
1

An Adaptive Management Approach to Resolving Policy Conflicts
SELMA YILMAZ IBRAHIM MATTA

Computer Science Department
Boston University

Boston, MA 02215, USA
{selma,matta}@cs.bu.edu

Technical Report BUCS-TR 2006-008

Abstract

The Border Gateway Protocol (BGP) is the current inter-domain
routing protocol used to exchange reachability information among
Autonomous Systems (ASes) in the Internet. BGP supports policy-
based routing which allows each AS to independently define a set
of local policies regarding which routes it accepts and advertises
from/to other networks, as well as which route it prefers when more
than one route becomes available. However, independently chosen
local policies may cause global conflicts, which result in protocol
divergence. In this paper, we propose a new algorithm, called
Adaptive Policy Management (APM), to resolve policy conflicts in
a distributed manner. Akin to distributed feedback control systems,
each AS independently classifies the state of the network as either
conflict-free or potentially conflicting by observing its local history
only (namely, route flaps). Based on the degree of measured conflicts,
each AS dynamically adjusts its own path preferences—increasing
its preference for observably stable paths over flapping paths.
APM also includes a mechanism to distinguish route flaps due to
topology changes, so as not to confuse them with those due to policy
conflicts. The correctness and convergence analysis of APM derives
from the sub-stability property of chosen paths. Implementation
in the SSFNet simulator is performed, and simulation results for
different performance metrics are presented. The metrics capture the
dynamic performance (in terms of instantaneous throughput, delay,
etc.) of APM and other competing solutions, thus exposing the often
neglected aspects of performance.

Key Words: Inter-domain Routing; Border Gateway Protocol
(BGP); Feedback Control; Convergence Analysis; Simulation.

I. INTRODUCTION

The Border Gateway Protocol (BGP) plays a major role
in the performance of the Internet, and is known to have
properties that are far from ideal. BGP allows policy-based
routing; each AS independently defines a set of local policies
regarding which routes to accept and advertise from/to other
networks, as well as on which route it prefers when more than
one route becomes available. However, independently defined
local policies may lead to policy conflicts. Policy conflicts
occur when neighboring ASes have opposite interests over
routes. For example, assume AS u and AS v are neighbors, and
AS v has two permitted paths p1 and p2, where p1 is preferred
over p2. If extensions of p1 and p2, i.e. (u, v)p1 and (u, v)p2,
are permitted at AS u, and (u, v)p2 is preferred over (u, v)p1,
then there is a policy conflict. When AS v improves its best

This work was supported in part by NSF grants ANI-0095988, EIA-
0202067 and ITR ANI-0205294.

path from p2 to p1, AS u will be forced to give up its more
preferred path for the less preferred one. Any policy conflict
can be resolved by changing the preference of the ASes over
their paths, i.e. local policies.

Although not all policy conflicts are harmful, a group of
ASes may define conflicting policies that cannot be satisfied
simultaneously, causing BGP to diverge. Assume AS u, v, and
z form such group. The scenario of divergence may take place
as follows: When AS u improves its best path, it forces AS
v to give up its best path for a less preferred path, which in
turn gives AS z an opportunity to improve its best path, which
forces AS u to give up its best path for a less preferred path,
and so on. Each AS in such conflict repeatedly selects the
same sequence of routes, never converging on any one set of
routes. Therefore, route oscillations due to policy conflicts are
persistent, and require some kind of intervention to stop.

As the commercial infrastructure of the Internet continues
to grow, so does the potential for developing persistent route
oscillation because of the growth of policies both in size and
complexity [1], [2].

Several studies [3], [2], [4] have examined the dynamic
behavior of inter-domain routing and highlighted the negative
impacts of unstable routes. Instabilities taking place across
ASes may negatively impact end-to-end network performance
and efficiency of the Internet. A network that has not yet
reached convergence may drop packets or deliver packets out
of order. Routers may experience severe CPU load and mem-
ory problems: Because of repeated advertising and withdrawal
of routes, routers need to rerun the BGP decision process
to select the best paths, and update routing and forwarding
tables. Frequent changes in the routes that are advertised by
the other domains also make traffic engineering through an
AS very difficult. BGP is crucial for a healthy and efficient
global routing, and it is imperative to guarantee convergence
of BGP independent of the locally selected policies.

Contribution of This Paper: There have been a number
of studies (reviewed in Section II) on guaranteeing safety,
i.e. convergence, of BGP independent of the locally selected
policies [5], [6], [7], [8], [9], [10], [11], [12]. In our previous
work [13], we introduced the idea of dynamically detecting
and suppressing BGP oscillations through probabilistic change
of path ranks (preferences). The algorithm is designed to
detect policy conflicts by using local histories only. This paper
extends and completes our preliminary idea [13] in many
ways: (1) we augment the algorithm of path rank change so
that an AS might choose a less preferred but observably stable
path over a more preferred but oscillating path, thus it becomes
natural for an AS to implicitly assign a higher cost (and hence

2

less preference value) to oscillating (flapping) paths; (2) with
new additions, the algorithm enables the nodes to dynamically
adapt to any state of the network. After the system stabilizes,
we let the nodes attempt to restore some of the local preference
values of their paths which they have modified so as to keep
the overall path rank change minimal 1; (3) a new mechanism
is added to distinguish route flaps due to topology changes,
so as not to confuse them with those due to policy conflicts;
(4) BGP extensions of the proposed algorithm are specified;
(5) a correctness and convergence analysis of the proposed
algorithm is developed based on the sub-stability property of
chosen paths; (6) the proposed algorithm is implemented in
the SSFNet simulator [15] is performed, and simulation results
for different performance metrics are presented. The metrics
capture the dynamic performance (in terms of instantaneous
throughput, delay, routing load, etc.) of our algorithm as well
as other competing solutions, thus exposing often neglected
aspects of performance. Although our exposition is BGP-
specific, the problem of inconsistent policies at independent
distributed entities is more general.

The paper is organized as follows: Section II reviews back-
ground and related work. Section III describes our algorithm,
and Section IV presents convergence and correctness analysis.
Simulation results and conclusion are presented in Section V
and Section VI, respectively.

II. BACKGROUND AND RELATED WORK

A. Border Gateway Protocol Abstraction

We use the abstraction of BGP proposed by Griffin et al.
[7], which is called Safe Path Vector Protocol (SPVP). SPVP
is a distributed algorithm for solving the so-called Stable Paths
Problem (SPP). This model abstracts away low level details of
BGP and makes it easier to reason about convergence related
issues.

Informally, SPP consists of an undirected graph with a
single destination. Each node in the graph has a set of
permitted paths to the destination, which are the routes learned
from peers, and allowed by the local policy of the node.
Each node also has a ranking function to impose an order of
preference on the paths, such that more preferable paths have
higher values assigned to them. A solution of an SPP is an
assignment of permitted paths to the nodes that is consistent
with the path chosen by its next-hop neighbor: Node u may
choose the path P =< u, v, w, . . . , destination > only if the
current path at node v is < v,w, . . . , destination > and path
P is the current best path of node u.

The formal definition of SPP is as follows: A network is
represented as a simple, undirected, connected graph G =
(V,E), where V = {0, 1, · · · , n} is the set of nodes connected
by edges from E. Nodes represent BGP routers and edges
represent BGP sessions. For a node u, its set of peers is
peers(u) = {w|{u,w} ∈ E}. Node 0 is the destination to
which all other nodes are trying to find paths. A path P in
G is a sequence of nodes (vk, vk−1, · · · , v1, v0), such that
(vi, vi−1) ∈ E, for all i, 1 ≤ i ≤ k.

1Akin to distributed recovery mechanisms, e.g. congestion avoidance of
TCP [14].

An empty path, ε, indicates that a router cannot reach the
destination. Nonempty paths P =< v1, v2, · · · , vk > and
Q =< w1, w2, · · · , wm > can be concatenated as follows
PQ =< v1, v2, · · · , vk, w2, · · · , wm > if vk = w1. For every
path P , concatenation with the empty path returns the path
itself: Pε = εP = P .

For every v ∈ V − {0}, the set Pv denotes the permitted
paths from v to the destination. Let P = {Pv|v ∈ V − {0}}
denotes the set of all permitted paths. For every v ∈ V −{0},
there is a ranking function λv : Pv → N. λv(P) denotes the
degree of preference that node v gives to the path P ∈ Pv .
More preferable paths have higher values of λv . Let Λ =
{λv|v ∈ V − {0}} be the set of all ranking functions.

An instance of a Stable Paths Problem (SPP) S =
(G,P,Λ), is a graph with the permitted paths and ranking
function at each node if the following conditions are satisfied
for every v ∈ V − {0}:

(1) Empty path is permitted: ε ∈ Pv .
(2) Empty path is the lowest ranked path: λv(ε) = 0.
(3) Strictness: If λv(P1) = λv(P2), then P1 = P2 or

P1 = (v, u)P ′
1 and P2 = (v, u)P ′

2 for some node u.
(4) Simplicity: If path P ∈ Pv, then P does not have

repeated nodes, i.e. P is loop free.
Given a node u, and W ⊆ Pu with distinct next-hops, the

maximal path in W , max(u,W), is defined to be the highest
ranked path in W . A path assignment is a function π that
maps each node u ∈ V to a permitted path π(u) ∈ Pu. π
defines the path chosen by each node to reach the destination.
Given a path assignment π and a node u, the set of permitted
paths that are one-hop extension of paths through neighbors
is defined as

choices(u, π) = {(u, v)π(v)|{u, v} ∈ E}
⋂

Pu.

The path assignment π is called stable at node u if π(u) =
max(u, choices(u, π)). The path assignment π is called stable
if it is stable at every node u ∈ V .

An SPP instance S = (G,P,Λ) is solvable if there exists
a stable path assignment π for S. Every such assignment is
called a solution for S and written as (P1, P2, · · · , Pn), where
π(u) = Pu. An instance of SPP may have no solution, or one
or more solutions.

SPVP is an abstraction of BGP. Every node runs a copy of
the SPVP process. With this abstraction, messages are simply
paths. Each node maintains two data structures: rib(u) is the
current path that node u is using to reach the destination, and
rib in(u ⇐ w) denotes the path that has been most recently
advertised by peer w and processed at node u. The set of paths
available at node u is updated as

choices(u) = {(u,w)rib in(u ⇐ w)|w ∈ peers(u)}
⋂

Pu

and the best path at u is

best(u) = max(u, choices(u)) and rib(u) = best(u)

As long as node u receives advertisements from its peers,
best(u) is recomputed with the most recent choices(u), and
stored in rib(u). Just as it is the case with BGP, when u
changes its current path, it notifies its current peers about the
change. This may cause the peers to send advertisements to

3

their peers. The network reaches a stable state when there is no
node which would change its current path to the destination. If
such a state is reached, then the resulting state is the solution
of the Stable Paths Problem (SPP). If SPP has no solution,
then SPVP diverges. Figure 1 shows an example of a policy
conflict leading to divergence.

