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Abstract—We propose a distributed approach in which an
Internet Service Provider (ISP) and a Content Provider (CP)
cooperate to minimize total power consumption. Our solution is
distributed between the ISP and the CP to limit shared informa-
tion, such as network topology and servers’ load. In particular,
we adopt a dual decomposition technique. We investigate the
performance of the proposed solution on realistic case-studies. We
compare our algorithms with a centralized model, whose aim is to
minimize total power consumption. We consider different power
models for devices. Results show that the distributed algorithm
is close to the optimal solution, with a power efficiency loss less
than 17%.

I. I NTRODUCTION

Energy-efficient communication has become a challenging
problem in the last few years. Current estimates [1] show
that the Information and Communication Technology sector
(ICT) consumes between 2% and 10% of the worldwide
energy consumption, and this trend is expected to grow even
more in the future due to the proliferation of both networked
and networking devices. Internet Service Providers (ISP),are
becoming sensitive to reducing the power consumption of
their infrastructure, due to increasing energy costs and new
business opportunities that can be realized by “going green”.
At the same time, Content Providers (CP) are faced with a
constant increase in the number of users coupled with the
need to reducing the energy consumption of both server farms
and cooling systems. Therefore, both ISPs and CPs could
potentially realize great benefits if energy-efficient techniques
would be fully developed for network devices [2], [3] and
servers [4], [5].

In this work, we propose a new approach to reducing power
consumption for ISPsand CPs. In particular, we solve a multi-
objective problem in which a CP and an ISPcooperate to
reduce overall power consumption. We assume that the ISP
is the owner of a network infrastructure. Additionally, we
represent the CP infrastructure as a set of servers placed in
different cities. We assume that users request content fromthe
CP. Then, we aim at controlling the whole system composed
of the ISP and the CP in order to find the minimal set of
network resources and servers that minimize the total power
consumption while satisfying the current content requests.

Previous works in the literature have considered the mini-
mization of power consumption either for ISPs [6] or CPs [7]
alone, thus completely ignoring the impact of one provider on

the other. Considering jointly ISP and CP power consumption
seems to be a viable solution to globally reduce power
consumption.

In [8] we have shown that a cooperative approach is crucial
to minimize overall power consumption of CP and ISP, and
that up to 80% of power is wasted if either a CP-only or an
ISP-only power optimization is adopted. Intuitively, a CP-only
approach may result in choosing a more energy-efficient server
but so much more distant that more power is consumed over
the network. Conversely, an ISP-only approach may yield a
server that is closer to the terminal (client) but whose power
cost is high. Thus, a joint power optimization provides the
right balance and yields higher power savings.

While the results in [8] show that large energy-savings are
possible, it also true that nowadays CPs and ISPs are not
willing to cooperate, resulting in high inefficiencies. Therefore,
incentives should be proposed by third-party authorities,such
as a national government, to induce cooperation between
CPs and ISPs. We recognize however that avoiding sharing
information is crucial for both ISPs and CPs. Therefore in this
paper, differently from [8], we propose and solve a distributed
approach to minimize power consumption while limiting the
amount of shared information, such as the network topology
and the servers’ load. Moreover, we consider explicitly the
algorithms from a more practical point of view, investigating
the performance tradeoffs. Finally, we consider differentfunc-
tions to model power consumption of devices, showing that
near-optimal solutions are achievable in all cases.

The paper is organized as follows. Sec. II introduces the
problem and the notations. Sec. III details the proposed dis-
tributed algorithm. Simulation results are presented in Sec. IV.
Finally, conclusions are drawn in Sec. V.

II. PROBLEM DEFINITION

The problem: The main goal of our approach is to mini-
mize power consumption jointly between the CP and the ISP.
In particular, we assume that the ISP manages a physical
topology, i.e. a set of nodes and links. The CP is composed
of a number of servers connected to the edge nodes of the
ISP. When a user asks for a CP’s resource, we assume that
the resource is replicated over the CP infrastructure, so that
the user can be potentially served byany of the servers
of the CP. In a real Content Delivery Network, content is
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replicated according to its popularity: less popular content is
normally replicated only on a subset of servers, while very
popular content may be replicatedeverywhere. In this work we
assume that users request only very popular content so that the
effect of less popular content is negligible. Henceforth, we use
the terms “node” and “router” interchangeably. Similarily, we
interchangeably use the terms “terminal”, “user” and “client”
to identify edge nodes of the ISP.

