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ABSTRACT

The Internet consists of thousands of autonomous syste®es)A Each AS represents an Inter-
net Service Provider or the network of a large organizatibat is managed independently. The
Border Gateway Protocol is the policy routing protocol obie for connecting these ASes, while
allowing them to set their routing policies independentRouting policies (or path preferences)
determine how a path to a particular destination is chos¢rofa candidate set of paths. This
flexibility in configuring routing policies comes at the cadistability, where ASes may have con-
flicting policies causing them to continually advertise rmewting updates for extended periods of
time.

We introduce a theoretical framework for policy routing dymics {.e., how path changes
propagate in the network) that is based on the specifics ¢tihgupdate mechanisms. Unlike ex-
isting models, our Dynamic Policy Routing (DPR) model inluces several structures that capture
how path changes propagate in any network under dynamidogypand path preference changes.
We demonstrate the utility of DPR by applying it to three penlis: minimizing routing dynamics,
detecting policy conflicts, and deriving properties of s@fe., convergent) routing dynamics.

For minimizing routing dynamics we formulate the Routingriaynics Minimization Problem
(RDMP) which solves a graph optimization problem. RDMP aiominimize the longest possible
sequence of routing update messages in a dynamic networkdnging the path preferences of

nodes. We show that solving RDMP in general is NP-Hard anéwurgstrictions can be solved in



polynomial time.

For detecting policy conflicts we prove that the root causemf cycle of routing update
messages can be precisely inferred as either transiententdly persistent due to the existence
of a policy conflict. We then developASETYPULSE, a token-based distributed algorithm, to
detect policy conflicts in a dynamic network.

For deriving properties of safe routing dynamics we esshbthree properties that provide
insight into which ASes can directly induce route changesne another, and how cycles of
routing updates can be manifested in the network. We theeloleMNTERFERENCHBEAT, a

token-based distributed algorithm, to check adherencleeset properties.
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Chapter 1

Introduction

The Internet consists of thousands of autonomous syste®sg)AEach AS represents an Internet
Service Provider or the network of a large organizationt ibhananaged independently. Today, the
Border Gateway Protocol (BGP) is the routing protocol oficedor connecting these ASes while
allowing them to set their routing policies independentputing policies determine how a path
to a particular destination is chosen out of a candidatefgstbs.

This flexibility in configuring routing policies comes at tleest of stability. BGP is known
to suffer from slow convergence time, where ASes contiguadlvertise new routing updates for
extended periods of time before reaching a stable pathrassigt. Experimental measurements
show that interdomain routers may take tens of minutes tohreaconsistent view of the network
after a fault [Labovitz et al., 2001].

Route flapping, the process of adopting and discarding pa#ttsbe highly disruptive given
the associated communication and processing overheadse Raps can be transierntd, short-
term) due to temporary changes in topology or path pref@®nRoute flaps can also be persistent
due to conflicting routing policies across ASe®.( policies that cannot be satisfied simultane-
ously [Varadhan et al., 1996]). Unnecessarily switchingMeen routes reduces QoS predictabil-
ity, increases delay variability, causes service disnmtas well as increases packet loss [Labovitz
et al., 2000]. In addition, one can imagine that continuallytching between routes would make
managing the network in terms of capacity planning / dimaemisig, and traffic engineering much
harder as the paths used and their associated traffic lo@dsniedess predictable [Quoitin et al.,
2005, Uhlig and Bonaventure, 2004, Feamster and Rexfof@7]20n general, network operators
strive for a stable policy configurationg., a set of path preferences) where the routing dynamics

are bounded and converge quickly. By routing dynamics wemineav path changes are propa-

1



gated across nodes in the network.

The difficulty in managing the disruptive properties asateil with BGP due to the autonomy
in setting routing policies has led to a plethora of reseaetdted to understanding its convergence
properties and steady-state behavior. In particularfi@mt al. introduced the Stable Paths Prob-
lem (SPP), a formalism to reason about the steady-statevioettd BGP [Griffin et al., 2002].
SPP has become the standard for modeling BGP and the basisufigrnovel extensions over the
years. SPP considers the stable assignment of paths, wieeyesS is assigned its most preferred
path out of its available choices. The authors showed tleagxistence of a dispute wheel or policy
conflict (.e., a cyclic dependency in path preferences that could leadttes ieing adopted and
discarded indefinitely) is a necessary condition for dieece {.e.,the lack of a stable assignment
of paths). Gacet al,, on the other hand, showed that restricting the path pnefere of ASes to
be consistent with their commercial / economic relatiopshs sufficient for guaranteeing conver-
gence [Gao and Rexford, 2001]. We refer to these restristfoom hereon as the Gao-Rexford

(economic) guidelines.

