
Power of Fast VLSI Models is Insensitive to Wires’ Thinness.

Gene Itkis, Leonid A. Levin∗

Department of Computer Science
Boston University

111 Cummington St, Boston, MA 02215
(e-mail to: Lnd@cs.bu.edu or Gene@cs.bu.edu)

Abstract

VLSI f -models allow the switching time to decrease
to f(D) when the length of all wires is restricted by
D.1 We call them fast if the decrease is slightly su-
perlinear, i.e.

∑
k f(1)/f(k) is O(1). The fast models

are so strong and robust that their computational
power cannot be increased by any combination of the
following: (1) making zero the width of each wire of
length d, except for its log d segment, thus eliminat-
ing layout and area considerations; (2) allowing wires
to transmit log d bits simultaneously; (3) making the
switching time f(d) of each node depend only on the
length d of its own input wires, thus enabling small
subcircuits to run faster; (4) changing f while pre-
serving

∑
k 1/f(k); (5) enabling the nodes to change

connections arbitrarily in the runtime. We construct
a kind of operating system Link Server or Linx, for
short, which simulates all these powers on-line. The
condition

∑
k f(1)/f(k) = O(1) cannot be weakened.

∗The second author is also affiliated with MIT. Supported
by NSF grant DCR-8607492.Appeared in FOCS-1989

1Various f -models were studied in [Seitz 79], [Thompson
80], [Mead Conway 80], [Chazelle Monier 81a,b], [Bilardi Prac-
chi Preparata 81], [Ramachandran 82], [Nath Maheshwari
Bhatt 83], [Aggarwal 83,85] [Vitanyi 85] and other papers.
Among possible f(d), they consider C, Cdt, C(log d)t where
constant C depends only on the chip’s diameter and t is fixed.
[Seitz 79], [Thompson 80], [Paterson Ruzzo Snyder 81], [Ag-
garwal 83,85], and others allowed the switching time of each
node depend on the length of only its own input wires; [Seitz
79] has shown that such (self-timed regioned) chips can be
feasible, practical, and reliable. [Vitanyi 85] notes that sub-
linear f require increase in either C or wire width damaging
performance and the (vanishing exponentially) probability of
defect-free fabrication. A simpler case of our result, restricted
to two-way wires was given in [Levin 82].

1 The Result

1.1 Virtual Chips

Wires’ area is a major issue in VLSI. Most n-node
graphs of constant degree cannot be mapped into an
Euclidean ball with o(n) measure of border, if edges
be disjoint curves of constant width.2 So, one di-
mension is lost to wires, which makes generic VLSI
circuits effectively one-dimensional.

But suppose a VLSI chip designer takes a cavalier
approach. He just tells the manufacturer which nodes
are to be connected, and not only does not specify the
layout of the wires, but does not even leave any room
for them. Moreover, he assumes the ability to change
those connections in the run-time. And with all this
he expects the manufacturer to somehow implement
his chip without an area increase or a computation
slow-down of more than a constant factor. We give
an operating system, that allows, in fast models, to
escape any penalty for such a sloppiness.

Let an n×n mesh of cellular automata3 have an
additional “link” power: any string A of nodes may
write the relative address of any other (equally long)
string B of nodes distance d away and, f(d) steps
later, the information in B gets to A. We simulate
in real time such chips by a same size circuit Linx
implemented without link power.

Formally links are connected horizontal4 strings
of automata in special {0, 1}-states bounded on
both ends by automata in special {), (}-states. We
call 0, 1,), (the link states. No automata transi-

2see [Barzdin, Kolmogorov 67] for the 3-dimensional case.
The proof is the same for 2,4, or more dimensions.

3i.e. array of identical finite automata, such that the next
state of each is a function of its current state, its external
input, and the current states of its neighbors within a constant
distance.

4The result easily extends to links of other shapes.

1

tions change them (they change only when links are
“served”). Link content is viewed as a relative ad-
dress (of the left end) of its target — horizontal string
of automata the same size as the link. The link pe-
riod f(d) is a monotone function of the distance d
from a link to its target, where f is a parameter of
the model. f(d) steps after its creation, the link is
“served”, i.e. its content is replaced (overriding the
automata transition rules) by the content (picture)
of the target at the (local) time proportional to the
target’s relative (local) address (times f(d)/d). (See
2.1 for the precise definition of local address/time.)