Basic Notations: More formally, we represent the ISP
topology as a di-graphG = (V,E), whereV is the set of
vertices andE is the set of edges. Vertices represent network
nodes, while edges represent network links. LetCl be the
capacity of linkl, and letUMAX

l ∈ [0, 1] be the maximum link
utilization that can be tolerated.1 S is the set of servers of the
content provider. Denote byWs the maximum load allowed on
servers ∈ S. Let Rt be the traffic demand between terminal
t ∈ T and the content providerS. Moreover, letxst be real-
valued variables representing the amount of traffic betweena
source nodes and a terminalt. We divide xst into xst

m and
xst

b to denote the amount of traffic originating from the content
provider under consideration and from other content providers,
respectively. Actually,xst

b are constants, i.e. the considered
CP can not modify these traffic demands. On the other hand,
we assume thatxst

m are real-valued variables so that a traffic
demandRt from terminalt can be served by any of thes ∈ S
CP servers, while satisfying load and delay constraints. Finally,
DMAX represents the maximum admissible delay.2

We now introduce the network-related variables. Letδst
lp

be constants which take the values of 1 if linkl belongs to
pathp carrying demand froms to t, 0 otherwise. Letzst

p and
qst
p be real-valued variables representing the amount of traffic

from s to t on pathp for the considered CP and for other CPs,
respectively. LetP(s, t) be the set of pre-computed paths from
s to t. Additionally, let fl be the total amount of flow on link
l. Let dl be the delay on linkl, which can be approximated
as a piecewise linear function offl, as done in [8].

Finally, we assume that the power consumption of each
device (either a network node, a link or a server) depends
on its actual load.

More formally, we define the monotonically increasing con-
vex functionsP d

l (fl), P d
n(

∑
l∈L(n) fl), P d

s (
∑

t∈T xst
m) repre-

senting the dynamic power consumption of linkl, noden and
servers, respectively.L(n) denotes the set of links incident
to noden. We then define the termsP c

nyn and P c
s ys, which

represent the startup power consumed by noden and server
s when powered on.yn and ys are binary variables which
take the value of 1 if noden and servers are powered on,
respectively.

Formulation: Starting from the model presented in [8], we
first define an equivalent centralized model by introducing
the estimated demands̃xst

m and the estimated delaỹda as
additional variables. We then define the green centralized

1Link utilization is normally kept below 100% to meet Quality ofService
(QoS) requirements.

2We refer the reader to [8] for analysis on how the maximum admissible
delay impacts power consumption.

problem (G) as follows:

G min (PTOT = PCP + PISP ) s.t.:

PISP =
∑

l∈E

P d
l (fl) +

∑

n∈V

[
P d

n

(
fl∈L(n)

)
+ P c

nyn

]
(1)

∑

s∈S

x̃st
m = R̃t ∀t ∈ T (2)

∑

p∈P(s,t)

qst
p = xst

b ∀s, t (3)

x̃st
m =

∑

p∈P(s,t)

zst
p ∀s, t (4)

fl =
∑

s,t,p∈P(s,t)

[
δst
lpzst

p + δst
lpqst

p

]
≤ ClU

MAX
l ∀l (5)

dl ≥ aifl + bi ∀l, i ∈ I (6)

da =

∑
l dl

|T |
(7)

∑

l∈L(n)

fl ≤ Mnyn ∀n ∈ V (8)

PCP =
∑

s∈S

[
P d

s

(
xst

m

)
+ P c

s ys

]
(9)

(10)∑

s∈S

xst
m = Rt ∀t ∈ T (11)

d̃a ≤ DMAX (12)∑

t∈T

xst
m ≤ Ws ∀s ∈ S (13)

∑

t∈T

xst
m ≤ Msys ∀s ∈ S (14)

d̃a = da (15)

x̃st
m = xst

m ∀S × T (16)

Control variables:zst
p ≥ 0, qst

p ≥ 0, yn ∈ {0, 1}, ys ∈ {0, 1}.
The objective function of the G problem is the minimization

of the total power consumption of the ISP and the CP, adopting
as control variables the amount of traffic between every server-
terminal pair, i.e.zst

p ≥ 0 andqst
p ≥ 0.