1.1 Motivation

SPP is seminal work which introduces modern policy routimgoty and represents a unifying
framework for understanding steady-state analysis. Tdystouting dynamicsi(e., how path
changes propagate across nodes in the network), curretihgomodels aim to capture asyn-
chronicity and the timing of BGP updates, which make the nsodembersome.

This thesis takes a different approach. We show that impbpi@perties about routing dynam-
ics can be derived using a simple theoretical frameworkektgnds SPP. The routing dynamics in
our proposed model are actually synchronous with discnete.tWe show that properties derived
using our synchronous routing model can be applied to asgnols routing dynamics. This al-
lows us to prove interesting results regarding the dynawiig®licy routing using a simple model.
Our model also captures dynamic topology and path preferehanges. Our contributions are
outlined in more detail in the following section.

Our model starts by considering the specifics of how routiaggens in the Internet today.



During the course of routing, a router has periodic windowsvhich it receives routing update
messages from its neighbors. From these updates, the anesptionally choose to change its
current pathi(e., perform an action) or maintain its current path. We use th®nmf causation
where every action by a node is caused by one specific neighibois the routing dynamics can
be seen as a collection of causation chains, where eachsnac#on is caused by the previous
node on the chain. We select a natural definition of causatiarhich causation chains are started
only by root causesi.€., link availability changes or policy changes). We find that tiotion of

causation is sufficient to derive interesting propertiesooting dynamics as a whole.

1.2 Thesis Contributions

We introduce DPR which constitutes several novel strust@igch as causation chains, causa-
tion fences, and policy digraphs that model different atgpetrouting dynamicsife., how path
changes propagate across nodes in the network) and prowdghi into how these dynamics
manifest in the network. We demonstrate the utility of DPRapplying it to three problems:
minimizing routing dynamics, detecting policy conflictsydaderiving properties of safe routing

dynamics.

In terms of minimizing routing dynamics we make the follogyicontributions:

e We introduce policy digraphs, a time-invariant structutgietn captures how routing update
messages can propagate in the network. We utilize poliaggdits to formalize the Routing
Dynamics Minimization Problem (RDMP). RDMP solves a graphiraization problem that
aims to minimize the longest possible sequence of routirdpigomessages in a dynamic

network. This is done by changing the path preferences oésiod

e We show that finding a policy configurationg., a set of path preferences) which minimizes
the length (e., the size of the longest walk with possibly repeated nodeghefpolicy

digraph is NP-Hard.

e We show that under certain restrictions, such as having sxatiede by the Gao-Rexford



guidelines that guarantee safetye(, convergence), finding a policy configuration which

minimizes the length of the policy digraph can be solved itypomial time.

In terms of policy conflict detection we make the followinghtd@butions:

e We introduce causation fences, a time-invariant structuineeh under certain conditions
represents a dispute wheel. We utilize causation fencesote fthat the root cause of any
cycle of routing update messages can be inferred as eitlmansignt route flap or a policy
conflict. More specifically, we prove that any cycle of rouplates where a node ends up

with a more preferred path must be due to a policy conflict.

e We develop 8FETYPULSE, a token-based distributed algorithm, which leveragestoewm-
retical result for detecting policy conflicts in any dynamigtwork. S\FETYPULSE has sev-
eral characteristics, namely, it is computationally effiti provably correct, and backwards
compatible. 8FETYPULSE diagnoses and monitors the health of the network by detgctin

policy conflicts that could potentially lead to unboundedtiiog dynamics in realtime.

In terms of deriving properties of safe routing dynamics wakmthe following contributions:

e We introduce causation chains, a time-varying structua¢ ¢hptures how the action of one
node on the chain causes its successor to take an actionili causation chains to estab-
lish three properties of safe routing dynamics. By “safe”’mvean routing instances where
all the nodes abide by the Gao-Rexford guidelines that gieeasafety. Here, by safety
we mean the convergence of the policy routing protoedl.(BGP) to a stable assignment
of paths across all nodesd., when no more path changes are propagated in the network).
The non-interference property provides insight into whik®es can directly induce route
changes in one another. The single cycle property and tha-timued cycle property both
provide insight into how cycles of routing updates can nestifn the network. These prop-

erties hold irrespective of changes in the underlying togglor changes in path preferences.

e We develop NTERFERENCHBEAT, a token-based distributed algorithm, to check adherence

to these properties. To enhanceTERFERENCEBEAT we model four common policy vio-



lations of the Gao-Rexford guidelines and characterizedhalting dynamics.NTERFER
ENCEBEAT diagnoses and monitors the health of the network by detpatialid routing

dynamics i e., causation chains that do not adhere to the derived propgitieealtime.