Griffin et al. [16] present the structure called dispute

2

30

10

0

3

130

320 210
20

11

2

0

3

130
10

320
30 20

210

Permitted paths are shown next to each node.
Longer paths are more preferred than shorter paths.
Current best paths are underlined.

Fig. 1. An example of a divergence. Due to the cyclic conflict,
this group of nodes cannot reach a stable state and keep oscillating
between the shown states.

wheel for the purpose of checking the existence of a solution,
and show that the lack of a dispute wheel is a sufficient
condition which guarantees that SPP has a unique solution.
A dispute wheel of size k is a structure that consists of nodes,
u1, u2, . . . , uk, and the set of paths Q1, Q2, . . . , Qk, and
R1, R2, . . . , Rk. For each 1 ≤ i ≤ k, the following conditions
are true: (1) Ri is a path from ui to ui+1 (u1 = uk+1); (2) Qi

is a permitted path at ui ; (3) RiQi+1 is a permitted path at ui

(Q1 = Qk+1); (4) Qi is less preferred than RiQi+1 at node
ui. The dispute wheel of size k is shown in Figure 2. Qis

0

Q2

uk

Rk

u1
R1

u2Q1Qk

Qi+1

ui+1

Qi

Ri
ui

Fig. 2. Dispute wheel of size k

are called spokes of the dispute wheel and each spoke must
be a simple (loop-free) path, i.e. no repeated nodes. None of
the paths Qi, Ri or Qi+1 can include node ui. The paths Ris
are called the rims of the wheel, and each rim is also a simple
(loop-free) path. The nodes at the ends of the paths Ris are
called active nodes. The active nodes are the nodes at which
route preferences cause the dispute wheel.

Note that the presence of a dispute wheel does not imply
that the system will diverge. However, if the system diverges,
there exists a dispute wheel, and the oscillation must be either
because of multiple solutions or lack of a solution as we
demonstrate later.

B. Related Work
The possibility of BGP divergence due to policy conflicts is

first shown by Varadhan et al. [1]. Since then, many studies

proposed approaches to guarantee the safety, i.e. convergence,
of BGP independent of the locally selected policies [5], [6],
[7], [8], [9], [13], [10], [11], [12]. These approaches can be
broadly classified into static and dynamic solutions. Static
solutions are centralized and require analyzing routing policies
to verify that they are conflict free and cannot lead to protocol
divergence, whereas dynamic solutions are distributed and
require some mechanism to detect and resolve policy conflicts
that are leading to divergence at run time.

Static solutions: Govindan et al. [5] propose a static
solution which involves keeping policies in a repository called
Internet Route Registry and verifying that they do not contain
policy conflicts that could lead to protocol divergence. How-
ever, Griffin et al. [17] show that such kind of verification is
computationally very expensive, and hard to achieve due to
the private nature of the policies.

To avoid global coordination required in [5], Gao et al.
[6], [18] propose another static solution which restricts the
routing policies to the hierarchical structure that arises from
commercial relationships between ASes, which may either
be provider-customer or peer-peer relationship. Gao et al.
give policy configuration guidelines in which each AS prefers
routes heard from customers to the routes heard from providers
and peers. Then the system is guaranteed to converge. This
solution requires a database to keep relationships between
ASes. Static periodic checks are required and performed by a
global authority to verify conformance with these guidelines.
Gao et al. algorithm may lead to unnecessary disabling
of many routes from the start to guarantee the stability of
the system, which restricts the flexibility in the choice of
routing policies. Feamster et al. [19] argue that there may
be legitimate reasons to deviate from the guidelines proposed
in [6].

Other static solutions [12], [11], [10] suggest different con-
straints that also prevent policy based oscillations in advance.

Dynamic Solutions: Although route flap damping [20] can
suppress temporary instabilities very well, it cannot detect
or eliminate policy conflicts leading to persistent oscillation.
Therefore, when there is a policy conflict leading to persistent
oscillation, using route flap damping only makes the oscilla-
tions run in slow motion.

Griffin et al. [7] suggest extending BGP to carry additional
information called history with each routing update message.
A possible trace of SPVP for the system shown in Figure
1 is shown in Figure 3(a). History allows each router to
describe the exact sequence of events that led to the selection
of a path as the best path. An event (+P) indicates that the
node has chosen path P as its best path, and P is more
preferred than its previous best path. Similarly, an event (−P)
indicates that the node has updated its best path, and the
current best path is less preferred path than its previous best
path P . A history containing loops is an indication of a
potential protocol divergence. At step 4 of Figure 3(a), all 3
nodes have a cycle in the histories of their current best paths.
SPVP assumes that such paths are problematic, and therefore
eliminates them. For the assumed timing of events, with SPVP
the system converges to unreachable destination for all nodes.

Since a cycle in the history is a necessary but not sufficient

4

(10)

(20)

best path

(10)

(20)

historystep

0

2

1

node best path

0 1

node

2

step

(30)

(130)

(210)
(320)

(10)
(20)

(30)
(130)

(210)
(320)

(30)

(10)
(20)

ε

ε

ε

�

�

�

(+130)
(+210)
(+320)

(-130)(+320)
(-210)(+130)
(-320)(+210)

(+130)(-320)(+210)

(+210)(-130)(+320)
(+320)(-210)(+130)

(-130) (+320)(-210) (+130)
(-210) (+130)(-320) (+210)

(-320) (+210)(-130) (+320)

(210)
(320)

(30)

(10)
(20)

(30)

(130)

(210)
(320)

(10)

(130)
(30)
(20)

(-10)
(-20)

(-30)

5

2

1

3

4

3
1
2
3

1

2
3

1
2
3

1
2

3

1

2
3

(a)

1

1

2

(b)

2

1

3

4

3
1
2
3

1

2
3

1
2
3

1
2

3

2

0
0
0

0
0

0
1

1

1
1

2
2

5 1

3

will stabilize on (10)

count of node

won’t use (130) since count(3)≥2

won’t use (210) since count(1)≥2
will stabilize on (20)
won’t use (320) since count(2)≥2
will stabilize on (30)

Fig. 3. (a) A possible trace of SPVP for the system shown in Figure
1; (b) A possible trace of the Cobb and Musunuri algorithm for the
system shown in Figure 1 assuming threshold value for count is 2.
All nodes stabilize on their lowest preferred paths.

condition for divergence, there may be false positives. Carry-
ing history with each update creates communication overhead,
and may also reveal private information about the preferences
of ASes over the routes. APM uses the idea of keeping
track of history of path changes, but does it only locally. By
keeping histories as local information and avoiding exchanging
such information helps overcome related privacy concerns and
communication overhead.

Recently, Cobb et al. propose two dynamic algorithms
[8], [9]. The first work [8] proposes a mechanism to enforce
monotonic path orderings. With this algorithm, convergence is
guaranteed by preventing the selection of a path with higher
order (preference) in one node, if doing so would cause a
conflict with other nodes along the routing tree, i.e. a node
would be forced to use another less preferred path. Preventing
the violation of monotonic path ordering property is realized
via diffusing computation along the routing tree whenever a
node wants to update its path.

In their second work, Cobb and Musunuri [9] associate an
integer cost with each node and exchange this cost value with
each update message. The cost increases monotonically if the
system diverges. Therefore, discarding advertisements from
nodes whose cost is greater than a threshold is suggested.
Assuming threshold value of 2, Figure 3(b) shows a possible
trace of the Cobb and Musunuri algorithm for the system.
Since the cost of the nodes involved in the same conflict grows
in tandem, all of the nodes simultaneously give up their most
preferred paths and stabilize on their lowest preferred paths.

A weakness of this algorithm is keeping per node cost,
which causes aggregation of the paths through the same node.
One flapping path may cause all the alternative paths (through
the same node) to be eliminated. With APM, we extend the
idea of using count to keep per-path state at each node
instead of per-node state, which prevents aggregation of the
paths through the same node. Empowered with this extra
information together with probabilistic update of path ranks,
APM can pinpoint the paths causing problems, and lead to

fewer path elimination. Another limitation of the approach
is that Cobb and Musunuri suggest resetting the cost of all
nodes once a week or once a month via a distributed reset
protocol [21], which is based on a diffusing computation
over a min-hop spanning tree. Resetting costs allows nodes
to follow one more time their routing policies, where possibly
this time no conflicts exist. However, to limit the number of
path eliminations, resetting costs should be performed as soon
as the state of the system changes.

Other Work: Another line of work concentrated on solving
policy conflicts by treating the routing problem as a game in
which the ASes are strategic agents [22]. For the case where
AS policies are restricted to the hierarchical relationships,
Feigenbaum et al. [22] present a strategy-proof mechanism
that can be computed in polynomial time in a centralized com-
putational model. However, it is shown that this mechanism
is incompatible with BGP: If this mechanism is computed by
a BGP-like distributed algorithm with similar data structures
and communication patterns, it may cause BGP to converge
very slowly, and/or can trigger extensive amount of update
messages. [22] also show that if AS policies are not restricted,
then it is NP-hard to compute a routing tree that maximizes
the overall utility of the ASes.

III. ADAPTIVE POLICY MANAGEMENT (APM)

A. Overview

We propose a new algorithm to dynamically detect and
eliminate policy conflicts leading to BGP divergence. The
idea is to locally detect the paths involved in a conflict, and
eliminate the conflict by changing the relative preference of
such paths. Note that such adaptation is limited to the node’s
set of permitted paths, any of which the AS is willing to use
albeit at different preference level.

Each node involved in a particular conflict observes route
flaps: Constantly chooses a path as its best path and later
gives it up for another path. For example, in Figure 1, node
1 constantly upgrades its current best path to (130), but later
it is forced to give up (130) for its less preferred path (10)
as a result of its neighbors’ response to this upgrade. The
nodes observing constant route flaps can stop such behavior
by sticking to their less preferred but more stable path, even
when a better alternative is advertised. This can be achieved
by changing the local preference of the paths. When the node
stops advertising the paths alternately, the cyclic effect of
the global conflict will be broken. In Figure 1, for example,
if node 1 changes its local preferences to prefer (10) over
(130), the system stabilizes on the following path assignment:
(10)(210)(30).

To be able to locally detect route flaps and the paths whose
preference cause divergence, each node needs to keep some
form of local history. We suggest keeping track of the paths
that have been recently selected as best path, and their counts
indicating how many times the path has been chosen as best
path and later given up. Figure 4 shows how counts keep
increasing during divergence of the system shown in Figure
1. Nodes involved in the conflict can detect divergence by
comparing counts against a threshold called min threshold.