Considering the ISP, Eq.(1) computes its total power con-
sumption. Eq.(2) imposes that estimated CP traffic is equal
to estimated terminal demand. Notice that here we assume
that R̃t is the ISP estimation of total trafficRt from client
t. Routing constraints are specified by Eq.(3) and (4). The
total flow on each link is computed and constrained by
Eq.(5). Then, Eq.(6) computes the total delay for each link,
using the additional variablesdl ≥ 0. The delay function
is approximated byI linear segments as in [9]. Finally, the
average network delay is computed by Eq.(7).

Considering the CP, Eq.(9) computes its total power con-
sumption. Eq.(11) guarantees the traffic demand constraint.
Eq.(12) bounds the average delay of users. Eq.(13) limits the
maximum load on each server.

Finally, Eq.(8) and Eq.(14) impose powering-on a network
node and a server, respectively, if their incoming/outgoing
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flows are larger than zero, adopting a big-M method, i.e.
Ms ≥ Ws and Mn ≥

∑
l∈L(n) Cl Moreover, Eq.(15) and

Eq.(16) act as consistency constraints, guaranteeing thatthe
estimated values are always equal to the real ones.

The equivalent model G belongs to the class of mixed-
integer problems, that can be solved using standard optimiza-
tion programs.

III. D ISTRIBUTED ALGORITHM

Two considerations hold for the G model: (i) the problem
can be completely split between the ISP and the CP using a
decomposition technique, (ii) after the problem is split the ISP
works on the estimation of the traffic demands, while the CP
uses an estimation for the users’ delay.

We therefore apply the dual decomposition to derive a
distributed algorithm, following a well-known procedure in
the literature [10]. Here we report only the main steps; the
complete description is detailed in [11]. In brief, we first
introduce the Lagrange multipliersλst and µa associated
with the consistency constraints of Eq.(15) and Eq.(16). The
Lagrange multipliers are shared between the ISP and the CP.
We then define the ISP problem as follows:

D-GreenISP: min
(
PISP − λstx̃st

m + µada

)
s.t.: (1)-(8)

Control variables:zst
p ≥ 0, qst

p ≥ 0, yn ∈ {0, 1}.
The CP instead defines the following problem:

D-GreenCP: min
(
PCP + λstxst

m − µad̃a

)
s.t.: (9)-(14)

with control variables:xst
m ≥ 0, d̃a ∈ R+, ys ∈ {0, 1}.

In order to get an optimal solution, theD-GreenISPand the
D-GreenCPare solved using an iterative method that involves
the Lagrange multipliers. In particular, at each iterationk the
Lagrange multipliers are updated using a subgradient method:

λst(k + 1) = λst(k) − αk

[
x̃st

m(k) − xst
m(k)

]
∀s, t(17)

µa(k + 1) = µa(k) − αk

[
d̃a(k) − da(k)

]
(18)

with αk small or diminishing step size. The intuition is that the
Lagrange multipliers act as penalty/reward for the objective
functions. For example, wheñxst

m(k) − xst
m(k) > 0 the

associated multiplierλst(k+1) is decreased. Whenλst(k+1)
is positive, it acts as a reward for the ISP and a penalty for the
CP. In our example, at iterationk + 1 the ISP will decrease
x̃st

m(k+1) since the associated rewardλst(k+1) is decreased,
and the CP will increasexst

m(k+1) since the associated penalty
λst(k + 1) is decreased. Note that at equilibrium, i.e. when
Eq.(15) and (16) hold, the solution of the distributed algorithm
is optimal.

Since the Lagrange multipliers update needs the demands
and the delays from both the ISP and the CP, we propose
the adoption of a trusted third-party server (TS) to delegate
the manipulation of the Lagrange multipliers. The TS can be
controlled by a trusted authority that ensures that both ISPs and
CPs are actively cooperating in reducing power consumption.

Initialization Step

λst(0) = rand() ∀S × T , µa(0) = rand()

ISP Step

ISP receivesλst(k) andµa(k)
from TS
ISP solvesD-GreenISP(k) and
computesexst

m(k)
ISP passesexst

m(k) andda(k)
to TS

CP Step

CP receivesλst(k) andµa(k)
from TS
CP solvesD-GreenCP(k) and
computeseda(k)
CP passesxst

m(k) and eda(k)
to TS

Update Step

TS computesλst(k + 1) andµa(k + 1) from (17) and (18).
k = k + 1

k ≥ kMAX?

YES

NO

ISP Integer Step

ISP solvesGreenPathISP
using exst

m as constants.

CP Integer Step

CP computesPCP using the
startup cost model.