We call such imaginary virtual arrays soft chips.
They resemble pointer machines, like in [Kolmogorov
Uspensky 58]. A type is a class of chips of all sizes
built out of the same automata. We will take a liberty
to speak about chips, while in fact meaning types of
chips. The chips are real (called hard) if they have
no transitions to link states 0, 1,), (.

Simulation. Let I(i, t) be the external inputs sup-
plied at time t to the automaton Ci on chip C, and
QC,I(i, t) be its resulting state at time t. Chip A sim-
ulates B (of the same size) if for some function X and
all I, i, t, we have QA,I(i, t) = ⟨QB,I(i, t), XI(i, t)⟩,
provided QA,I(i, 0)=⟨QB,I(i, 0), x⟩ for a special x.

Constructibility. Let our time unit be f(1) = 1.
The link period f must (as we prove below) be easy
to compute. Namely, a monotone function f is con-
structible if f(d)=dO(1) and hard chips can compute
the list {⟨d, f(d)⟩ : f(d−1)<f(d)<t} in time t. f may
depend on the chip size D or other parameters writ-
ten initially in the chip, like fD(d)=min{D, d log2 d}.
Note that the polynomial bound means that link’s
space is sufficient to store (though not necessarily to
compute) f(d). By at most doubling f , we can make
log2 f integer. Then f is constructible iff hard chips
in time t can compute d = max{x : f(x) ≤ t} and
f(d).

Initialization. Let some non-link states of auto-
mata be passive i.e. remain unchanged as long as all
neighbors are passive. At time 0 all but one (corner)
automata are passive.

1.2 Main Theorem

Theorem 1 All (types of) soft chips can be simu-
lated by hard (types of) chips in f -model, if and only
if f is constructible and

∑
d 1/f(d)=O(1).

So, linear delay, say, f(d)=d/c, where c is the speed
of light, is not sufficient, while f(d)=d log2 d is. The

constructibility is trivial if f is stored initially on the
chip as a table.

1.2.1 Proof of Necessity

Constructibility. Suppose a hard chip A simulates
an f -chip. Create one link per line of the chip, so
that the link in line i targets a location distance i
away. Start a counter in each link when it is created.
The counter is stopped when the target picture over-
writes the address in the link. The counters contain
f(i) when they are stopped. If the i-th counter, when
stopped, has the same value as (i−1)-st counter, it is
erased. Thus the list {⟨d, f(d)⟩ : f(d−1)<f(d)<t} is
computed in time t. This satisfies one half of the con-
structibility definition. Next we show the necessity
of the polynomial bound. For some d and T ≫f(d),
consider a T×T square on the chip during one time
interval of length f(d). Cover the odd lines of the
square with links targeting even lines distance d away.
The links are created at random times (using exter-
nal inputs) in the first half of the time period. The
square contains the information about the ages of all
the links. At the middle of the interval the informa-
tion density Θ(log f(d)/ log d) (length of the value of
the age divided by the length of the link) must be
O(1). Thus f(d) = dO(1). So, the constructibility of
f is necessary.
Convergence of

∑
1/f . Consider a horizontal

line M through the middle of n×n chip. Cover the
upper half with links targeting locations symmetric
with respect to M . The automata of the lower half
reflect random bits from their external inputs. Each
automaton distance d above M receives a bit from
the other half every f(2d) time steps. Therefore, the
average density of the information crossing M per
step per automaton is

∑
d 1/f(2d) = O(1). As f is

monotone,
∑

d 1/f(d)<∞.

1.2.2 Structure of the Proof of Sufficiency

The rest of the paper completes the proof by out-
lining the simulation algorithm. We construct a hard
chip A to simulate an arbitrary soft chip B. Thus, A-
automata must have two components: “work” fields
and B-fields (see Simulation in 1.1). The B-fields re-
flect the states of the corresponding B-automata and
change according to the transition rule of B (except
when links are served). The “work” fields are used to
simulate the link powers. Chip A runs the operating
system Linx, which simulates the link power making
the B-fields indistinguishable from the chip B. Linx