5

0 1

2

3

1

2

3

1

2

3

1

1

2

3

nodestep best path local history

(10)

(20)

(30)

(10)

(20)

(30)

2

3 (30)

(20)

(10)

(10)

(30)

available path

available path

available path

1

2

3

4

5

1
2
3

(path, count)

((10),1)
((20),1)
((30),1)

((130),1), ((10),1)
((210),1), ((20),1)
((320),1), ((30),1)
((130),1), ((10),2)
((210),1), ((20),2)
((320),1), ((30),2)
((130),2), ((10),2)
((210),2), ((20),2)
((320),2), ((30),2)
((130),2), ((10),3)

((210),2), ((20),3)

(130)
(210)
(320)

(130)
(210)
(320)

((320),2), ((30),3)

(210)

path preference

(130)>(10)
(210)>(20)
(320)>(30)

(130)>(10)
(210)>(20)
(320)>(30)
(130)>(10)

(210)>(20)
(320)>(30)
(130)>(10)

(210)>(20)
(320)>(30)

(10)>(130)

(210)>(20)
(320)>(30)

count(20)> min threshold, change rank with probability 1/2

count(10)> min threshold, change rank with probability 1/2

count(30)> min threshold, change rank with probability 1/2

assume this takes place: (10)>(130)

assume this does not take place: (210)>(20)

assume this does not take place: (320)>(30)

stabilizes on most preferred and

stabilizes on lower preferred and

stabilizes on most preferred and

Fig. 4. A possible trace of APM for the system shown in Figure 1.
min threshold = 2.

Since the algorithm we are proposing is distributed and based
on using only local information, there may be many nodes
synchronously detecting the same conflict and lowering the
preferences of their higher preferred paths. If we assume
min threshold=2 for each node in Figure 4, at step 4, all 3
nodes simultaneously change their local preferences to prefer
their shorter paths, which are more stable in the sense that
they are always available. Note that the conflict can be broken
even if only one of the nodes performs the path rank change.
To prevent this kind of simultaneous and unnecessary path
preference changes, we suggest changing relative preferences
with probability 1/2.

Because of the probabilistic adjustment of path preferences,
even though the effect of a particular conflict is observed
several times, it is possible that the conflict remains unre-
solved. max threshold is introduced to handle such cases:
When the count associated with a particular path exceeds
max threshold, then the path is removed from the set of
permitted paths, and added to the set of bad paths. The

Policy
Conflict
Control
Phase

Policy
Conflict
Free
Phase

Policy
Conflict
Avoidance
Phase

time

count

max threshold

min threshold

Fig. 5. Three phases of Adaptive Policy Management (APM)

bad paths set is a data structure that keeps the list of paths
which the node believes that their adoption leads to a conflict.
Therefore, they are excluded from further consideration in
the best path selection process (until they are restored as
the algorithm adapts to a conflict-free state), even if they are
advertised by peers and permitted by original local policies.
Setting max threshold to higher values helps reduce the
number of paths placed in bad paths. However, smaller values

may reduce convergence time. Count values kept in the local
history of a node are compared against min threshold, and
max threshold to detect and handle divergence as follows:
(a) Policy conflict-free phase: When the counts are smaller
than min threshold, then the node assumes that there is
no persistent oscillation. Therefore, setting min threshold to
higher values helps prevent path preference changes when the
oscillation is transient; (b) Policy conflict-avoidance phase:
If any count exceeds min threshold, but stays lower than
max threshold, then the node assumes that there is a pol-
icy conflict leading to persistent oscillation, which can be
avoided by changing the relative preference (rank) of the
paths; (c) Policy conflict-control phase: If any count exceeds
max threshold, then the path associated with this count
is added to a set of bad paths, and excluded from further
consideration in the best path selection process. Figure 5 shows
these three different phases of our algorithm.

B. Details of APM

There may be different instantiations of the algorithm de-
pending on the exact nature of the path information kept in
the local history, and the way count values are associated with
the paths. In this section, we describe the instantiation that we
have chosen. Throughout this section, we assume that there is
a single destination. Node u has adopted path p means that
node u has chosen path p as its best path, and currently using it
to reach the destination. Node u has abandoned path p means
that node u was using path p to reach destination, and since
node u’s best path has changed, node u is no longer using p
to reach the destination.

1) Data Structures: In addition to data structures required
for BGP, APM requires the usage of the following data
structures:

• Each node u keeps a local history in the form of (path,
count) tuples, where path indicates a path that has
been recently adopted by node u, and count indicates
how many times the path has been adopted and later
abandoned. When there is divergence, some count values
keep increasing because of constant flapping.

• peerStability is an integer associated with each peer
of node u. When w ∈ peers(u) sends an update for
a particular destination that advertises a path p that is
different from the one that has been advertised previously,
i.e. rib in(u ⇐ w) 6= p, the peerStability value
corresponding to peer w is increased. The purpose of this
counter is to differentiate the peers, and hence the paths
advertised by those peers, that are stable. Therefore, if
node u is observing a route flap, the flap can be stopped
by adopting a path advertised by a stable peer: The
smaller value of peerStability indicates a more stable
peer. If peerStability is equal to one for peer w, it means
the path advertised by w never changed later. We refer to
such paths as safe paths and the peers advertising these
paths as stable peers. To make stability last, after adopting
a stable path, node u also changes its preference of the
paths to reflect this choice. Node u updates the local
preference of the stable path so that it will be the most

6

preferred path, i.e. rank(safe path) = 1, where rank(p)
is the index of path p among the current alternative paths
in the order of decreasing local preference value. If there
are more than one safe path, the one that is originally
preferred more is chosen.
Note that count values associated with paths in local
history cannot be used to measure stability of peers.
A path p advertised by w may have a high count
value associated with it, even if w never changes this
advertisement. If the advertisement sent by peer w does
not change, peerStability will always be equal to 1
for peer w even if the node receiving this update may
constantly adopt p and later abandon it for a higher
preferred path as a result of a policy conflict. In such
case, count associated with p keeps increasing as the
node constantly adopt p and later abandon it for a higher
preferred path.

• B indicates the bad path set, which keeps the paths whose
count exceeds the max threshold value. Such paths are
eliminated from the permissible set of paths at node u
and not considered in the best path selection process even
though they may be advertised by a peer.

• keepaliveCount is used to count the number of times
a KEEPALIVE message is received from a peer w.
If the value of keepaliveCount exceeds a threshold,
ka threshold, for all peers of node u, then node u
concludes that the system has stabilized and there are no
more policy conflicts. After this point, node u probabilis-
tically (and more conservatively) resets some of the local
preferences back to their original values 2. Although there
is a possibility of introducing instability back into the
system, our algorithm adapts to the changes dynamically
and stabilizes at some state of path preferences eventually.

The state of the system is defined by the values kept in these
data structures, as well as the path orderings at each node,
which correspond to different policies.

2) Update Handling: Figure 6 shows the pseudo-code of
the Adaptive Policy Management (APM) scheme for handling
routing updates. The process runs at each node u in response
to a received update. When node u adopts a path p ∈ Pu, it
informs each of its peers by sending an update message. rib(u)
indicates the current best path to the destination selected at
node u. rib in(u ⇐ w) indicates the most recent path sent
from w ∈ peers(u), and processed at node u. The set of path
choices available at node u that are considered for best path
selection, excluding the bad paths in B(u), is defined as

choicesB(u) = {(u, w)rib in(u ⇐ w) − B(u)|w ∈

peers(u)}
T

Pu

and the best path as

bestB(u) = max(u, choicesB(u)).

As long as node u receives advertisements from its peers,
bestB(u) is recomputed with the most recent choicesB(u).
When rib(u) changes, node u notifies its peers by sending an

2This is akin to increase/decrease adaptation rules employed in many
adaptive feedback-control systems.

update message.
When the process goes into the policy conflict-avoidance

phase, after successfully choosing a safe path and changing
its rank to be most preferred, the state of the system changes.
The state of the system also changes when the process places
a path in the bad path set, i.e. in the policy conflict-control
phase. In either case, this new state corresponds to a different
Stable Paths Problem (SPP), possibly a stable one. Therefore,
counters are reset to give opportunity for a fresh start and
to see if the change is enough to reach stability. When the
process goes into the policy conflict-avoidance phase, if there
is no safe path for node u, i.e. peerStability(w) 6= 1 for
any w ∈ peers(u), then node u does not do anything to stop
the oscillation. However, if there is a safe path Psafe, with
probability 1/2, the path ordering at node u is changed such
that rank(Psafe) = 1. If there are more than one safe path,
then the most preferred one is chosen as the highest ranked
path.

3) Restoring Local Preferences: Each node keeps track
of the number of KEEPALIVE messages received from its
peers, and compares this value against a threshold, denoted
by ka threshold, to test the stability of the system. Figure
7 shows how node u probabilistically restores some rank
changes for its paths after the system has stabilized. Since
policies are placed for a purpose by each node, such as
traffic engineering or security, it is important for ASes not
to change them unless they are conflicting with the policies
of other nodes and absolutely necessary to eliminate route
oscillations. Although it is safe to restore rank changes that do
not compromise the current stability, there is no way for node
u to know which changes are safe to restore. Therefore, node u
uses a probabilistic (albeit more conservative) approach, and
risks introducing instability back into the system. Contrary
to update handling, node u increases the local preference of
a path with a much smaller probability, 1/4. We allow for
bringing paths out of B with probability 1/4 as well, since
the above argument is also true for the paths currently in the
bad path set. If node u performs a rank change and/or remove
(restore) a path from B, counters kept in the local history are
reset because this new state corresponds to a different SPP.