Fig. 1. Dual Green algorithm (D-G).

The trusted authority incentives the cooperation between ISP
and CP.3

The dual algorithm then works as follows: the Lagrange
multipliers are initialized by the TS, then theD-GreenISP
and theD-GreenCP are solved in parallel by the ISP and the
CP, respectively, using the current Lagrange multipliers.At the
end of each iteration the TS updatesλst andµa using Eq.(17)
and (18). The distributed problems are iteratively solved until
a maximum number of iterationskMAX is reached.4

Let PG
TOT be the optimal total power consumption obtained

from the centralized G model. LetPD−G
TOT (k) be the total power

consumption at iterationk obtained from the dual algorithm.
Since the subgradient method adopted in the Update Step is
not a descent method, we keep track of the best distributed
solutionkBest found so far:

PD−G
TOT (kBest) = min

i=1,..,k
PD−G

TOT (i) (19)

wherek is the current iteration. We then define the precision
error for the current solution as:

eP (k) =
∣∣PD−G

TOT (k) − PG
TOT

∣∣ (20)

Similarily, we defineeP (kBest) as the precision error con-
sidering the best distributed solutionkBest found so far. As

3Normally multiple ISPs and CPs are present. Nevertheless, oursolution
can be adopted also in this case. For example, a federation of trusted servers
can be deployed.

4Another stopping criterion might be to test that|λst(k + 1) − λst(k)|
and |µa(k + 1) − µa(k)| are very small.
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reported by [12]eP (kBest) depends mainly onαk. In parti-
cular, if the associated Lagrangian is a continuous function
and a diminishing step size rule is adopted forαk, then
eP (kBest) → 0 as k → ∞, i.e. the distributed solution
converges to optimum. However, in our case the Lagrangian
associated with the G model is not continuous, due to the
presence of the integer variablesyn and ys. Therefore, the
resulting distributed problem does not converge to an optimal
solution [13]. Additionally, the distributed problem doesnot
even converge to an equilibrium point, since the consistency
constraints are not assured by the distributed approach. This
impacts negatively the QoS of users, because traffic demands
and delays are not properly estimated.

To overcome these problems, we propose to solve the
distributed solution using only the continuous part of the power
functions, then we add the integer variables locally at a second
step. We name this algorithm Dual Green (D-G). In particular,
the ISP and the CP solve initially the distributed step of D-
G, representing the power consumption as a convex function,
i.e. yn = 0 ∀n, ys = 0 ∀s. After few iterations, the problem
converges to an optimal solution, for which bothx̃st

m and d̃a

are correctly estimated. Interestingly, at the end of this step
both the ISP and the CP have agreed on a possible feasible
solution. Then as a second step, the ISP optimizes the power
consumption using the integer variablesyn and the estimated
traffic demand̃xst

m computed in the first step, as follows:

GreenPathISP min (PISP ) s.t.:
(1), (3) (21)∑

p∈P(s,t)

zst
p = x̃st

m ∀s, t (22)

(5) − (8) (23)

Control variables:zst
p ≥ 0, qst

p ≥ 0, yn ∈ {0, 1}.
Notice that theGreenPathISPproblem optimizes the power

consumption over the set of paths taking as inputs the traffic
demands̃xst

m.
In parallel, the CP computes its power consumption from the

demandsxst
m using Eq.(9), settingys = 1 for active CP servers.

Fig. 1 shows a schematic description of the D-G algorithm.

IV. PERFORMANCEEVALUATION

We test the effectiveness of the proposed algorithms using
ISP backbone topologies obtained from RocketFuel [14]. We
consider the case in which the CP infrastructure is composed
of 15 servers, placing the servers in the cities with the highest
connection degree. We use the same set of parameters of [8]:
for each (s, t) we compute up to two completely disjoint
paths,5 Cl is set to 10 Gbps for each link,UMAX

l = 0.5 ∀l ∈
E, to avoid congestion and to guarantee Quality of Service
(QoS). The CP traffic demandRt is modeled according to
a Pareto distribution, with a variable lower boundRmin

t and
a constant upper boundRMAX

t given by the total capacity

5As in [8] the topologies are first pre-processed using a simpleshortest
path algorithm to obtain the set of paths. The set of paths is given as input to
our optimization problems. This reflects normal behavior of ISPthat selects
alternate paths for failure protection.

