA

(and αa) as follows. A selects a random polynomial pxA
of degree t such that pxA

(0) = xA. For
every player B, A globally commits to pxA

(γB) and privately communicates pxA
(γB) to B.

Note now that because of the properties of PRIVATE-COMM every player B now knows pxA
(γB),

and every other player has received a global commitment to the value of pxA
(γB) which can be

decommitted either by A and or B.
A now proves in zero-knowledge to the network that the values privately sent {pxA

(γB)}B inter-
polate to a unique t degree polynomial whose free term is xA.

The arithmetic circuit CP has two types of gates: addition (+), and multiplication (×) over the
finite field F (scalar multiplication is a trivial extension of + gate).

The circuit is evaluated in a gate by gate fashion. The invariant during the computation stage
is that each player holds a share of all inputs to the next gate to be computed, which is globally
committed.

Suppose the inputs to a + gate are u and v. Every player A holds Pu(γA) and Pv(γA) (where
Pu and Pv are random polynomials of degree t with free term u and v respectively). To compute a
share of the output u+ v, player A computes Pu+v(γA) = Pu(γA) + Pv(γA). A globally commits to
Pu+v(γA).

Suppose the inputs to a × gate are u and v. Computing Pu×v(γA) (where Pu×v is a random
polynomial of degree t whose free term is u × v.) can be reduced to the problem of every pair

13once an index is broadcast it will never be reused.

12

of players (A,B) computing semi-robustly a two-player function on the shares they hold Pu(γA)
and Pv(γB), (see [Galil Haber Yung 87, Van Dem Graaph etal. 87, Beaver Goldwasser 88]). To
compute a two-player function semi-robustly has been reduced to two-player oblivious transfer in
[Kilian 88]. Instead of the two-player oblivious transfer called for in [Kilian 88]’s construction, the
Commit− Oblivious− Transfer(A,B, ...) protocol which was set up in the preprocessing stage is
used.

Every message of the player sent while computing the × gate must be accompanied by a zero-
knowledge proof that it has been computed and sent correctly with respect to the inputs globally
committed and the messages previously received from other players both in private and by broadcast.
This is possible as all private messages sent during the commitment and computation stage have
been globally committed (as all these messages were sent using the private communication lines set
up in preprocess-private-communication.)

5.4 Acknowledgements

We are grateful to Mihir Bellare, Joe Kilian, and Silvio Micali for very useful discussion.

References

[1] D. Beaver, S. Goldwasser. Multi Party Fault Tolerant Computation with Faulty Majority, pro-
ceedings of Crypto89, Santa Barbara, CA, August 1989.

[2] D. Beaver, S. Goldwasser. Multi Party Fault Tolerant Computation with Faulty Majority Based
on Oblivious Transfer, proceedings of FOCS89, Duke, NC, October 1989, pp. 468-473.

[3] M. Ben-Or, S. Goldwasser, A. Wigderson. Completeness Theorems for Non-Cryptographic Fault-
Tolerant Distributed Computation. Proc. of 20th STOC 1988, pp. 1-10.

[4] Ben-Or, Michael, Oded Goldreich, Shafi Goldwasser, Johan Hastad, Joe Kilian, Silvio Micali,
Philip Rogaway, “IP is in Zero-Knowledge,” Proceedings, Advances in Cryptology, Crypto 1988.

[5] Rabin, T. and M. Ben-Or. “Verifiable Secret Sharing and Multiparty Protocols with Honest
Majority.” Proc. of 21st STOC, ACM, 1989.

[6] Blakely,T.. Security Proofs for Information Protection Systems. Proceedings of the 1980 Sym-
posium on Security and Privacy, IEEE Computer Society Press, NY, pp. 79-88, 1981.

[7] Brassard, Gilles, Claude Crépeau, and David Chaum, “Minimum Disclosure Proofs of Knowl-
edge,” manuscript.

[8] Brassard, Gilles, Claude Crépeau, and Jean-Marc Robert. “Information Theoritic Reductions
Among Disclosure Problems,” Proceedings of the 27th FOCS, IEEE, 1986, 168–173.

[9] E. Brickell, D. Chaum, I. Damgaard, J. van de Graaf. Gradual and Verifiable Release of A
Secret. CRYPTO 1987.

[10] D. Chaum, C. Crepeau, I. Damgaard. Multiparty Unconditionally Secure Protocols. Proc. of
20th STOC 1988, pp. 11-19.

[11] Chaum, David, Ivan Damgard, and Jeroen van de Graaf. “Multiparty Computations Ensuring
Secrecy of Each Party’s Input and Correctness of the Output,” Proceedings of CRYPTO ’85,
Springer-Verlag, 1986, 477–488.

[12] R. Cleve. Limits on the Security of Coin Flips When Half the Processors are Faulty. STOC
1986.

13

[13] Cohen, Fischer. A Robust and Verifiable Cryptographically Secure Election. FOCS 1985.

[14] C. Crepeau and J. Kilian. Achieving Oblivious Transfer Using Weakened Security Assumptions.
FOCS 1988.

[15] Crépeau Claude, “On the Equivalence of Two Types of Oblivious Transfer”, Crypto87.

[16] B.Chor, S. Goldwasser, S. Micali, B. Awerbuch. Verifiable Secret Sharing and Achieving Simul-
taneity in the Presence of Faults. FOCS 1985.

[17] B. Chor, M. Rabin. Achieving Independence in Logarithmic Number of Rounds. PODC 1986.

[18] Even S., Goldreich O., and A. Lempel, A Randomized Protocol for Signing Contracts, CACM,
vol. 28, no. 6, 1985, pp. 637-647.

[19] Fischer M., Micali S., and Rackoff C. Oblivious Transfer Based in Quadratic Residuosity, Un-
published.

[20] Z.Galil, S.Haber, M.Yung. Cryptographic Computation: Secure Fault-Tolerant Protocols and
the Public Key Model. Proc. CRYPTO 1987.

[21] O. Goldreich, S. Micali, A. Wigderson. How to Play Any Mental Game, or A Completeness
Theorem for Protocols with Honest Majority. Proc. of 19th STOC 1987, pp. 218-229.

[22] Goldreich, O., Vainish, R. “How to Solve any Protocol Problem: An Efficiency Improvement”,
Crypto 87.

[23] Goldwasser, Micali, Rackoff. The Knowledge Complexity of Interactive Proof Systems. SIAM
J. of Comp 1989.

[24] S.Haber. Multi-Party Cryptographic Computation: Techniques and Applications. Ph.D. Thesis,
Columbia University, 1988.

[25] Impagliazzo, Russell and Moti Yung, “Direct Minimum Knowledge Computations,” Proceed-
ings, Advances in Cryptology, Crypto 1987.

[26] Kilian, Joe, “On The Power of Oblivious Transfer,” Proceedings of the 20th STOC, ACM,
1988, pp. 20-29. Also appeared in Uses of Randomness In Algorithms and Protocols, An ACM
Distinguished Dissertation 1989.

[27] J. Kilian. S. Micali. P. Rogaway Security Definitions for Multi Party Protocols. In Preparation.

[28] Micali Luby Rackoff 83. The Miraculous Exchange of a Secret bit, Proc. of FOCS 1983.

[29] A. Shamir. How to Share a Secret. CACM 22, 612-613, 1979.

[30] Yao, Andrew C. “Protocols for Secure Computations,” Proceedings of the 23rd FOCS, IEEE,
1982, 160–164.

[31] Yao, Andrew C. “How to Generate and Exchange Secrets,” Proceedings of the 27th FOCS,
IEEE, 1986, 162–167.

14