Note that although re-using suppressed paths and/or restor-
ing original ranks once the system reaches a stable state
may introduce instability back into the system, this is the
nature of all adaptive feedback control systems. By using
a much smaller probability for reset, i.e. 1/4, we provide a
conservative way of probing the network state. This is akin to
the congestion avoidance mechanism of TCP, during which the
current state of the network is probed at a slower rate. Cobb
and Musunuri algorithm [9] suggests periodically resetting
the cost of all nodes via a distributed reset protocol [21] for
this purpose. However, the algorithm lacks any mechanism
to prevent introducing the same conflict back into the system
when the costs are reset. Therefore, this approach causes the
system to oscillate between the stable and the unstable state
unless policy conflicts disappear in the meantime due to a
topology/policy change. SPVP [7] resets history when a cycle
is detected and a path is eliminated. However, to be able to
truly adapt to the system dynamics, SPVP should also reset

7

process

do

//Policy Conflict−Control Phase

//Policy Conflict−Avoidance Phase

receive Update m from peer w

//Update HandlingAPMS Update Handling[u]

if count(Pnew) > max threshold then

Note: The code to the right of is assumed to be executed in one atomic step

else if then
with probability= 1/2

if Pnew 6= Pold then
rib(u) =Pnew

dofor eachv ∈ peers(u)

send vtorib(u)

peerStability(v)=0 for each v ∈ peers(u)

count(Q)=0 for each path Q ∈ localHistory

peerStability(v)=0 for each v ∈ peers(u)

find the most preferred safe path, Psafe

rank(Psafe)=1
Pnew = Psafe

if

Pold=rib(u)
if

B(u) = B(u)
⋃

{Pnew}

Pnew = bestB(u)

Pnew = bestB(u)

rib in(u ⇐ w) = m

if
peerStability(w)++

count(Pnew)++

count(Q)=0 for each path Q ∈ localHistory

count(Pnew) > min threshold

keepaliveCount(w)=0

(Pnew 6= ε) then

thenrib(u)6= bestB(u)

rib in(u ⇐ w) 6= m then

Fig. 6. Adaptive Policy Management (APM): Update Handling

process

receive wkeepalive from
APMS Keepalive Handling[u] //Keepalive Handling

for each
send

dov ∈ peers(u)

torib(u) v

localpref(r)= originallocalpref(r)

Pnew=bestB(u)

count(Q)=0 for each path Q ∈ localHistory

peerStability(v)=0 for each v ∈ peers(u)

rib(u) =Pnew

remove r from
if then

B(u)

if
do with probability= 1/4

r ∈ B(u)

(localpref(r) 6= originallocalpref(r)) ‖

if Pnew 6= rib(u) then

then(r ∈ B(u))
r=rib in(u ⇐ v)

for each v ∈ peers(u)

if keepaliveCount(v) ≥ ka threshold for every v ∈ peers(u)

keepaliveCount(v)=0 for each v ∈ peers(u)

keepaliveCount(w)++

Note: The code to the right of the assumed to be executed one atomic step

Fig. 7. Adaptive Policy Management (APM): Restoring Local Prefer-
ences once Stability is Reached

the state by re-introducing all suppressed paths. Otherwise,
the algorithm prevents usage of the suppressed paths even if
the policy conflict disappears due to a topology/policy change.
Similar to the Cobb and Musunuri algorithm, such reset may
cause oscillation between the original unstable state and the
stable state. APM resets the state of the system conservatively
using the mechanism shown in Figure 7 so as to adapt to
every state of the network automatically while oscillating in
the vicinity of a stable state at a very slow rate. With APM,
the backoff and recovery of path preferences could also be
guided by explicit input from local AS administrators. We
will investigate this approach in a future report.

4) Handling Transient Oscillations due to Topology
Changes: If there is a topology change, path updates experi-

enced as a result of a change in topology may interfere with
diagnosing policy conflicts. For example, link or node failure
or recovery may create a route flap, and increase the chance
of false positives. More importantly, topology changes affect
policy dynamics. Even if the original topology had policy
conflicts, the new topology may be conflict-free, or vice versa.
Therefore, during the process of resolving policy conflicts, it
is important for the nodes to be aware of link/node failure and
recovery events and distinguish them from route flaps due to
policy conflicts.

Assume that node u’s next-hop along the path to the

//Handling topology changesAPMS TopologyChange Handling[u]

link (u, v) is restored or node v is restoredif
feasible(r)=false
r is permissibleif

r= rib in(u ⇐ v)
link (u, v) has failed or node v has failedif

//or the next-hop node failed or restored
//the path to the destination has failed or restored

process

rib in(u ⇐ v) = path(m)

receive Update m vfrom

//reset local states

localpref(p)=originallocalpref(p)
if

p is permissibleif
p ∈ rib in (u ⇐ w)

for every
count(Q)=0 for each path Q ∈ localHistory

keepaliveCount(w)=0 for every w ∈ peers(u)

peerStability(w)= 0 for every w ∈ peers(u)
B(u)={}

w ∈ peers(u)

localpref(p) 6= originallocalpref(p)

//when node u learns that its next-hop link along

sequenceNumber++ //increase the sequence number of u

send update message m

for every
rib(u)=bestB(u)

w ∈ peers(u)

where path(m)=rib(u), originator(m)=u, sequenceNumber(m)=sequenceNumber

,

Fig. 8. Adaptive Policy Management (APM): Handling Failures and
Recovery

//Handling topology changesAPMS TopologyChange Handling[u]

,

process

if

keepaliveCount(w)=0 for every w ∈ peers(u)

B(u)={}
peerStability(w)= 0 for each w ∈ peers(u)

count(Q)=0 for each path Q ∈ localHistory

for every
p ∈ rib in (u ⇐ w)

p is permissibleif

localpref(p)=originallocalpref(p)
localpref(p) 6= originallocalpref(p)

//when node u gets an update message m from node v with originator(m) 6= null

if

w ∈ peers(u)

rib(u)=bestB(u)

for every
send update message n

w ∈ peers(u)

if there is a new update to be sent
//process this update as shown in APMS Update Handling[u]

where path(n)=rib(u), originator(n)=originator(m)
sequenceNumber(n)=sequenceNumber(m)

else if (sequenceNumber(m) > sequenceNumber of originator(m) at node u)

u == originator(m)

set originator = null before sending update to the peers

//update sequenceNumber of originator(m) at node u

sequenceNumber of originator(m) at u=sequenceNumber(m)

Fig. 9. Adaptive Policy Management (APM): Handling Failures and
Recovery

8

destination is node v, i.e. P =< u, v, . . . , destination >.
When the link between u and v goes down, as soon as node
u detects the change, it discards the route learned from v, and
recomputes its best path to the destination. At this point, node
u knows that its best path has changed because of a failure.
We suggest that while sending the resulting update message,
node u includes some information about the failure so that
the other nodes which are not in the neigborhood of the failed
link can deduce that the update they are receiving is triggered
by a failure. Since from node u’s perspective, the effects of
failure of the peer v is similar, it can be handled the same way.
Furthermore, link/peer restorations can also be handled in a
similar way by observing OPEN messages exchanged when a
peering TCP session is (re-)established.

We suggest adding two new fields to the update messages
of BGP for this purpose: originator and sequenceNumber.
While originator carries the ID of the node that has detected
the topology change, sequenceNumber indicates the number
of times the node detected a topology change. Each node
also keeps track of the sequenceNumber for the other
nodes to distinguish the most recent topology update when
the originator is the same. For example, if the same link
constantly going up and down quickly, the resulting updates
will have the same originator. When these updates propagate
at different speed, it is important to be able to distinguish
which update reflects the latest topology change. With this
addition, the messages exchanged between peers are triples
(P, originator, sequenceNumber). In the absence of topol-
ogy changes, the originator field is set to null. The pseudo-
code of the topology handling algorithm is shown in Figures
8 and 9.

When node u detects a topology change, it first resets the
local state, and increases its sequenceNumber as shown in
Figure 8. The resulting update is sent with originator=u, and
the current sequenceNumber of node u. As the pseudocode
in Figure 9 shows, when node u receives an update message m
with originator=v and the sequenceNumber indicating that
this is a new topology change, node u temporarily turns off
the policy conflict detection process and resets the local state.
After updating the sequenceNumber of v for its records,
node u sends the resulting update message with the same
originator and sequenceNumber values to further propagate
the change. When node u receives an update message with
itself as the originator, it restarts the policy conflict detection
process by assigning null to originator. Policy changes can
be handled the same way as topology changes. Since a policy
change is performed by a local authority, the AS performing
policy change can use the above mechanism to provide tempo-
rary suspension of processing the resulting updates for policy
conflict detection.

While this mechanism handles transient oscillations due
to topology/policy changes, min threshold still helps not
to react too soon to transient oscillations arising from other
causes.

IV. CONVERGENCE ANALYSIS OF APM
Different path orderings at each node correspond to different

policies and define different states of the network. Among

these states, there are some stable configurations. Our goal is
to show that starting with an arbitrary state of the system, the
Adaptive Policy Management (APM) converges to a stable
state within a finite number of steps. To that end, we list
some formal definitions for terms we use henceforth. The
state of the system changes over time and it is a function of
the current policies and the update messages (advertisements
and withdrawals) exchanged among the nodes. The following
definitions assume that there is a single policy conflict in the
system and the classification of the nodes is done with respect
to this particular conflict.

Definition 4.1: Conflict-free node is a node which is not
involved in the policy conflict, i.e. not an active node of a
dispute wheel, and stabilized on its best path.

Definition 4.2: Non-flapping path, or stable path P =<
u, . . . , v, . . . , destination > is the best path of a conflict-free
node u, and this path does not change over time.

Definition 4.3: Observable safe path P =<
u, v, . . . , destination > of a node u is a permitted
path at u and advertised by peer v of node u. The path
< v, . . . , destination > is a non-flapping path and none of
the nodes along this path experiences route flaps due to the
conflict.

Definition 4.4: Conflicting safe-alternative node is a node
which is involved in the policy conflict, and observes a safe
path which is not its most preferred path.

Definition 4.5: Conflicting node is a node which is in-
volved in the policy conflict, and does not observe any safe
path.

1

5

0

2

3 4

1350
150

34250
350

4250
4350

6

2150
250

50

650
6150

observable safe path (650)

Node 4: conflicting node with no safe path

Node 1: conflicting safe-alternative node with safe path (150)
Node 2: conflicting safe-alternative node with safe path (250)
Node 3: conflicting safe-alternative node with safe path (350)

Node 5: conflict-free node with stable path (50)
Node 6: conflicting safe-alternative node with

Fig. 10. An example showing different types of nodes when there is
a single conflict in the system.

Figure 10 shows an example of a group of nodes, {1,2,3,4},
involved in a cyclic conflict. Node 5 is a conflict-free node with
stable path (50). Although node 6 is not an active node on the
dispute wheel for this conflict, it is not a conflict-free node
yet according to our definition since it has not stabilized on its
best path. At this point, node 6 is a conflicting safe-alternative
node with single observable safe path (650). (6150) is not
an observable safe path due to node 1’s involvement in the
conflict. The nodes actively involved in the conflict, {1,2,3,4},
are either conflicting safe-alternative or conflicting. Conflicting
safe-alternative nodes can break the conflict by holding onto
their safe paths, i.e. changing path rankings such that the safe
path becomes their most preferred path. If a node does not
have any safe paths, i.e. conflicting node, then it cannot stop
oscillation through a rank change of its paths. However, as
soon as one of its next-hop neighbor stabilizes, it will start
to observe stable path advertisements coming from this newly

9

stabilized neighbor. At this point, the node becomes either a
conflicting safe-alternative node, or a conflict-free node. For
the example shown in Figure 10, as soon as node 2 changes its
path preference to prefer (250) over (2150): Node 2 becomes
a conflict-free node; path (250) becomes a stable path of node
2; path (4250) becomes a safe path at node 4 and node 4
stabilizes on it since it is its most preferred path; node 3 then
chooses its most preferred path (34250) through node 4; node
1 has no choice but to stabilize on path (150) which is one
of its permitted paths and available from its peer 5; and the
conflict is resolved. Then node 6 will start to observe both of
its safe paths and stabilize on its most preferred path (6150).