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 provides amaw of the related work in the area.
Chapter 3 outlines our models for policy routing dynamics. phrticular, the Dynamic Policy
Routing (DPR) model and the economic DPR model. Chaptermdiizes the Routing Dynam-
ics Minimization Problem (RDMP) and shows the complexitgssles for various variants of the
problem. Chapter 5 solves the conflict detection problem @nogides pseudocode foraBe-
TYPULSE. Chapter 6 derives properties of safe routing dynamics aodiges pseudocode for
INTERFERENCHBEAT. This chapter also models four common policy violations engracterizes
the resulting dynamics. Finally, the thesis concludes mptér 7 and Appendix A addresses the

synchronicity of DPR.



Chapter 2

Related Work

There has been some seminal work in terms of understandingetiavior of BGP, in particular its
steady-state behavior and convergence properties. Adanedtearlier, Griffinet al. introduced
the Stable Paths Problem (SPP) and showed that the existéacdispute wheelif., a cyclic
dependency in path preferences) is a necessary conditiativiergence i(e., the lack of a stable
assignment of paths). Feamsgtral. showed that the lack of a dispute ringe(, a dispute wheel
where nodes have path preferences of a special form) undging (.e., preferentially advertising
routes) is a necessary condition for convergence [Fearastal., 2005]. Cittadiniet al. also
provided necessary and sufficient conditions for safetyeufitlering [Cittadini et al., 2009]. Their
result is based on the presence of a dispute fie®| & special case of the dispute wheel and a
generalization of the dispute ring). Saatial. showed that having a unique stable assignment is a
necessary condition for convergence [Sami et al., 2009].

There have been attempts to provide routing models whichw@aeanteed to have a solution in
that the model will somehow incorporate the endless osiaitia of the disputing nodes. One such
approach is the Fractional Stability Model (FSM), whereheaode chooses a “mixed strategy”
such that there is a probability associated with selectexthepath presented by a neighboring
node [Haxell and Wilfong, 2008]. Since all non-cooperatgemes have a Nash equilibrium,
instances of the FSM are guaranteed to have a solution. §inld@iums represent another model
which has been applied to routing [Fabrikant and Papadonitr2008]. This approach models
dynamics as a graph where every state of the system is a ntiie gnaph and state transitions are
edges.

Wanget al. developed a BGP routing model to understand transientnguéilures [Wang

et al., 2009]. The model consists of routers acting asymausly through the use of an activation

6



sequence. Under the assumption that all nodes abide by thdR@sdord guidelines [Gao and
Rexford, 2001], they derived sufficient conditions for s@mnt route failure and upper bounds
on the duration of transient route failures. Bounds on BGBisvergence time, under different
restricted link failure models, have also been studed.([Wang et al., 2005, Obradovic, 2002, Pei
et al., 2006]).

There are research efforts that utilize other fields, sugaase theory, to understand and model
policy routing. Since each router can be represented asdament list of path preferences, routing
is compatible with mechanism design [Feigenbaum et al.6BP0Using this framework, each
node can be given a payment as an incentive to truthfullyalét@policy preferences. A globally
optimal set of path assignments can then be determined fiesetpreference revelations. This
method can be further optimized with distributed algoritbmechanism design [Feigenbaum and
Shenker, 2002], where the routers jointly determine theyeyt methods without requiring a cen-
tralized coordinator [Feigenbaum et al., 2006a]. One @noblvith this approach, however, is that
although routers typically rank path preferences using menc function, the values associated
with each path are arbitrary. For example, if a router asstgro paths numeric value$p00 and
50, respectively, it cannot be interpreted that the first patvalued20 times more than the second
path. However, it is shown that if no disputes exist in thetirgupolicies (.e., there are no dispute
wheels), then the routers are incentive compatible in tigyg tire motivated to act truthfully with
respect to their path preferences [Levin et al., 2008].

In contrast to existing BGP models, our Dynamic Policy RegifDPR) model extends SPP
with discrete synchronous time to capture the propagati@ati changes across nodes. DPR does
not utilize other fields, does not attempt to model the asyorebity in BGP, and is not restricted
to static topologies or static path preferences. DPR presluesults that are invariant to dynamic
topology {.e., multiple changes in link availability) and path prefereiice., policy configuration)
changes.