2

is the same for all chips B, except that work fields are
large enough to hold B-automata states.5 Linx runs
in the work fields of A, interacting with the B-fields
when expected.
We group links (according to the distances) into

levels. The general task of a level is Concurrent Read
(CR), where any number of links (called coherent)
may target the same picture. We reduce CR to Ex-
clusive Read (ER) which allows no coherent links. For
this reduction coherent links select leaders which ex-
clusively read the picture and share it with the others.
Different levels use separate resources and act inde-
pendently in most procedures. Some cooperation of
levels is, however, needed. It is limited to few sub-
routines and regulated by special engagement rules.
While our algorithm is optimal, its present form is

too complicated for practical use (the constants are
not optimized). A more careful analysis (and may be
some sacrifice of excessive generality) could make it
more practical.

2 General Strategy

2.1 Notation and Tools

Local (Relative) Addresses. We break the binary
coordinates of a link and its target into the suffixes
(all four of the same length) and prefixes. The pre-
fixes must be as long as possible while differing by at
most 1 in each dimension. The length k of the suffix
is the link’s level. Link’s target square includes all t
with the same prefix. The four times larger concentric
local (k-)square includes l itself. Local addresses are
coordinates within the local square. Local time for
the square is the last log f(2k)−2 digits of time. For
a fixed k, local time of reading a target is proportional
to its local address (and f(2k)/2k). A k-corporation
is a set of all links of level k in one local k-square.
Each k-corporation has its own resources to service
its links. The interval from 0 to the next 0 of local
time is called a corporate cycle.
Locations and Agents. Automata may, among

other transitions, exchange the content of particular
fields with their neighbors, which we refer to as move-
ment of fields. Location is either a link or a group of
fields moving in a regular way (independent of the
links distribution). A moving group of fields serving

5If states of A-automata consist of two fields: state and
(binary) data and only the data fields are to be read by the
links, then the operating system Linx is the same for absolutely
all chips.

a particular link is an agent. Unlike locations, agents
(and sometimes even their pieces) can move irregu-
larly. Location/agent a is in (on) b if automata of
b include those of a. A (piece of an) agent is always
in some location, l1, until it is moved to another lo-
cation l2 by an operation take(l2, l1) or drop(l1, l2).
Take/drop work only when l1 is in l2. They differ
because l1 and l2 may belong to different levels and
each command is issued by the level of its first ar-
gument. The rules restricting the use of take/drop
are described among other rules of engagement. An
agent has return and target (local) addresses, and the
data fields. Say, an agent is served when it is at the
return address and has a copy of the target picture
in its data fields. Wlog, make length of each agent
a power of 4. Agents of the same level and with the
same target are called coherent. A set of all coherent
agents in a corporation is an agency.

Roads and Trains. Each level i is assigned to
a class ci. Different classes have no interaction.
Thus, class is implicitly unique below. There are
two types of locations, besides links: (segments of)
i-trains for level i, and c-roads for levels of class c.
Roads stretch diagonally along the chip and move
vertically or horizontally, or are fixed and horizon-
tal. Each i-train is on a ci-road: moving along it in
either direction or fixed (achieving diagonal, vertical
or horizontal movement on the chip). We represent
f(d) as Ω(dh(⌊log d⌋)), where h(k) = O(k1.1) and∑

k 1/h(k) ≤ 1 (sec. 3.1). Classes are defined so that

h(i)=h(j)
def
= h(c)2 and |i−j|>4 log h(i) for any levels

i, j in a class c(=ci=cj), and c has ≤ h(c)/4 levels.
We space c-roads evenly by h(c). Some i-trains are re-
stricted to one i-square (switch roads at the borders),
while others to strips of h(i) adjacent i-squares. Each
c-road has a dense (with fields in each automaton) i-
train for one i∈ c, or sparse trains of all levels of c.
Dense i-trains are spaced by h(i). The density of a
sparse i-train on its road is ≥ h(ci)/4.
Tickets. A k-agent’s ticket is a pointer to a ck-

road, i.e. a counter with its distance to the agent,
or the time it enters the local square. We pad bi-
nary integers by leading zeros to extend the length
to the nearest power of 4, and represent pointers by
counters of the form x(x)(x)x, where x is a shorter
counter or a padded integer. Thus, we split the inte-
gers of a counter in four, counting down (or merge,
counting up) whenever their lengths pass a power of
4. Any 2k consecutive digits of a counter determine
its value or 2k, whichever is less. This is useful for
coordinating agents of different lengths. The seat of

3

an agent is the part of its ticket’s road (while in the
agent’s square) which will pass over the agent’s cur-
rent position. Agents with overlapping seats are in
conflict. All k-agents with tickets to the same road
are also in conflict if there are more of them then fit
in k-trains on this road. The conflict is local if each
conflicting agent is in the other’s square, and distant
otherwise.