Assuming that there is a single cyclic conflict in the system,
let N denote the set of nodes that are in this conflict, where
|N | ≥ 2. Since conflicting safe-alternative nodes are playing
the key role in breaking conflicts, we would like to show
that there must be some conflicting safe-alternative nodes
in N for such a cyclic conflict to occur. Let M denote the
set of such nodes. Obviously, the nodes in M have paths
which they prefer over their safe path, thus causing a cyclic
conflict. Throughout the conflict, the more preferred paths
are constantly advertised and withdrawn. If any node in M
changes its preference to pick its safe path over its more
preferred but oscillating path, then it can break this cyclic
conflict. Independent of the size of M , only one conflicting
safe-alternative node suffices to perform path rank change
for breaking the conflict. If we assume the nodes in M are
u1, . . . , uk, they will form a dispute wheel as shown in Figure
2. Node uis, where 1 ≤ i ≤ k, are the nodes at which route
preferences cause the shown dispute wheel. Node ui constantly
changes its path from Qi to its more preferred path RiQi+1,
which in return causes ui−1 to give up Ri−1Qi and use Qi−1.
Qi is a safe path for ui since we assumed that this is the only
conflict in the system. If at least one node, ui, changes the
preference of its safe path so that Qi is preferred over RiQi+1,
the dispute wheel cannot form.

Before we start the convergence proof, we would like to
show that there must be at least 2 conflicting safe-alternative
nodes for the existence of a persistent oscillation. Since it is
obvious that if none of the nodes is conflicting safe-alternative
node there cannot be persistent oscillation, it suffices to show
that having only one conflicting safe-alternative node is also
not enough to create a policy conflict leading to divergence.

Lemma 4.1: Under BGP, policies of a group of nodes
cannot lead to any type of persistent oscillation if only one of
the nodes in this group is a conflicting safe-alternative node.

Proof: We prove this by contradiction: Assume that
u1 . . . un are the group of nodes who are involved in the
persistent oscillation, and only one of the nodes in this group
has a safe path. Let u1 denote this only conflicting safe-
alternative node, and P1 denote its safe path. The other
nodes in the group, u2 . . . un, are conflicting nodes, and their
permitted paths must be traversing at least one node involved
in the conflict because otherwise their paths would be safe. Let
ui be a conflicting node, where 2 ≤ i ≤ n. Permitted paths of
ui must be in the form of Pi =< · · · , uj , · · · , destination >,
where uj is a node in the conflict, i.e. 1 ≤ j ≤ n but
j 6= i. (Since BGP requires the paths to be simple, i.e. no

repeated nodes, the path Pi cannot traverse ui.) Without losing
generality assume the following: If there are multiple nodes
involved in the conflict along path Pi, node uj is the closest
one to the destination. There are two cases: (1) j 6= 1; (2)
j = 1. Case (1) cannot be true, because it implies that the
subpath of Pi following uj to the destination does not traverse
any node in the conflict, and therefore this path is a safe path
for node uj . However, this makes node uj a conflicting safe-
alternative node, which contradicts our assumption that u1

is the only conflicting safe-alternative node in the conflict.
Therefore, case (2) holds for every node ui where 2 ≤ i ≤ n:
The conflicting nodes reach the destination through u1, which
contradicts our assumption that they do not observe any safe
paths.
Lemma 4.1 implies that there must be 2 or more conflicting
safe-alternative nodes in a persistent oscillation.

For the above discussion, we have assumed that there is
only one conflict involving a group of nodes. If there are
multiple conflicts in the system, nodes may get involved in
many conflicts simultaneously. The safe paths of the nodes
that are in a particular conflict may not be observable due
to other conflicts. The following definitions relax the single
policy conflict assumption that we have made earlier.

Definition 4.6: Conflict-free node is a node which is not
involved in any policy conflict, i.e. not an active node of a
dispute wheel, and stabilized on its best path.

Definition 4.7: Observable safe path P =<
u, v, . . . , destination > of a node u is a permitted
path of u which is advertised by peer v. The path
< v, . . . , destination > is a non-flapping path and
none of the nodes along this path experiences route flaps due
to any conflict.

Definition 4.8: Innermost conflict along the path P =<
uk, uk−1, . . . , u2, u1, destination > is the conflict that in-
volves node ui, where ui is the closest node to the destination
and involved in a conflict. In this case the innermost safe
path along the path P is < ui, ui−1, . . . , destination >.

Definition 4.9: An inactive node with observable safe
path is a node that is not an active node on a dispute wheel,
and its most preferred path is an observable safe path.

Definition 4.10: Conflicting safe-alternative node is a
node which is involved in a policy conflict, and observes a
safe path which is not its most preferred path.

Definition 4.11: Conflicting node is a node which is in-
volved in a policy conflict, and does not observe any safe
path.

Figure 11 shows an example of groups of nodes, {1,2,3}
and {4,5,6}, that are in 2 different conflicts, conflict1 and
conflict2, respectively. Node 3 is a conflicting safe-alternative
node with safe path (350) with respect to conflict1. However,
due to node 5’s involvement in conflict2, (350) is not an
observable safe path. The innermost conflict along (350) is
conflict2.

Once the innermost conflicts along the safe paths are broken,
the nodes of the outer conflicts start to observe their safe
paths, and have a chance to break their conflict under APM
by sticking to their safe (albeit less preferred) path. For
each conflict, as we have shown earlier, we have at least 2

10

���
���
���
��� ���

���
���
���

�����
�����
���
�����������������������

��������������������
	�	�		�	�		�	�		�	�	

�
�

�
�

�
�

�
�

��������������������
��������������������

0

2

5

3
4 6

2010
120

560
50

450
40

2350

310
350 60

640

1

The nodes in conflict1 are {1,2,3}
The nodes in conflict2 are {4,5,6}

Innermost conflict along the path (350) is conflict2

Fig. 11. An example showing different types of nodes when there
are multiple conflicts in the system.

conflicting safe-alternative nodes. Starting from the innermost
conflicts, by having at least one of these conflicting safe-
alternative nodes perform path rank change at each step,
we break the cyclic conflicts, and increase the number of
conflict-free nodes that are stabilized on their paths. This is
the idea behind the convergence proof of our Adaptive Policy
Management (APM).

Denote by S the set of nodes that are conflict-free and
stabilized on their paths during the execution of the algorithm.
During the kth step of APM, the nodes that are currently
in S advertise their paths to their peers. The peers process
these advertisements, and enter into S after stabilizing on their
paths. However, the kth step does not end until the resulting
new peers that are inactive nodes with observable safe path
are also processed iteratively (thus becoming conflict-free and
entering S) until no more inactive nodes with observable safe
path can be reached.

A node changes its state over time as it runs APM. APM
helps the node stabilize by increasing the preference of its safe
path. A conflicting safe-alternative node becomes conflict-free
node when it performs rank change to make its observable safe
path the most preferred path and stabilizes on it. A conflicting
node u with flapping paths (u, v)Pv and (u,w)Pw, becomes
a conflicting safe-alternative node when the node advertising
path Pv enters S stabilizing on path Pv.

Lemma 4.2: During the execution of the APM algorithm,
the size of the set of nodes that are conflict-free (set S)
increases monotonically if we perform path rank changes
whenever conflict is detected.

Proof: The nodes in S form a routing tree of the paths
on which they are stabilized. This routing tree is rooted at the
destination and grows as the nodes outside of S adopt and
stabilize on the extension of the paths advertised by the nodes
in S.

To show that S grows monotonically, we need to show that
at each step of the algorithm, at least one conflict is resolved
and at least one node is added to the set until the system
converges. We use induction based on the number of nodes in
S.
Basis: At the beginning, while S was empty, the destination
is added. Hence it holds for the base case.
Hypothesis: At step k of the execution, assume the size of the
set S is n and up to this point the set S grew monotonically.
Induction Step: We need to show that at step k + 1, the size

of S will be greater than n. When node u is about to be a
member of S, one of the following is true:
Case 1) Node u has just received a path advertisement Pv from
node v in S, where (u, v)Pv is a permitted path at node u,
but node u is not stabilizing on this path. Since (u, v)Pv is an
observable safe path of node u, node u must be a conflicting
safe-alternative node. At this point, node u performs rank
change and sticks to the path (u, v)Pv , becomes a conflict-
free node, and is added to S. As we have shown earlier, if
there is a conflict, there will be at least 2 conflicting safe-
alternative nodes and this is the step where they break the
conflict. Consequent inactive nodes with observable safe paths
are also handled iteratively, and entered into S until hitting the
nodes that are not inactive nodes with observable safe paths.
Case 2) Node u was a conflicting node at previous step (step
k), and observing path flap in the form of P1u, P2u, P1u,
P2u, Assume that P1u is preferred over P2u at node u,
and P1u = (u, v)Pv , where Pv is advertised by node v and
P2u = (u,w)Pw, where Pw is advertised by node w. At step
k, neither v nor w was in S, since otherwise node u woudn’t
be a conflicting node. At the end of step k due to a resolved
conflict, node v and/or node w might have entered S. The
possible cases at step (k+1) due to a resolved conflict at step
k are: (i) Node v is in S and stabilized on path Pv , and node
w is not in S; (ii) Node w is in S and stabilized on path Pw,
and node v is not in S; (iii) Both node v and w are in S and
stabilized on paths Pv and Pw, respectively. If (i) happens,
node u stabilizes on P1u and becomes a conflict-free node.
If (ii) happens, node u becomes a conflicting safe-alternative
node with observable safe path P2u. Note that P1u is not an
observable safe path since node v has not stabilized on Pv

yet, i.e. node v not in S. Then case 1 applies (i.e. node u
makes path P2u its most preferred path, and stabilizes on it).
If (iii) happens, node u stabilizes on its P1u and becomes a
conflict-free node.
Case 3) If none of the paths advertised by nodes in S are per-
mitted at receiving node u, then nothing will happen and the
size of S will stay the same. However, node u will become a
conflict-free node converging to ε, i.e. unreachable destination.
This also implies that not only immediate neighbors of nodes
in S, but all the nodes outside of the set S at that point will
converge to ε. Then the APM algorithm returns with a stable
routing tree.

Note that once a node is in S, during the execution of APM,
it does not get out of S. This is because as node u enters in
S, it updates its path preferences so that its observable safe
path is the most preferred path. Therefore, node u will not
give up this path for any other path that node u may learn in
the future. The only time when node u enters S and does not
update its path preferences is when node u is an inactive node
with observable safe path. However, in such a case, as node
u enters S, it stabilizes on its best path.

