
Computational Complexity of Functions∗

Leonid A. Levin†

Boston University‡

Abstract

Below is a translation from my Russian paper. I added references, unavailable to me in Moscow.
Similar results have been also given in [Schnorr Stumpf 75] (see also [Lynch 75]). Earlier relevant work
(classical theorems like Compression, Speed-up, etc.) was done in [Tseitin 56, Rabin 59, Hartmanis
Stearns 65, Blum 67, Trakhtenbrot 67, Meyer Fischer 72].

I translated only the part with the statement of the results. Instead of the proof part I appended
a later (1979, unpublished) proof sketch of a slightly tighter version. The improvement is based on the
results of [Meyer Winklmann 78, Sipser 78]. Meyer and Winklmann extended earlier versions to machines
with a separate input and working tape, thus allowing complexities smaller than the input length (down
to its log). Sipser showed the space-bounded Halting Problem to require only additive constant overhead.
The proof in the appendix below employs both advances to extend the original proofs to machines with
a fixed alphabet and a separate input and working space. The extension has no (even logarithmic)
restrictions on complexity and no overhead (beyond an additive constant). The sketch is very brief and
a more detailed exposition is expected later: [Seiferas Meyer].

Some Remarks

We formulate the theorems in terms of the Turing Machine space. But it is clear how to generalize them,
since any complexity measure is bounded by a total recursive function (t.r.f.) of any other one. Of course,
the accuracy of a constant factor will turn into the accuracy of some other t.r.f. We consider one tape Turing
Machines with arbitrary tape alphabets. If the alphabet has n symbols, then input and output integers are
written in the n-ary number system. The space pA(x) of an algorithm A is the size [reduced by 1] of the
tape used by A(x). The length of a word x is denoted l(x). Obviously, pA(x) + 1 ≥ max(l(x), l(A(x))).

The space complexity of any function can be reduced by any constant factor, by extending the alphabet.
The inequality within a constant factor f ≺ g means ∃C∀x f(x) ≤ Cg(x).

Every function F is associated with a class of algorithms that compute it and with the class of their
space complexities MF . We characterize all such classes extending well known Compression and Speed-up
Theorems. Some computable functions do not belong to any class MF :

Note: A partial function p can be a space of an algorithm if and only if it is itself computable within
space p(x). We call such functions simple. This requirement is weak since usual functions p are computable
in space l(p(x)) = log p(x).

We call simple an algorithm which outputs its own space. We define pA(x) = ∞ when A(x) does not
halt and interpret inequalities with simple functions accordingly. Let us agree that an algorithm computes
a function F , if it does this everywhere in the intersection of its domain and the domain of F .
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Formulation of the Theorems.

For any simple function G, Compression Theorem [Rabin] provides a function F , computable in exactly
those spaces p which are simple and p ≻ G. We generalize this theorem for an arbitrary recursive G:

Theorem 1 For any t.r.f. G there exists a t.r.f. F , with range {0, 1} computable in exactly those spaces p
which are simple and p ≻ G.

Compression Theorem describes a very special case of t.r.f. In [Blum] t.r.f. were discovered which have
no such exact simple lower bounds of complexity. However, the above generalization of the Compression
Theorem already describes the general case and can be inverted as follows:

Theorem 2 For any t.r.f. F there exists a t.r.f. G such that F is computable in exactly those spaces p which
are simple and p ≻ G.

Thus, the complexity class of any t.r.f. is organized naturally, despite the Speed-up Theorem. The point
is that the set of t.r.f. is richer than the set of simple functions. Naturally, the complexity of an arbitrary
t.r.f. cannot be always characterized by a simple function, though it is always characterizable by a t.r.f.
Let us describe the properties of the complexity classes for arbitrary t.r.f. A class M is called canonical if:

1. All functions of M are simple, and some of them are total and

2. If f, g, h are simple, f, g ∈ M , and h ≻ min(f, g), then h ∈ M and

3. The class M of simple algorithms, computing the functions of M , is of type Σ0
2, i.e. can be defined as

(p ∈ M) ⇐⇒ ∃a∀b R(a, b, p), where R is recursive.

Theorem 3 M is the class MF of all space complexities of some t.r.f. F iff M is canonical.

This theorem justifies the following conjecture of A.N. Kolmogorov: for any “good” decreasing sequence
of functions pi there exists a function, computable with such and only such space complexities, that exceed
some of the pi’s. The Compression and Speed-up Theorems are special cases. This conjecture also describes
the general case of complexity as it follows from Lemma 1 below and Theorem 3. The above results extend
to the case of partial functions:

Theorem 4 Let A be an r.e. set. Theorems 1-3 remain valid, if the term “t.r.f.” is replaced everywhere by
“partial r.f. with domain A”, and inequalities like “a ≻ b” are restricted to x ∈ A.

Proofs.

We call A-canonical a class M , satisfying conditions 1-3, as adjusted in Theorem 4.

Lemma 1 For any A-canonical M , a p.r.f. g exists, non-increasing with k and such that g(k, x) + l(k) is
simple, domain of g(0, x) is A and p ∈ M ⇐⇒ (∃k g(k, x) ≺ p(x)), for any simple p.