Slices and Ordering. A k-slice of a D×D square
for D ≥ h(k) is a D× (D/h(k)) rectangle. It has
(within a constant factor) the volume of k-trains
inside the square. Unless specified otherwise, we
speak of k-slices of k-squares. We assume row-major
(left-to-right, top-down) order of locations. Fixed
trains/links in a square are k-sorted by field α if their
k-agents are located in the increasing order of α.

2.2 Algorithm Overview

A link, once created, starts a time counter. In
the next corporate cycle Linx creates and serves the
agent. At the end of the link period f(d) the picture
from the agent is moved to the link. For each level
k, Linx initializes the Infrastructure determining the
class membership and defining locations. Then Linx
keeps iterating CR. Initialization and each run of CR
take O(2kh(k)) steps. CR consists of Preprocessing,
Active Stage, and Postprocessing. Preprocessing per-
forms two major tasks. First, leaders are selected by
Square Sort. Coupled with the Picture Share (PS)
in the Postprocessing it reduces CR to ER. Second,
Ticketing (Ti) is done to avoid local conflicts in Ac-
tive Stage. Finally, the Postprocessing eliminates
the distortions the cycle (its Ticketing) has caused
in the higher levels’ locations (Restore Towers) and
distributes pictures in the agencies (Picture Share).

The Active Stage consists of h(k) Slice Read (SR)
cycles. In each SR a slice from the target square is
copied onto the k-trains (Picture Slice Load). In the
next cycle the agents targeting this slice will be picked
up by the roads and then loaded into trains (Load
Up). When all information is in the k-trains, Sort
Trains gets the pictures to their agents. Then the
agents are UnLoaded, and the next SR cycle starts.
Since the read is exclusive there are< 4k+1/h(k) (bits
of) agents to pick up. Thus the agents can be marked
V or H so that < 2k+1/h(ck) V -agents are in any
vertical line in the square, and H-agents in any hori-
zontal one. (We describe loading only V -agents. H-
agents are loaded similarly.) So, the k-agents can be
loaded on the road in time O(2k) if there are no con-

flicts with the other levels of the class. The Ticketing
prevents some (local) of these conflicts.

The following rules of engagement govern the in-
teraction between different levels (for V -agents):

1. take/drop(l1, l2) are possible only onto an empty
location and if l1 is in l2 and belong to the same
class as the agent moved. Links and higher level
(senior) locations cannot take/drop k-agents. A
k-agent always remains in its k-square.

2. A prime agent P is created by a k-link at the
start of the link period and disappears when the
link is served. It always remains in links and
dense trains of its class levels. In Passive Stage
it remains in k-locations. In Active Stage it re-
mains in its vertical column v.

3. The copy C of P is created when P first meets
its ticket’s road r1 and merges into P , when its
return ticket’s road r2 brings C back to P . C al-
ways remains on r1,2 or in dense k-trains. While
on r1,2, C stays in its seat (in v) or in sparse
trains of k or junior levels.

4. r1,2 can take C only in v and drop it only on P .
No other location can drop C. k-locations cannot
take prime agents from or drop them into junior
locations.

Note that levels of different classes are completely
independent. We will see that level k can ignore ju-
nior levels.

2.3 Subproblems

Consider the following simpler problems for a k-
corporation S, or a column (row) C of h(k) k-
corporations. Since all levels operate simultaneously,
we solve these problems (except Init) using only k-
trains and links, or (when so specified) a regulated
access to the roads. Let s be a k-slice of S.

Init(S) In time O(f(2k)) designate all trains/roads
for S.

Concurrent Read(S) In O(2kh(k)) serve the
agents of S.

Square Sort(S) In time O(2kh(k)) sort the agents
of S and mark one leader in each agency.