TABLE I
POWER CONSUMPTIONMODEL [W]

P c
n P d

l
(fl) P d

n

“

P

l∈L(n) fl

”

P c
s P d

s

`

P

t∈T xst
cp

´

100 20flAl 20
P

l∈L(n) fl 200 ± 100 (40 ± 20)
P

t∈T xst
cp

offered at that node, i.e.RMAX
t =

∑
l∈L(t) ClU

MAX
l . Unless

otherwise specified,DMAX = 300 ms andRmin
t = 10 Mbps.

We assume that nodes are connected by optical links, in which
the optical carrier is regenerated by amplifiers. For each link
we randomly assign a number of amplifiersAl uniformly
distributed between 1 and 5.

Tab.I describes the model used to evaluate the power con-
sumption. Here we are assuming next-generation devices able
to adapt their power with traffic flow [2]. Considering the ISP,
the power consumption of nodes is composed of a constant
termP c

n due to the chassis static power plus an additional term
P d

n which scales linearly with traffic flow. Moreover, the power
consumption of a linkP d

l depends linearly on both the load
and the number of amplifiersAl between nodes. The constant
values are extracted by interpolating the power measurements
of real devices under high load [8].

Focusing on CP, the server power consumption is also
modeled by a static termP c

s and a dynamic termP d
s : in

this case instead the slope is higher due to the presence of
backup elements and power supplies, which actually double
the server power consumption. For the sake of simplicity we
do not consider any additional background traffic of other CPs,
since our goal is mainly to assess the maximum power savings
achievable by the whole system composed of the ISP and the
considered CP. Finally, 50% of randomly chosen nodes are
selected as terminalst.

A. Algorithm Comparison

We start by running the D-G algorithm over the SprintLink
topology, since it is one of the largest topologies of RocketFuel
in terms of nodes and links. Unless otherwise specified, we
assume that the ISP knows exactly the total traffic of each
client, i.e. R̃t = Rt.6 Moreover, we use the power model
presented in Tab.I. We name this power model as “100-200”.
Finally, we set a step size ruleαk = 1000/k for updating the
Lagrange multipliers.

Fig. 2-(a) reports the power consumption variation of the
D-G algorithm versus the number of iterations, considering
the 100-200 model. Notice that here, differently from the
original scheme of Fig. 1, we perform the ISP and CP Integer
Step at each iteration to better assess the dynamic behavior
of the algorithm. We report also a lower bound, i.e. the
power consumption of the G algorithm. The figure reports also
an upper bound, namely the classic (C) centralized solution
presented in [8], whose objective is to minimize the users’
delay. Finally, the figure reports the power consumption of
the D-G algorithm at the end of the distributed step, before
GreenPathISP is solved. Several considerations hold in this

6
eRt is measured or computed from previous estimations of the traffic

demands.
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case: (i) the solution of D-G is always close to the lower
bound even after few iterations, so that the maximum power
loss is less than 17%,7 (ii) the power consumption of the
first step of D-G is instead close to the upper bound, (iii)
the optimization performed byGreenPathISP is essential to
obtain large savings, sincePTOT drops from more than 26 kW
in the first step to less than 13 kW at the end of the algorithm.

We then investigate how the startup cost impacts the total
power consumption. Fig. 2-(b) shows the results for the 10-20
model, i.e.P c

n = 10 W andP c
s = 20±10 W. As expected, the

power consumption of the G algorithm is lower in this case,
and the bounds are closer too. Interestingly, the D-G is even
closer to the lower bound, since the linear part of the power
function that is optimized in the Distributed Step becomes
predominant. These phenomena are even more evident with
the 1-2 model (Fig. 2-(c)): in this case the upper and lower
bound are even closer, suggesting that with small power step
sizes the solution of the D-G algorithm approaches that of the
G one.

We define the mean error of the traffic demands at each
iteration:

ex(k) =

∑
s,t |x̃

st
m(k) − xst

m(k)|

|S × T |
(24)

In a similar way we define the maximum error at each
iteration:

eX(k) = max
s,t

∣∣x̃st
m(k) − xst

m(k)
∣∣ (25)

7The power loss is computed as the difference between D-G and GSin

terms of power savings, i.e.Ploss =
P

D−G

T OT
−P G

T OT

P C

T OT

.