[. . .]
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Appendix (not part of the translation).

Below is the sketch of a proof of a slightly tighter statement. It assumes separate input and working space,
thus allowing spaces o(|x|), as in [Meyer Winklmann 78]. It also assumes a fixed tape alphabet, allowing
additive (rather than multiplicative) constant accuracy. The latter uses the result of [Sipser 78] that the
space s bounded halting problem can be solved in space s + O(1). Otherwise, the version is similar to the
above translation. For log of time of a Pointer Machine or of some Turing Machine versions [Levin 91] similar
results hold.

Model. To allow space limits below the input bit-length |x| one needs to differentiate the input symbols
from symbols used as memory during the computation. Instead of separating the input tape as in [Hartmanis
Stearns 65], I prefer to separate the “ink”. While not essential, this preserves the simple space-time geometry
of the one-tape Turing Machine (TM). So, we separate the state of each cell into a read-only ink and a read-
write pencil part. The ink part cannot be modified after the input is written and is ignored for measuring
space. The ink (but not necessarily pencil) string starts at the left end of the tape after exactly one blank.
The ink and pencil string and their union form each a continuous segment without blanks. The alphabet
is fixed and has at least two symbols {0, 1} besides the blank. Space: SA(x) or SA(x) is the supremum of
bit-lengths of the pencil string throughout the computation of A(x). The output may either be left on the
tape/head or its digits “flashed” sequentially at the (fixed) leftmost cell. In some cases the pencil string
starts not empty. E.g. g-constructible functions f are those computable in space max{t, f(x)} starting from
input x and any pencil string of length t ≥ g(x); for g = 0 we omit the prefix “g-” and for g = f replace it
with “semi-”.

Conventions. Let U(k, x) be a Universal TM with {0, 1} outputs. It ignores the “padding” k2 in its
program k = (k1, k2). Appropriate paddings can put any Σ0

2 program set in the form m = a−1({∞}) for

some function a with constructible a(k) − 4|k|. Let p(k, x)
def
= 4|k| + SU (k, x) and expressions like pk(x)

mean p(k, x). Assume 0 ∈ m and M = {pk : k ∈ m}. Consider the closure M of a set M of functions
under inclusion of each h s.t. for some f, g ∈ M , h ≥ min{f, g} − 1 in the domain D of U(0, x). Call sets
M1,M2 cofinal if their closures contain the same constructible functions. Define [a < b] as a, if a < b and 0
otherwise. Likewise for ≤. Clearly, the complexity class of any function can be described as M above.

Construction. Now we build (cf. Lemma 1) a monotone sequence gk cofinal to M :

If a(k) > t > p(k, x), let pt(k, x)
def
= maxl<k{p(k, x), [a(l) ≤ t]} ≤ t. Otherwise, pt(k, x)

def
= t.

Then, g(1, x)
def
= p(0, x); g(k+1, x)

def
= pg(k,x)(k, x); g∞(x)

def
= mink g(k, x); kx

def
= min{l : g(l, x) = g(k, x)}.

To compute gk(x) we carry k, gk−1(x) as the pencil string length, and the largest relevant a(l) as gk−1(x)−a(l)
(if < 2|k|) or as l. Cutting the values of p, a to the maximum of t would not affect those values of g below t. So,
g(k, x)−2|kx| is g∞-constructible; gk are uniformly recursive with domain D and equal minl<k{pl(x) : l∈m},
on D, except when both are ≤ maxl<k{[a(l) < ∞]} = O(1).

Next we convert such {gk} into a cofinal set consisting of a single semiconstructible recursive function G

on D (cf. Theorem 2): Let b(k)
def
= minx(2|k, x|+g1(x) : gk(x) > pk(x)) and K(x)

def
= min{k : b(k) > gk(x) >

pk(x)}. Then G(x)
def
= g(K(x), x) ≤ maxl≤k{g(k, x), [b(l) < ∞]}, for all k.

Conversely, G < pk in D implies b(k) = ∞. Indeed, b(k) = 2|k, x| + g1(x) < ∞ while gk(x) > pk(x) yields
K(x) ≤ k and G(x) ≥ gk(x) > pk(x). b(k) = ∞ makes gk(x) ≤ pk(x) in D and pk ∈ M .

Finally, for such G, we build a G-constructible predicate Π(x)
def
= 1− U(K ′(x), x) with complexity class

cofinal to G (cf. Theorem 1):

Here K ′(x)
def
= min{k : c(k) > G(x) ≥ pk(x)} and c(k)

def
= minx{2|k, x| + p0(x) : K ′(x) = k}.1 If Π(x) =

U(k, x) in D then k ̸∈ K ′(D) and c(k) = ∞. Then G(x) ≤ maxl<k{pk(x), [c(l) < ∞]} and pk ∈ M .

1A leaner version: c(k)
def
= minx{2|k, x|+max{p0(x), pk(x)} : Π(x) ̸= U(k, x)}.
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