Theorem 4.1: Starting from an arbitrary state of the system,
the Adaptive Policy Management (APM) converges to a stable
state within a finite number of steps with a reasonable prob-
ability. In the worst case, the number of steps is (|V | − 1),
where |V | is the number of nodes in the topology, and the
probability is (1/2)k+l+···+i+((|V |−1)/2), where k, l, . . . , i are

11

positive integers.

Proof: By Lemma 4.2, we can show that APM runs in a
finite number of steps. Since Lemma 4.2 shows that the size of
the nodes in the conflict-free set, S, monotonically increases,
at each step of the algorithm, the size of the set of nodes yet to
be explored, i.e. {V − S}, must be decreasing monotonically
too. Since there are only |V | nodes, after a finite number of
steps, the algorithm converges with all nodes moving to the
set S. However, this is true only if APM performs path rank
changes (i.e. conflicting safe-alternative nodes stick to their
lower ranked but safe path) whenever a conflict is detected.

If the rank change is done probabilistically, then reaching a
stable state in a finite number of steps will take longer. The
worst case happens when each conflict in the system has only
two conflicting safe-alternative nodes, and the conflicts in the
system are nested and independent from each other as shown
in Figure 12. Since the nodes use probability 1/2 for rank
change, the worst-case probability of breaking a cycle with
only 2 conflicting safe-alternative nodes happens when only
one of such nodes performs rank change and this probability
is 1/2. Once the rank change is performed and conflict is
resolved, both nodes will be conflict-free. Since the expected
number of tries for successfully realizing this rank change is
2, in the worst case, the average number of steps is (|V |− 1).

Since the probability of breaking the current inner-
most conflict after j attempts is (1/2)j(1/2), in the
worst case, the probability of reaching a conflict-free
state is ((1/2)k(1/2))((1/2)l(1/2)) . . . ((1/2)i(1/2)) =
(1/2)k+l+···+i+((|V |−1)/2), where k, l, . . . , i are positive inte-
gers.

However, such worst-case scenario is not very realistic. In
more practical cases, breaking a conflict may simultanously
resolve more than one conflict, or several independent conflicts
may break simultaneously, which shortens the convergence
time.

3

1

2

4

destination

|V | − 1

|V |

Fig. 12. Worst-case scenario for APM when there is only 2 conflicting
safe-alternative nodes in each conflict and the conflicts are nested and
independent from each other. The depth is (|V | − 1)/2.

The analysis presented in this section does not consider
adaptation and recovery of path rank changes. The next section
(Section V) serves this purpose.

V. SIMULATION RESULTS

We have simulated the algorithms in the SSFNet simulator
[15]. We present two sets of results for two different topolo-
gies, which are presented in subsection V-A and subsection
V-C, respectively. We first define our performance metrics:

• The average of the percentage of paths that are eliminated
per node at time t among permitted paths to provide stability.
The smaller value of this metric indicates better performance,
since eliminating permitted paths (i.e. moving them to the bad
paths set) may strain reachability, or force the router to choose
a less preferred path to reach a destination.

• The average of the percentage of the paths whose rank
has been changed per node at time t. Since changing the rank
of the paths means changing locally configured policies that
have been carefully placed for specific purposes, an algorithm
causing a lot of rank changes would be undesirable.

• The average of the percentage of the preference loss per
node at time t among permitted paths. Preference loss of a
path is the difference between its original local preference and
current preference value. If a path is placed in the bad path
set, its preference loss is equal to its original local preference
value. This metric helps us quantify the total effect of both
path elimination and rank change.

• The number of updates exchanged between routers is
an indication of stability. When the system is not stable,
the routers constantly exchange update messages. Therefore,
smaller number of exchanged update messages reflects the
efficiency of the protocol dealing with conflicts. To compute
this metric, we have measured the average number of updates
carried over the last 2000 seconds.
• The number of bytes carried by update messages is used

to evaluate the overhead of the algorithms. Longer update
messages takes longer to process and transmit. This overhead
may negatively affect the overall performance of the system.
We computed this metric by measuring the average number of
bytes carried over the last 2000 seconds.

• The average extra storage used at time t (in bytes) is
another metric for evaluating the overhead of the algorithms.
For BGP4 [23], the value of this metric is always zero. For
SPVP, history is the newly added path attribute, and the main
contributor of extra storage in routing tables, i.e. rib, rib in and
rib out. The other source of extra storage is due to the bad path
set since BGP4 does not have such set. The extra storage for
the Cobb and Musunuri algorithm is the per peer cost kept
at each node, which indicates the number of times a node
has observed a route flap. For APM, the size of local history,
and bad path set are the main contributors of extra storage.
We also added per peer peerStability and keepaliveCount
as well as the list of sequenceNumbers that a node has
learned during the execution of the algorithm, which are just
integers. Depending on the occurrence of topology changes,
the contribution of sequenceNumbers may be zero.

• Power is used to measure the ratio of throughput (average
total number of packets delivered over the last 50 seconds)
and delay (average delay of delivered packets over the last 50
seconds). The power metric captures the desire of achieving
as high throughput as possible while keeping delay as small
as possible.

12

• Percentage of nodes that cannot reach the destination at
time t is also measured.

The performance plots presented next show 90% confidence
intervals for these metrics.

Server Host

AS 1 AS 2

Server Host
1 2

Server HostServer HostServer Host
AS 3 AS 4 AS 5

3 4 5

Server Host
AS 120

120

AS 135

135
Server Host

1

135

134

Client Hosts

AS 0

Fig. 13. Topology of Simulation Set I

0

5

10

15

20

25

30

35

40

45

10000 15000 20000 25000 30000 35000 40000 45000 50000

A
vg

 o
f p

er
ce

nt
ag

e
of

 p
at

hs
 th

at
 a

re
 e

lim
in

at
ed

Time (sec)

APMS (maxth=3) with link failure diagnostic
APMS (maxth=3) without link failure diagnostic

APMS (maxth=10) with link failure diagnostic
APMS (maxth=10) without link failure diagnostic

SPVP
Cobb&Musunuri(count_th=3)

Cobb&Musunuri(count_th=10)

Fig. 14. Average Percentage of Paths Eliminated per Node

A. Simulation Set I

The topology is shown in Figure 13, and consists of 15
independent dispute wheels, where each AS in a dispute
wheel has a direct connection to the destination AS 0. The
destination AS has 135 client hosts, to whom there is constant
data flow from the servers located in the other ASes. Each
router within each AS has 3 permitted paths: The path through
its clockwise neighbor, the direct path, and the path through
its counter-clockwise neighbor. The policies are set to create
policy conflicts, i.e. each AS prefers going through its clock-
wise neighbor rather than its direct path, which is preferred
over going through the counter-clockwise neighbor—Local
preference values assigned at each node are 100, 80, and 40,
respectively.

Simulation is run for 50000 seconds, and data flow from
servers to clients continues for the whole duration. We also
introduced periodic link failures, during which all ASes lose
their connection to the destination AS 0. After the system
stabilizes at 10000 seconds, link failures are introduced.

0

5

10

15

20

10000 15000 20000 25000 30000 35000 40000 45000 50000

A
vg

 o
f p

er
ce

nt
ag

e
of

 p
at

hs
 w

ho
se

 ra
nk

 h
as

 b
ee

n
ch

an
ge

d

Time (sec)

APMS (maxth=3) with link failure diagnostic
APMS (maxth=3) without link failure diagnostic

APMS (maxth=10) with link failure diagnostic
APMS (maxth=10) without link failure diagnostic

Fig. 15. Average Percentage of Paths Whose Rank Changed per Node

0

5

10

15

20

25

30

35

40

45

50

10000 15000 20000 25000 30000 35000 40000 45000 50000

A
ve

ra
ge

 o
f p

er
ce

nt
ag

e
of

 lo
st

 v
al

ue
 o

f l
oc

al
 p

re
fe

re
nc

es

Time (sec)

APMS (maxth=3) with link failure diagnostic
APMS (maxth=3) without link failure diagnostic

APMS (maxth=10) with link failure diagnostic
APMS (maxth=10) without link failure diagnostic

SPVP
Cobb&Musunuri(count_th=3)

Cobb&Musunuri(count_th=10)

Fig. 16. Average Percentage of Lost Preference Value per Node

Recoveries and failures are then scheduled alternately every
10000 seconds.

The variations of APM include using different values for
max threshold of 3 and 10, and whether route flaps due to
topology change are distinguished. We set min threshold to
2, and ka threshold to 6. We have compared APM against the
SPVP [7], the Cobb and Musunuri algorithm [9], and BGP4
[23], where the details of these algorithms can be found in
Section II-B. We have two versions of the Cobb and Musunuri
algorithm, where the threshold for cost is set to either 3 or 10
to be consistent with the values assigned to max threshold
for the variations of APM. With SPVP, since there is no built-
in mechanism to differentiate between transient oscillations
and persistent oscillations due to policy conflicts, Griffin et al.
[7] suggest suppressing routes only after they are seen to
contain some number of dispute cycles, or after the length of
the history has exceeded some limit. In our simulations, we
have used the first approach, and suppressed the routes only
after seeing the same policy cycle twice. This is consistent with
the value we have chosen for APM, for which min threshold
is assigned a value of 2.

13

0

5000

10000

15000

20000

25000

30000

35000

10000 15000 20000 25000 30000 35000 40000 45000 50000

N
um

be
r o

f u
pd

at
es

 s
en

t

Time (sec)

APMS (maxth=3) with link failure diagnostic
APMS (maxth=3) without link failure diagnostic

APMS (maxth=10) with link failure diagnostic
APMS (maxth=10) without link failure diagnostic

SPVP
BGP4

Cobb&Musunuri(count_th=3)
Cobb&Musunuri(count_th=10)

Fig. 17. Number of Updates Messages Sent

B. Results

The results for the average of the percentage of paths that
are eliminated per node at time t is shown in Figure 14. BGP4
does not resolve conflicts, hence does not eliminate any paths.
Therefore, the value of this metric is zero for BGP4 and
not shown in the figure. In general, APM resolves conflicts
by means of path rank change instead of path elimination.
APM waits to see the same route flap max threshold times
before eliminating the path involved in the route flap. When
max threshold is larger, the system stays in the policy
conflict-avoidance phase longer and tries harder to resolve
conflicts through path rank change. When max threshold
is smaller, the system enters the policy conflict-control phase
sooner, which causes elimination of more paths. With SPVP
however, eliminating some of the flapping paths is its only
way to deal with policy conflicts. Therefore, the performance
of SPVP is worse than APM for both small and larger values
of the max threshold. With SPVP, on average each node
eliminates 14.4% of the available paths. Cobb and Musunuri
algorithm eliminates paths advertised by the peer whose cost
has reached the threshold, i.e. 3 or 10 for this experiment.
Both versions of the Cobb and Musunuri algorithm eliminate
most of the paths, upto 42.84% (for threshold=3) and 38.02%
(for threshold=10), because of both aggregation of the paths
through the high cost nodes and absence of any mechanism to
distinguish route flaps due to topology change (false positives).