Notice that when the algorithm convergeseX ≈ 0, i.e. x̃st
m ≈

xst
m ∀s, t.
Fig. 3 reports bothex andeX at each iteration. Interestingly,

ex falls below 100 Kb after 30 iterations, whileeX is bounded
below 100 Kb after 45 iterations. This means that only few
iterations are sufficient to guarantee QoS for users, since the
estimated demands̃xst

m are close to the real onesxst
m.

B. Parameter Impact

We then consider the impact of parameters on the perfor-
mance of the algorithm. In particular, we start consideringthe
case in which the power consumption is strictly proportional
with the current load. This case can be representative of future
energy-aware devices, able to completely adapt the power
consumption to the current load [2]. Fig. 4 (left) reports the
precision erroreP (kBest) for k ∈ [1, 300], considering differ-
ent diminishing step size rules forαk. We setkmax = 300
to limit the convergence time. Small step sizes lead to very
slow convergence, since the Lagrange multipliers change very
slowly. For example, withαk = 10/k the error is always
higher than9%, meaning that the distributed solution is quite
far from the centralized one. However, also large values tend to
be inaccurate since large oscillations are induced. By choosing
instead the intermediate value of1000/k, the D-G algorithm
converges to the optimal solution in less than 50 iterations
with a precision of less than0.0001%.

Fig. 4 (center and right) show the power consumption of the
ISP and CP, respectively. Interestingly, all the step sizesare
able to reach at least a near-optimal power consumption for
the ISP, being1000/k and 1000/k1/2 the noisiest ones due
to the large steps used. If we consider instead the CP power
consumption, then only whenα is greater than100/k1/2, the
CP converges to the optimal power allocation, while all the
other values are quite far from the optimal solution.

We then extend our analysis to other ISP topologies [14].
Due to lack of space we refer the reader to [11] for these
results. In brief, the1000/k rule is able to achieve a minimum
precision of0.001% for all the topologies considered in less
than 50 iterations.

To better assess the computational time of D-G, we com-
pute the CPU time required to solve the problem at each
iteration. In particular, since the ISP Step and the CP Step
can be processed in parallel, we take the maximum of the
CPU times: ctime(k) = max(ctimeISP (k), ctimeCP (k)).
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We then compute the total cost of running the algorithm
at iteration k as cctime(k) = cctime(k − 1) + ctime(k),
wherecctime(1) = ctime(1). We assume that the CPU times
required to perform the Initialization and the Update stepsof
D-G are negligible.

Fig. 5(left) reportsctime(k) andcctime(k) for the Sprint-
Link topology and 1000/k step size rule. All the times
have been measured by running D-G on the NEOS server
[15] to obtain a reliable measurement on a widely known
system. Interestingly,ctime(k) is nearly constant, so that
30 iterations require 52 minutes to be completed. Clearly, a
tradeoff emerges between solution precision and admissible
computational time.

Finally, we introduce a precision error for̃Rt, so that
R̃t = Rt(1 + ∆R). This reflects the case in whichRt is
over-estimated by the ISP, for example by measurements.8

Fig. 5(right) reportseP (kBest) for different ∆R. For ∆R =
0% and ∆R = 1% the algorithm converges to the optimal
power consumption andeP (kBest) falls below 0.01% in less
than 90 iterations in both cases. For∆R = 10% instead the
D-G algorithm requires 0.46% of additional power than the G
algorithm, which rises to more than 16% with∆R = 50% even
after 300 iterations. Therefore, the solution produced by the D-
G algorithm involves a small amount of additional power only
when the precision error in the estimated demand is reasonably
small.

V. CONCLUSIONS ANDFUTURE WORK

In this work, we have proposed a distributed approach to
minimize the total power consumption of an ISP and a CP.
After showing that the problem can be formalized with an
optimization model, we have developed a distributed algorithm
based on a dual decomposition approach. Results show that

8We do not consider the under-estimated case since it introduces packet-loss
and consequently QoS violation for users.

the distributed solution is near-optimal for all considered
scenarios, with a maximum power efficiency loss of 17%.

As future work, we intend to study further the implications
on new CP-ISP architectures. We aim to consider the inter-
action of multiple CPs over multiple ISPs to minimize power
consumption, considering also the effects of server virtual-
ization on potential power savings possible with colocating
CPs. Then, we want to assess through simulation how the
size of the CP and its location in the ISP network impact
the performance of the distributed algorithm. Finally, we will
evaluate our solutions in the face of temporal variations in
traffic, considering the tradeoffs between the precision ofthe
solution and the maximum computational time.
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