Exclusive Read(S) In time O(2kh(k)) serve all
marked agents of S, none of which target same
picture.

4

Picture Share(S) In time O(2kh(k)) distribute the
leaders’ pictures throughout their agencies.

Slice Read(s) In time O(2k) serve the ticketed k-
agents targeting (exclusively) the pictures in s.

Ticketing(C) In time O(2kh(k)) ticket the k-agents
in C, avoiding local conflicts with agents of level
k or higher. The (pieces of) conflicting agents
may be moved within C between their locations
or to the k-trains, observing the rules of engage-
ment . The tickets are “two way”: for the roads
to Load Up and to UnLoad later.

Restore Towers(C) In time O(2kh(k)) return to
their previous locations (the pieces of) the se-
nior agents moved by Ticketing.

Load Up/Unload(s) In time O(2k) copy to/from
the k-trains the k-agents ticketed for s without
conflicts.

Train Sort(H) In time O(D) train-sort H (the k-
agents in the k-trains inside a D ×D square).

We abbreviate problems names to the first letters.

Lemma 1 There exist algorithms (sec. 3) for sub-
problems TA, RS, LU, UL, TS, Init and (using
trains and links only) for the following reductions:
(Init, CR) → Linx;

(ER, SS, PS) → CR; (SR, Ti, RT) → ER;
(LU, UL, TS) → SR; TS → SS → PS.

The algorithm for CR is: SS; ER; PS. The ER
algorithm is: Ti; (for all slices do SR); RT. Only LU
and UL use roads explicitly. Others use links and
trains only. (see sec. 3)

3 Subroutines

3.1 Infrastructure Initialization

We simplify f to the form f(d)= 2⌊log d⌋h(⌊log d⌋)=
O(f(d)), with h(i)=O(i1.1) and

∑
i 1/h(i) ≤ 1. Let

f1(d) = min{f(d), d log1.1d}, f2(d) = 4⌈C+log4 f1(d)⌉,
where C > log4

∑
d 1/f1(d). Let i = ⌊log d⌋, and

let h1(i) = f2(2
i)/2(i−1). Then 1 ≥

∑
d 1/f2(d) ≥∑

i 1/h1(i).
Class Assignment. Init assigns recursively each

level k to class ck. First, it computes h1(i) for all
i ≤ k and groups them into classes. Then k is
added to the first class c, such that for all i ∈ c:

h1(k) = h1(i)
def
= h1(c)

2, k− i > 4 log 4h1(k), and
∥c∥<h1(c)/4. Let H(a)=

∑a
c=1 1/h1(c). To see that

H(∞)<∞ consider C= {c : ∥c∥=h1(c)/4}. Indeed,∑
c∈C 1/h1(c) <

∑
i 1/h1(i) ≤ 1. Also, the values of

h1 have form 4j with at most 4 log h1(i)=8j classes
not full to capacity for each j. Thus,

∑
c/∈C 1/h1(c)≤∑

j 8j/2
j<∞.

Roads. Standard interval Is ⊂ [0, 1] is a set of
reals which start with .s in binary. Is1

⋂
Is2 = ∅ iff

neither string is a prefix of the other. Any interval
I⊂ [0, 1], contains a unique maximal standard subin-
terval I = Is⊂I of length |I|> |I|/4, and thus s is of
length |s|< 2− log |I|. A road number k is assigned
to class c if k’s reverse kR ∈ I ⊂ I =(H(c−1), H(c)).
Define h(c) = 1/|I| and h(i) = (h(ci))

2. Obviously,
h1<h<4h1 and 2i ·h(i)=O(f2(2

i))=O(f(2i)). Note
that the above construction implies that the c-roads
are spaced evenly by h(c). Constructibility of f al-
lows computing sj-s in time O(f(2i)).
Sparse k-Trains consist of cars of the same length

lk as k-agents and volume ≥ lk/4. Cars consist of
continuous segments of length >h(ck). Let Ck={i :
i≤k, li=lk, ci=ck}. Represent sk = ∥Ck∥ as a binary
number padded by leading 0-s to the length log h(ck).
Level k claims cars with interval h(ck)lk starting at
position sRk · lk. Segments claimed by several levels
are assigned to the lowest one. This assures that the
portion of any car claimed by junior levels is the same
as their density (h(c)) plus at most one car of each
smaller length (cars of the same length are disjoint).
Thus, at least 1/4 of each car is unclaimed by junior
levels. Each segment is long enough to keep “cour-
tesy” bits for all other levels. Through these bits sep-
arated segments of one car can communicate. Thus,
cars can simulate various continuous structures, like
counters.