The version of APM lacking any topology change diagno-
sis and using a smaller value of max threshold, 3, keeps
eliminating the available paths since there is no mechanism
to differentiate route flaps due to failure and/or recovery of
the links from those triggered by policy conflicts. In this
case, paths seem to be flapping more often, and count values
increase faster. For the same value of max threshold, adding
topology change diagnosis to the algorithm provides big
improvement: On average each node eliminates only 0.48% of
the available paths to reach stability during non-fail periods.
When max threshold is larger, resolving conflicts by means
of path rank change dominates that by path elimination. As
we can see, this leads to minimal path elimination for both
versions of APM; with and without topology change diagnosis.
However, this result remains valid for APM without topology

change diagnosis only when the max threshold value is
larger than the number of route flaps resulting from topology
change. Otherwise, there will be false positives, and more path
elimination.

For the previous metric, we have seen that for large enough
value of max threshold, APM can avoid eliminating paths
performing path rank changes to resolve policy conflicts. How-
ever for APM, we would like to see whether the mechanism
is causing a lot of path rank changes, and hence significantly
altering the policies that have been carefully placed for specific
purposes. Figure 15 shows the results for the average of the
percentage of the paths whose rank has been changed per
node. Since APM is the only algorithm that changes the
policies to stabilize the system, for SPVP, Cobb and Musunuri
algorithm and BGP4, the value of this metric is 0 and therefore
not shown in the figure. For larger values of max threshold,
we observe higher number of path rank changes due to
longer policy conflict-avoidance phase. Using topology change
diagnosis improves performance in the presence of failure and
recovery of the links, and drops the metric value from 18%
to 7.0% for non-fail periods. This corresponds to changes in
the rank of only about 2 paths out of about 20 available paths
per dispute wheel on average (plots not shown for lack of
space), without eliminating a single path. Smaller value of
max threshold shows lower percentage of path rank change
due to shorter policy conflict-avoidance phase. However, as we
have seen in Figure 14, this version of the algorithm eliminates
more paths to deal with conflicts.

The results for the average of the percentage of the pref-
erence loss per node is shown in Figure 16. Since BGP4
has no mechanism to deal with conflicts, there is no loss
in terms of preference value, and hence BGP4 is not shown
in the figure. SPVP causes loss of around 18%, which is
contributed only by eliminated paths. Cobb and Musunuri
algorithm causes loss of 46.2% for cost threshold 3, and
42.0% for cost threshold 10, which are contributed only by
eliminated paths. With APM, the performance is always better
than SPVP and the Cobb and Musunuri algorithm. Using larger
values of max threshold, 10, and topology change diagnosis
significantly improves performance to less than 1% loss in
path preference.

Figure 17 presents the results for the number of update
messages sent for each 2000 interval of time. Topology
changes in the form of link failure or restoration cause a burst
of updates, and the burst is smaller in the case of link failures
due to limited reachability. When each node loses its reach
to the destination, Hold Timer expires, and all of the paths to
the destination become infeasible and are withdrawn. When
the links are restored, BGP sessions are re-established, and
the whole routing tables are exchanged. The biggest routing
table is of node 0, since it has a BGP session with every other
node, and this table contributes a very big portion of the high
peaks in the graph right after the link restorations (at times
20000, 40000, · · ·). For topology changes in the form of link
failures, we observe a smaller burst of updates due to restricted
reachability: After the first 2000 seconds of each fail period,
the number of updates sent is zero for all algorithms. This is
because the new topology does not have any policy conflicts,

14

and therefore it stabilizes independent of the algorithm used.
For non-fail periods, since with BGP4 the system does not
stabilize, the number of updates sent under BGP4 does not get
close to zero. SPVP and APM show very close performance
regarding this metric, and the number of updates sent is much
smaller than BGP4. Since reachability is the most restricted
with both versions of the Cobb and Musunuri algorithm (see
Figure 14), they have the lowest value for this metric.

To evaluate of the overhead of the algorithms, the number

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 20000 25000 30000 35000 40000

O
ct

et
s

C
ar

rie
d

fo
r U

pd
at

e
M

es
sa

ge
s

Time (sec)

APMS (maxth=3) with link failure diagnostic
APMS (maxth=3) without link failure diagnostic

APMS (maxth=10) with link failure diagnostic
APMS (maxth=10) without link failure diagnostic

SPVP
BGP4

Cobb&Musunuri(count_th=3)
Cobb&Musunuri(count_th=10)

Fig. 18. Number of Bytes Carried by Update Messages

0

100000

200000

300000

400000

500000

600000

700000

10000 15000 20000 25000 30000 35000 40000 45000 50000

A
ve

ra
ge

 E
xt

ra
 S

to
ra

ge
 N

ee
de

d
(in

 b
yt

es
)

Time (sec)

APMS (maxth=3) with link failure diagnostic
APMS (maxth=3) without link failure diagnostic

APMS (maxth=10) with link failure diagnostic
APMS (maxth=10) without link failure diagnostic

SPVP
Cobb&Musunuri(count_th=3)

Cobb&Musunuri(count_th=10)

Fig. 19. Average Extra Storage Needed at Each Node by the
Algorithms (in bytes)

of bytes carried by update messages is shown in Figure 18.
In Figure 17, we have seen that with SPVP the total number
of updates exchanged was much smaller than BGP4, and very
close to APM. However, the divergence detection mechanism
of SPVP requires carrying the sequence of path change events
in each update, i.e. history. Thus, SPVP has the highest number
of bytes carried by its update messages. All versions of APM
show very close performance, and all are better than both
BGP4 and SPVP. When topology change diagnosis is deployed
in APM, the update messages carry some extra information in
the originator and sequenceNumber fields (6 bytes in total).
However, as we can observe, the mechanism used by APM
to distinguish temporary oscillations (due to topology/policy
changes) is much more efficient than the SPVP mechanism
of observing repeated cycles in the history. Although the only

1

15

15

1

Client Host Server Host Client Host Server Host

AS 14
Client Host Server Host

AS15AS 13

A
S 11

A
S 17

A
S 10

A
S 12

A
S 2

A
S 16

A
S 18

AS 3

Client Host Server Host

C
lient H

ost
Server H

ost

C
lient H

ost
Server H

ost

C
lient H

ost
Server H

ost
C

lient H
ost

Server H
ost

C
lient H

ost
Server H

ost

Client Hosts

Server Hosts

AS 0

Server HostClient Host

AS 1

AS 4 AS 5 AS 6
Client Host Server Host

Client Host Server Host
AS 7 AS 8 AS 9

Client Host Server Host

AS 19
Server HostClient Host

AS 20
Client Host

AS21

Server Host

Fig. 20. Topology Used for Simulation Set II

12 (12 10 0)
(12 0)

100
80
1paths learned from 18

13 (13 15 6 0)
(13 15 6 5 3 0)
(13 15 6 5 3 1 0)

100

80

100
100

(13 4 0)
(13 4 6 0) 80

14 (14 13 4 0)
(14 13 4 6 0)
(14 5 3 0)
(14 5 3 1 0)
(14 5 4 0)

100
100
80
80
80

15 (15 14 5 3 0)

(15 6 0)
(15 6 5 3 0)
(15 6 5 3 1 0)

100
100
100
80
80

(15 14 5 3 1 0)
(15 14 5 4 0)

16 (16 17 11 12 0)
(16 17 11 2 0)
(16 17 11 2 3 0)

100
100
100

(16 10 0)
(16 10 11 2 0)
(16 10 11 2 3 0)

80
80
80

17 (17 18 12 0)
(17 18 12 10 0)

100
100

(17 11 2 0)
(17 11 2 3 0)
(17 11 12 0)

80
80
80

18 (18 16 10 0)

(18 16 11 2 3 0)

100
100
100

(18 12 0)
80
80

(18 16 10 11 2 0)

(18 12 10 0)

19 (19 20 8 9 0)
(19 20 8 1 0)

100
100
100

(19 7 0)
(19 7 8 1 2 0)
(19 7 8 1 0)

80
80
80

(19 20 8 1 2 0)

20 (20 21 9 0)

(20 8 1 0)
(20 8 9 0)
(20 21 9 7 0)

(20 8 1 2 0)

100
100
80

80
80

21 (21 19 7 0) 100
100
100

(21 9 0)
(21 9 7 0)

80
80

(21 19 7 8 1 2 0)
(21 19 7 8 1 0)

80

1 (1 2 0)
(1 0)
paths learned from 8

80
1

100

3

(2 3 0)2
(2 0)

100
80
1

(3 1 0)
(3 0)

100
80
1paths learned from 5

(4 6 0)4
(4 0)

100
80
1paths learned from 13

paths learned from 11

5 (5 4 0)
(5 3 0)
(5 3 1 0)

100

80

80
80
1paths learned from 14

6 (6 5 3 0)
(6 5 3 1 0)
(6 0)

100
100
80
1paths learned from 15

7 (7 8 1 2 0)
(7 8 1 0)
(7 0)

100
100
80
1paths learned from 19

8 (8 9 0)
(8 1 0)
(8 1 2 0)
paths learned from 20

100
80
80
1

9 (9 7 0)
(9 0)
paths learned from 21

100
80
1

10 (10 11 2 0)
(10 11 2 3 0)
(10 0)

100
100
80
1

11

paths learned from 16

(11 12 0)
(11 2 0)
(11 2 3 0)

100
80
80
1paths learned from 17 paths learned from 17

Node Permitted Paths Local Preference Node Permitted Paths Local Preference

Fig. 21. Path Rankings for Topology Used in Simulation Set II

15

extra information carried with update messages in the Cobb
and Musunuri algorithm is cost associated with each node,
this is not the only reason for its best performance. Cobb
and Musunuri algorithm has the lowest value because of the
least number of exchanged update messages due to limited
reachability (see Figure 17 and Figure 14), which is a result
of both aggregation (and elimination) of all paths through high
cost nodes and absence of any mechanism to distinguish route
flaps due to topology change (false positives).

Figure 19 shows the results for the average extra storage
used at time t (in bytes). Due to the size of history, the
storage required by SPVP is much larger than that required by
APM and Cobb and Musunuri algorithm. For SPVP, the value
of the metric is higher for non-fail periods than fail periods
due to better reachability during the non-fail periods. For this
experiment, while APM requires around 10KB extra storage,
SPVP requires 200KB-360KB extra storage. APM requires
a little bit more extra storage than the Cobb and Musunuri
algorithm due to bigger local state kept at each node.

