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Abstract

The Ellipsoid Algorithm (EA) for linear pro-
gramming has recently attracted great atten-
tion. EA was proposed in [5] and developed in
[1,2] and other works. It is a modification of
the Method of Centralized Splitting proposed
in [3], which differs from EA in two essential
aspects. Firstly, [3] uses simplexes instead
of ellipsoids; it is admitted, secondly, that
several, q(n), splittings of the n-dimensional
simplex may be needed before the remaining
polyhedron can be enclosed into a simplex of
a smaller volume. Only a very rough upper
bound q(n) < n log n follows from the reason-
ing of [3]. This does not imply polynomiality
of the computation time, since n log n split-
tings may make the simplex very complex.
We prove below that q(n) = 1.
Without loss of generality, let the problem

be to find x ∈ ℜn such that Ax > 0, where A
is an m× n matrix of rank n. We normalize
the solutions by restricting x throughout to
a hyperplane (e · Ax) = 1 where e > 0. On
every step the algorithm considers a simplex
BAx ≥ 0, where B is a non-negative n ×
m matrix with det(BA) ̸= 0. Any such
simplex necessarily contains all solutions. Let
us denote this simplex by ∆B, its volume by
VB and its center by cB. Initially we take an
arbitrary B and e = (1, .., 1)B.
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Theorem 1 Either AcB > 0 or by increasing
one of the entries of B one can decrease lnVB

by > 1/2n2.

The new simplex contains the half {x : (Ai·
x) ≥ 0 ≥ (Ai · cB)} of the old one.
The proof is based on a geometric idea from

[4], which is the contribution of B. Yamnit-
sky. The gain in − lnVB after one central
splitting varies between 1 and 1/2n2, in some
contrast to the constant 1/2n gain in EA. The
gain is > 1/2n if the splitting (a · x) ≥ 0
is random with probability distributed sym-
metrically over reflection: a → −a. B. Yam-
nitsky noted that simplexes or ellipsoids can
not be replaced by an arbitrary convex body.
Namely, a triangular half of a parallelogram
can not be enclosed in a parallelogram of a
smaller volume.
The Theorem provides a step of DM (Dual

Matrix or Simplex Splitting?) algorithm. It
has not only historical interest. Being worse
case polynomial, like EM, it also shares an
important advantage with Dantzig’s Simplex
Method (SM). SM is a “climbing” algorithm,
i.e. it has an easy computable rating (the
purpose functional F ) of intermediate results
(nodes x of the polyhedron). The algorithm’s
step is expected (unfortunately not guaran-
teed) to improve F (x) quickly. EM is not
a “climbing” algorithm, since its intermedi-
ate results (small ellipsoids, containing all
solutions) are hard to evaluate: it is diffi-
cult to check whether an ellipsoid contains
all solutions. So non-standard or just non-
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precise transformations may produce an el-
lipsoid unrelated to the set of solutions. But
DM is “climbing”, since ∆B contains all so-
lutions for any non-negative B. This makes
DM stable and flexible (any transformation of
B works, if VB decreases substantially) and,
hopefully, well adjustable for important spe-
cial cases.

Construction: Let a = Ai, where (Ai ·
cB) ≤ 0, and dj be a simplex vertex with
maximal (a · dk). Let BjAx = 0 be the equa-
tion of the simplex side opposite to dj and
b = BjA.

Then, increasing Bj,i by t = (b · dj)/(a ·
dj)(n

2 − 2n) will decrease ln VB by > 1/2n2.

Proof: The new simplex ∆B′ has only one
new face: (b′ · x) = 0, where b′ = b+ ta.

The vertex dj and directions of edges
(dj, dk) remain unchanged. Lengths of these
edges are divided by lk = 1−(b′·dk)/(b′·dj).
Then VB/VB′ =

∏
lk.

We have: (a · dj) = maxk(a · dk) >
0; (a·cB) ≤ 0; cB =

∑
dk/n; (b·dk)(k−

j) = 0.

This implies: mink lk ≥ 1 − 1/(n −
1)2 = µ and

∑
lk ≥ n− µ.

Consequently,
∏
lk ≥ µn−2(n− (n−

1)µ) = µn−1/(1− 1/(n− 1)) = λ.

Then lnλ = (n−1) lnµ−ln(1−1/(n−1)) =
−(n − 1)

∑∞
k=1 1/k(n − 1)2k +

∑∞
k=1 1/k(n −

1)k =∑∞
k=3(1/k(n−1)k−1/k(n−1)2k−1)+1/2(n−

1)2 − 1/2(n− 1)3 > 1/2n2,

1 Complexity:

Let the numbers n,m,Ai,j have at most k
decimal digits. If h is a height of a simplex
whose faces (or nodes) are given by a square
sub-matrix of A then | lnh| is at most O(kn).
Thus after at most O(kn4) splittings, the sim-

plex gets so “thin” that it can not contain
solutions of the system.
Each splitting takes at most O(nm) arith-

metical operations, using nodes of the old
simplex. The simplex diameter need not grow
substantially (otherwise it can be easily re-
stored with a great volume reduction). Then
entries of B need at most O(kn) digits. In
total the algorithm takes at most O(k3n6m)
Boolean operations.
The authors are deeply grateful to P. Gacs

and L. Lovasz for valuable discussions.
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