3.2 Square Sort (SS)

Train Sort can adopt algorithms for sorting on
the word model mesh from [Schnorr Shamir 86],
[Leighton Leiserson Shwabe 89] or other works. ad-
jacent nodes communicate via trains. The slow down
is compensated by the the decrease in the number
of nodes keeping the time within O(2k). Some mesh
cells may be empty (sorting field: ∞).

A k-block is an a×b rectangle, where a= b or a=
2b or b < a = lk. Square-Sort(S) works much like
a recursive merge-sort. It marks all agents, divides
block S in two, then recursively sorts in parallel and
Square-Merges them.

5

3.2.1 Square Merge (SM)

SM merges two sorted adjacent blocks, X,Y , into one
sorted block Z. Locations of Z coincide with those
of X plus Y , but use different fields. SM is simi-
lar to a standard external merge, treating X,Y as
tapes and trains as internal memory. For the first
cycle it loads the first non-empty slices x, y, z from
X,Y, Z respectively (x, y containing agents and z –
empty links). Empty “train seats” are treated as
links/agents with ∞ sorting field. Then SM Train-
Sorts x together with y, and (in separate fields) z.
The agents preceded by all agents (not empty train
seats) of the other slice must stay on the trains. The
others can be placed in the available empty links,
then sorted back and unloaded from the trains. Thus
at least one of slices x, y, z is exhausted and is re-
plenished for the next cycle (with ∞-s if X or Y is
exhausted). The agents preceded by other(s) (includ-
ing the largest previously unloaded) with the same
sorting field are unmarked.

3.3 Ticketing (Ti)

Ti tickets each agent, avoiding local conflicts, to a
road that will pass over it during its SR cycle. First,
k-corporations do independently Initial Reservation
(IR), avoiding conflicts among the k-agents. There
may still be conflicts with ticketed (without local
conflicts) senior agents. Then, Local Conflict Reduc-
tion (LCR), considers each vertical k-tower (i.e. an
lk × 2kh(k) rectangle) C independently. The set of
locally conflicting agents (LCS(C)) is the set of all
i-agents (i > k) locally conflicting with k-agents in
C. LCR shuffles the agents in LCS(C) within C, re-
ducing ∥LCS∥ to <2k. Then the reduced LCS(C) is
dispersed among the fixed k-trains in C, allowing the
k-agents locally conflicting with it to be ticketed to
dense k-train roads.

Initial Reserva-
tion numbers agents mod 2k/h(ck) in the snake-like
order along the columns, separately for each target
slice. First it counts V -agents (< 2k/h(ck)) of each
column. Then it sums the numbers to the left of each
column, and shifts the counters accordingly.
Local Conflict Reduction cycles the dense k-

trains around the tower, taking (the segments of)
the senior agents conflicting locally in the k-square
(swapping with the agent, if any, already on the
train). When all trains have passed, no conflicting
senior agents are left in the links. Otherwise, such an
agent together with 2k senior agents which passed it

on the trains must have two agents conflicting with
the same k-agent and thus with each other. This
contradicts to the rules of ticketing senior agents.

3.4 Slice Read (SR)

The heart of the SR cycle is the Load-Up and Un-
Load.