C. Simulation Set II

To be able to observe throughput and delay better, in the
second setup we have used a smaller topology shown in Figure
20. The topology consists of 7 dispute wheels, where each
AS in a dispute wheel prefers the path through its clockwise
neighbor. The wheels consist of the following group of ASes:
{AS 1, AS 2, AS 3}, {AS 4, AS 5, AS 6}, {AS 7, AS 8, AS 9},
{AS 10, AS 11, AS 12}, {AS 13, AS 14, AS 15}, {AS 16, AS
17, AS 18}, {AS 19, AS 20, AS 21}. Permitted paths and path
preferences are shown in Figure 21. Simulation is run for 350

0

20

40

60

80

100

50 100 150 200 250 300 350

P
er

ce
nt

ag
e

of
 n

od
es

 th
at

 c
an

no
t r

ea
ch

 d
es

tin
at

io
n

Time (sec)

APM (maxth=3)
APM (maxth=10)

SPVP
Cobb&Musunuri(count_th=3)

Cobb&Musunuri(count_th=10)

Fig. 22. Percentage of nodes that cannot reach the destination

seconds, and data flow from servers to clients continues for the
whole duration. For this experiment set, there is no topology
change. Buffer size is 50000 bytes, and routing packets are
given priority over data packets when there is congestion at
the buffers. Our findings are presented in Section V-D.

D. Results

Figure 22 shows the percentage of the nodes that cannot
reach the destination AS 0. SPVP and Cobb and Musunuri
algorithms eliminate a high number of paths while enforcing

0

20000

40000

60000

80000

100000

120000

140000

160000

50 100 150 200 250 300 350

P
ow

er

Time (sec)

APM (maxth=3)
APM (maxth=10)

SPVP
BGP4

Cobb&Musunuri(count_th=3)
Cobb&Musunuri(count_th=10)

Fig. 23. Power

stability, and therefore leave a higher number of nodes with
unreachable destination. Different versions of APM perform
much better than SPVP and the Cobb and Musunuri al-
gorithms. With APM, higher max threashold value helps
forcing conflict resolution through changing path preferences,
and therefore minimizing the number of path eliminations.
For max threshold=10, the system stabilizes to a state where
each node has a way to reach the destination. Higher threshold
value also helps the Cobb and Musunuri algorithm achieve
better performance, but the improvement is not much because
of the simultaneous elimination of the paths through the same
high cost node.

Figure 23 shows the results for power. Different versions
of APM have higher value than SPVP and the Cobb and
Musunuri algorithms because APM maximizes throughput.
The different performance for throughput stems from both
unreachable destinations, and/or competition for the limited
buffer size. SPVP and the Cobb and Musunuri algorithms leave
a higher number of nodes with unreachable destination (Figure
22). SPVP has the longest update messages, which take longer
to process and require more memory to be stored in the buffers.
Although BGP4 causes constant exchange of updates due to
divergence, its performance is better than SPVP and the Cobb
and Musunuri algorithms! This is because BGP4 does not
cause permanent path elimination, even though some packets
may not reach the destination temporarily due to instability.

VI. SUMMARY AND FUTURE WORK

Unlike static solutions (e.g. Gao et al. [6] algorithm) which
may lead to unnecessary disallowance of the usage of many
routes from the start to guarantee the stability of the system,
APM is a dynamic algorithm, and allows ASes to adapt to the
current state of the network, either conflict-free or potentially
conflicting. APM makes minimal changes to local policies
as the primary means of removing policy conflicts (and
associated routing oscillations). Path elimination with APM
happens only if probabilistic rank change of paths does not
resolve the conflict 3. APM attempts to keep as many paths
as possible to have better connectivity, and more flexibility in

3Since the approach is probabilistic, there is a non-zero probability that
none of the nodes change the rank of their paths.

16

path selection for the stabilized system. APM is distributed,
and does not require a global authority or global database.

Compared to other dynamic algorithms (e.g. SPVP [7] and
Cobb and Musunuri [9]), APM has several advantages: (1)
APM eliminates the need to carry possibly large amount of
information like history in the update messages. Instead,
APM uses local state information. Therefore, with APM
there is no communication overhead, nor any concerns about
revealing private information about the preferences of ASes
over their routes; (2) APM minimizes path elimination by
path rank changes and by adapting to a conflict-free state by
(conservatively) restoring some of the original preferences
as well as eliminated paths; (3) APM has a more effective
mechanism for clearly distinguishing route flaps due to
topology change, which helps minimize false positives and
communication overhead; (4) APM automatically adapts to
the dynamics of the system by observing either path changes
or keepalive messages without requiring an expensive
protocol, such as diffusing computation [9]; and (5) APM
deals with the problem at the path level instead of node level,
which prevents aggregation of paths through the same node,
and hence elimination of many paths whose preference does
not cause conflicts.

Route flap damping [20] is not an alternative solution
to APM, and only effective in suppressing temporary
instabilities. APM is still needed on top of route flap damping
to detect and resolve policy conflicts leading to divergence
and/or adapt to dynamically changing network state. Usage
of route flap damping may delay diagnosing persistent
oscillations via APM due to suppressed updates. If there is
a topology change, APM needs to be aware of this change
so it handles the resulting route flaps differently from the
flaps resulting from policy conflicts until the system adapts
to the new network state. However, there may be no need to
react and adapt to every topology change. For example, an
unstable link may go down and up constantly for a period of
time. In such cases, it is better that APM does not react to
such short-term changing link status. APM may take route
flap damping into consideration to hide such shorter term
topology changes from other ASes.

If only some of the nodes in the network upgraded to
deploy APM, APM still can catch and resolve policy conflicts
since the algorithm is based on only local information kept
at each node. However, in such heterogenous settings, the
nodes deploying APM will be the only ones which may give
up their preferred paths for the sake of the network stability
without knowing whether or not the other nodes are working
for the same purpose. As future work, to be able to prevent
selfish behavior, and improve cooperation among ASes to
deploy APM, incentives should be proposed.

To increase transparency of APM, we plan to investigate
allowing local AS administrators to explicitly guide the
backoff and recovery probabilities for lowering and restoring
the rank of paths. With such a human impact, it may be
possible to resolve policy conflicts in a more efficient way
albeit at a longer time scale.

APM is explained using an abstract model of BGP (in
Section III). Although the implementation of APM in SSFNet

relaxes some of these abstract model assumptions (Section
V), there are still many details to be addressed such as
IGP/BGP interactions, duplicate updates, session resets etc.
These details are left for future work.

REFERENCES

[1] K. Varadhan, R. Govindan, and D. Estrin, “Persistent Route Oscillations
in Inter-Domain Routing,” Computer Networks, vol. 32:1-16, 2000.

[2] C. Labovitz, G. Malan, and F. Jahanian, “Internet Routing Instability,”
IEEE/ACM Transactions on Networking, vol. 6, no. 5, pp. 515–528,
1997.

[3] R. Govindan and A. Reddy, “An Analysis of Interdomain Routing
Topology and Route Stability,” in Proceedings of the Conference on
Computer Communications (IEEE Infocom), Kobe Japan, April 1997.

[4] V. Paxson, “End-to-end Routing Behavior in the Internet,” IEEE/ACM
Transactions on Networking, Vol.9, No.4, pp. 392-403, August 2001.

[5] R. Govindan, C. Alaettinoglu, G. Eddy, D. Kessens, S. Kumar, and
W. Lee, “An Architecture for Stable, Analyzable Internet Routing,” IEEE
Network, vol. 13(1):29-35, 1999.

[6] L. Gao and J. Rexford, “Stable Internet Routing without Global Coor-
dination,” in Proceedings of ACM SIGMETRICS, Santa Clara CA, June
2000.

[7] T. Griffin and G. Wilfong, “A Safe Path Vector Protocol,” in Proceedings
of IEEE INFOCOM, Tel Aviv Israel, March 2000.

[8] J. A. Cobb, M. G. Gouda, and R. Musunuri, “A Stabilizing Solution
to the Stable Paths Problem,” Symposium on Self-Stabilizing Systems,
Springer Verlag Lecture Notes in Computer Science, vol. 2704, pp. 169–
183, 2003.

[9] J. A. Cobb and R. Musunuri, “Enforcing Convergence in Inter-Domain
Routing,” in Proceedings of IEEE Global Communications (GLOBE-
COM) Conference, Dallas TX, December 2004.

[10] T. Griffin, A. Jaggard, and V. Ramachandran, “Design Principles of
Policy Languages for Path Vector Protocols,” in Proceedings of ACM
SIGCOMM, August 2003.

[11] A. Jaggard and V. Ramachandran, “Robustness of Class-based Path-
Vector Systems,” in Proceedings of IEEE International Conference on
Network Protocols (ICNP), March 2004.

[12] J. Sobrihnho, “Network Routing with Path Vector Protocols: Theory and
Applications,” in Proceedings of ACM SIGCOMM, Karlsruhe Germany,
August 2003.

[13] S. Yilmaz and I. Matta, “A Randomized Solution to BGP Divergence,”
in Proceedings of the 2nd IASTED International Conference on Commu-
nication and Computer Networks (CCN’04), Cambridge MA, November
2004.

[14] V. Jacobson, “Congestion Avoidance and Control,” in ACM SIGCOMM
’88, Stanford CA, August 1988, pp. 314–329.

[15] SSFNet: Scalable Simulation Framework, “http://www.ssfnet.org.”
[16] T. Griffin, F. Shepherd, and G. Wilfong, “Policy Disputes in Path-Vector

Protocols,” in Proceedings of IEEE International Conference on Network
Protocols (ICNP), Toronto Canada, November 1999.

[17] T. Griffin and G. Wilfong, “An Analysis of BGP Convergence Proper-
ties,” in Proceedings of ACM SIGCOMM, Cambridge MA, September
1999.

[18] L. Gao, T. Griffin, and J. Rexford, “Inherently Safe Backup Routing
with BGP,” in Proceedings of IEEE INFOCOM, Anchorage AK, April
2001.

[19] N. Feamster, H. Balakrishnan, and J. Rexford, “Some Foundational
Problems in Interdomain Routing,” in ACM SIGCOMM Workshop on
Hot Topics in Networking (HOTNets-III), San Diego CA, November
2004.

[20] C. Villamizar, R. Chandra, and R. Govindan, “BGP Route Flap Damp-
ing,” RFC 2439, 1998.

[21] A. Arora and M. Gouda, “Distributed Reset,” IEEE Transactions on
Computers, vol. 43, pp. 1026–1038, 1994.

[22] J. Feigenbaum, R. Sami, and S. Shenker, “Mechanism Design for Policy
Routing,” in Proceedings of the Symposium on Principles of Distributed
Computing (PODC), Newfoundland Canada, July 2004.

[23] Y. Rekhter and T. Li, “A Border Gateway Protocol,” RFC 1771, 1995.