Load-Up (UnLoad is similar and uses separate
system of roads) places k-agents on the roads to be
picked up from there by sparse trains within O(2k)
steps. During LU/UL sparse k-trains may take and
keep senior agents (obeying engagement rules), but
only while they conflict with k-agents. The LU/UL
consists of three stages: During clearing the k-seats
on the approaching roads are marked (in the end of
this stage the marks become labels). Then each k-
seat s is assigned a k-car to guard it from its client :
the (piece of) lowest level j > k agent conflicting for
j-labeled seat s. During the next (usage) stage, ev-
ery guard is between its seat and its client, and to
the left of the seat. If a guard meets its client it takes
it, preventing from ever reaching the seat during this
stage. During usage the k-agents can use their seats
(guarded from the conflicting senior agents), on the
way between the sparse k-trains and locations off the
road. The labels disappear when usage ends. In the
last, exiting , stage the guards return their clients to
the guarded seats unless intercepted by their other
guards. All three stages occur inside one stage of
any senior level. Therefore, if a senior level j guards
a more senior i-agent in the beginning of the three
stages it continues to do it till their end. This way,
every conflicting (piece of a) senior agent is guarded
by a car of k or higher level. A collision would occur
if a non-empty seat attempted to take an agent (from
a sparse train or from off the road). A senior agent
taken onto (or off) the road inside a k-square, cannot
collide with k-agents (or be k-guarded), since such a
conflict would be local. If the senior agent remains
on the road through the k-cycle it must be guarded
by either k or higher level and thus cannot get to the
k-labeled seat in this k-square. So, no collisions oc-
cur. Clients are recognized by guards using counters
with distances to the seats.

3.5 Postprocessing (RT and PS)

Restore Towers is essentially similar to LCR and is
performed by sorting the tower by the “train-return-
address”.

6

Picture Share First Square Sorts all agents, in-
cluding non-leaders (by target address). Then it
loads each slice on the trains, distributes the lead-
ers’ pictures through the sorted agencies on the fixed
trains, and unloads the slice. Finally, the corporation
is Square Sorted by return addresses.

4 Variations

4.1 Alternative Statement of the
Main Theorem

The main theorem is also conveniently expressed in
terms of Kolmogorov Complexity , K(d) which is the
length of the shortest binary program from which d
is computable by the universal prefixless algorithm.
The function K is useful because of its property of
being the smallest (within a constant) r.e. function
with

∑
2−K(d) < ∞.

Main Theorem. (Alternative formulation) All
(types of) f -chips can be simulated by hard (types
of) chips, iff f is constructible and f(d) = Ω(2K(d)).

If the function f is produced by an outside device
and is input to the chip, then, f(d) = d · 2K(log2 d)

can be achieved.6

4.2 Timing

The “picture taking” time (at which the picture re-
ceived by the link appeared at its target) could be
determined in several ways: 1) “ordered” by the link;
2) quickly and locally computable by the link (as it
is in our case); 3) obtained from the “time stamp”
of the picture when it is received. Case 3) would
simplify the algorithm but complicate seriously the
notion of simulation in the Main Theorem. The first
case would render our model to be the most power-
ful and flexible, but we can’t break Murphy’s Law too
often. Here is why simulation of such model is impos-
sible: Consider a k×k square, where each automaton
is targeted by k/2 links requesting consecutive time
points. Then, Θ(k3) bits must stay at or leave the
square, while only O(k2) can.

6It is the smallest monotone f in Ω(2K(d)) [Gacs 87].

5 Write and R/W Generaliza-
tion

Straightforward simplifications of the algorithm pro-
duce Exclusive Write. Concurrent Write is also pos-
sible given a conflict resolution rule. A unification of
Read and Write would be to put two local addresses
per link so the picture from the first address be copied
to the second in one link period.

Acknowledgements

We thank Alok Aggarwal for many most helpful com-
ments.

References

[1] A. Aggarwal, “Period-Time Tradeoffs for VLSI
Models with Delay,” IEEE, Proc., FOCS 1983,
pp. 372-384. Submitted to SIAM J. Comput,
1989.

[2] A. Aggarwal, “Tradeoffs for VLSI Models with
Subpolynomial Delay,” ACM, Proc., STOC
1985.

[3] A.V. Aho, J.D. Ullman, and M. Yannakakis,
“On Notions of Information Transfer in VLSI
Circuits,” ACM, Proc., STOC, 1983.

[4] R.P. Brent and H.T. Kung, “The Chip Complex-
ity of Binary Arithmetics,” ACM, Proc., 12th
STOC, 1980.

[5] Ja.M. Barzdin’, A.N. Kolmogorov, “On Realiza-
tion of Nets in 3-Dimensional Space,” Problems
of Cybernetics, 19:261-268 (1967).

[6] G. Bilardi, M. Pracchi, and F.P. Preparata, “A
Critique and an Appraisal of VLSI Models of
Computation,” IEEE J. on Solid State Circuits,
SC-17(4):696-702, 1982.

[7] B. Chazelle and L. Monier, “A Model of Com-
putation for VLSI with Related Complexity Re-
sults,” ACM, Proc. 13th STOC, 1981, pp.318-
325.

[8] W.D. Hillis, “The Connection Machine,” MIT
Press, Cambridge, Mass, 1985.

7

[9] Peter Gacs, “Lecture Notes on Descriptional
Complexity and Randomness” Technical Report
87-013, Computer Science Department, Boston
University, 1987.

[10] Z. Galil and W. Paul, “An Efficient General Pur-
pose Computer,” ACM, Proc., STOC, 1981.

[11] A.N. Kolmogorov, V.A. Uspenskii, “On the De-
finition of an Algorithm,” Uspekhi Mat. Nauk,
13:3-28 (1958); AMS Transl. 2nd ser. 29:217-245
(1963).

[12] H.T. Kung, “Why Systolic architectures,” Com-
puter Magazine, IEEE, January 1982.

[13] H.T. Kung and C.E. Leiserson, “Systolic Arrays
(for VLSI),” SIAM, Sparse Matrix Proc. 1978,
ed. I.S. Duff and G.W. Stewart, pp. 256-282.

[14] F.T. Leighton, C.E. Leiserson and E. Shwabe,
“Theory of Parallel and VLSI Computation,”
Lecture Notes, MIT/LCS/RSS 6, 1989.

[15] C.E. Leiserson and B.M. Maggs, “Commu-
nication-Efficient Parallel Algorithms for Dis-
tributed Random-Access Machines,” Algorith-
mica, (3):53-77, 1988

[16] L.A. Levin, “VLSI Complexity,” Section 3 of
NSF Proposal MCS-8304498, 1982.

[17] C. Mead and L. Conway, Introduction to VLSI
Systems, Addison-Wesley, Reading, Mass, 1980.

[18] C. Mead and M. Rem, “Minimum Propagation
Delays in VLSI,” IEEE J. on Solid State Cir-
cuits, SC-17:773-775, 1982. Correction: Ibid, SC-
19:162 (1984).

[19] D. Nath, S. N. Maheshwari, and P. C. P. Bhatt,
“Efficient VLSI Networks for Parallel Computa-
tion Based on Orthogonal Trees,” IEEE Trans.
Comput. 1983.

[20] M. Paterson, W. Ruzzo, and L. Snyder, “Bounds
on Minimax Edge Length for Complete Binary
Trees,” ACM, Proc., 13th STOC, 1981.

[21] V. Ramachandran, “On Driving Many Long
Lines in a VLSI Layout,” IEEE, Proc. 23rd
FOCS, 1982.

[22] C.P. Schnorr and A. Shamir, “An Optimal Sort-
ing Algorithm for Mesh Connected Computers,”
ACM, Proc. 18th STOC, 1986.

[23] C. L. Seitz, ”Self-timed VLSI systems,” Caltech
Conference on VLSI, 1979, pp. 345-354.

[24] Ch.L. Seitz, “Ensemble Architectures for VLSI
- A Survey and Taxonomy,” Proc. of MIT Con-
ference on Advanced Research in VLSI, ed. P.
Penfield, Jr., Artech House, 1982, pp.130-132.

[25] C.D. Thompson, “A Complexity Theory for
VLSI,” Ph.D. dissertation, Computer Science
Dept., Carnegie-Mellon University, 1980.

[26] L.G. Valiant, “A Scheme for Fast Parallel Com-
putation”, SIAM J. Comput., 11 (2), 1982, 350-
361.

[27] P.M.B. Vitanyi, “Area Penalty for Sublinear Sig-
nal Propagation Delay on Chip,” IEEE, Proc,
26th FOCS, 1985, pp.197-207.

[28] P.M.B. Vitanyi, “Locality, Communication, and
Interconnect Length in Multicomputers,” SIAM
J. Comput., 1988.

[29] P.M.B. Vitanyi, “Non-Sequential Computation
and the Laws of Nature,” VLSI Algorithms and
Architectures, Lecture Notes in Computer Sci-
ence 227, pp. 108-120, Springer Verlag, Berlin,
1986.

[30] A.C. Yao, “The Entropic Limitations on VLSI
Computation,” Proc. STOC, 1981.

8