Gaoet al. showed that restricting the path preferences of ASes to beistent with their com-
mercial / economic relationships.@.,prefer customer paths over provider paths) is sufficient for

guaranteeing convergence [Gao and Rexford, 2001]. Othetigus constrain the policy freedom



of ASes to a generalized form of shortest path routing, thueranteeing convergence.g.,[Ee

et al., 2007, Griffin and Sobrinho, 2005, Gao and Rexford 1200n general, conditions that guar-
antee convergence by limiting the freedom of AS administsain choosing their routing policies

are heavy-handed as they require every node to comply. Tleeyda not provide any guarantees
under partial adherence.

The properties of safe routing dynamics we derive in Cha@teonsider a notion of safety
that is based on the Gao-Rexford guidelines in [Gao and R&x001]. These guidelines are
modelled by our Economic DPR model in Chapter 3.4.

Many distributed algorithms were developed to mitigatedfiects of harmful policy interac-
tions. This is done by passing diagnostic information asiag routing update messagesq(,a
cost metric [Cobb and Musunuri, 2004], a precedence méfgcef al., 2007], path-histories [Grif-
fin and Wilfong, 2000], as well as event-related tokens [ithand Matta, 2007, Ahronovitz et al.,
2006]). Many of these solutions, however, are either ad m@umbersome. For example, count-
ing [Cobb and Musunuri, 2004] and other token-based [Yilraad Matta, 2007] approaches are
heuristics and their correctness cannot be guaranteedth€beetical history-based protocol, Safe
Path Vector Protocol (SPVP) introduced in [Griffin and Wiifn 2000], on the other hand, incurs
a large message exchange overhead, requires moreitgnenore messages) to detect a policy
conflict, and does not provide an explicit condition for a¢itey the occurrence of a transient route
flap.

SAFETYPULSE, our token-based distributed algorithm, leverages ouehtheoretical results
in Chapter 5 to detecting policy conflict. In particular, veeentify the root cause of a causation
cycle as either a transient route flap or a policy conflict,rdarence that SPVP is unable to make.
SAFETYPULSE has several characteristics, hamely, it is computatigrdficient (a constant factor
reduction in message size and number of messages when aahrtpaBPVP), provably correct,
and backwards compatible.

There are numerous offline methods for addressing policylicts[Govindan et al., 1999]
and analyzing static policy configurations [Feamster anthiBshnan, 2004]. Other methods

focus on identifying the root causes of instability [Feldmaet al., 2004]. In general, these offline



methods have not been successful in practice as networknadrators are reluctant to disclose

their routing policies or configurations to any central reipary for further analysis.



Chapter 3

Modeling Policy Routing Dynamics

In this chapter we outline our models for policy routing dgmes. Our Dynamic Policy Routing
(DPR) model extends the static formalism of the Stable Fatbblem (SPP) [Griffin et al., 2002]
with discrete synchronous time. DPR captures the propagati path changes in any network
irrespective of its time-varying topology or time-varyim@th preferences. Our economic DPR
model, on the other hand, captures the economic constifuatsre typical of commercial rela-
tionships (or agreements) between ASes in the Internet §addrexford, 2001]. We refer to these
constraints, which have been shown to make BGP free froneypobnflicts, as the Gao-Rexford

guidelines.

3.1 Stable Paths Problem
3.1.1 Overview

We start with a sample SPP instance that can be seen in Figu(ge&ft) where the destination
is node0. Each node has a path preference list consisting of two patlese the most preferred
path is the topmost path. For example, naderefers path1430) over the direct patt{10). This
SPP instance is calleglaD GADGET [Griffin and Wilfong, 2000] and is known to have at least
one dispute wheel as shown in Figur& 8Right). BAD GADGET also has no stable assignment as
any initial path assignment leads to paths being adoptedisedrded indefinitely. We usgaD

GADGET as a running example throughout this thesis.

3.1.2 Basic Notation

Definition 1 (Network). In SPP, the routing network is represented by a gréphk: (V, E') where
each AS is represented by a nade V. If two nodesu andv are connected thefu, v) € E.

10
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1 (1430)

(10)

29

(320)
3 (30)

Figure 3-1: SPP instanc8AD GADGET (Left) and its dispute wheel (Right). A
dispute wheel consists of pivot nodes. Two types of pathgepeesented in a
dispute wheel, namely, rim paths labell& and spoke paths labelled;. Rim
paths connect pivot nodes while spoke paths connect eachrmde to the des-
tination. Each pivot nodé has the property that it prefers its rim and neighbor’s
spoke pathR;Q;_1, over its direct spoke patldy;.

Definition 2 (Paths) Paths inG are represented by sequences of the form:
P={upuy ... upd)

whered is a distinguished destination node. The empty path is septed by:(). The concate-
nation of a pathP with nodew is represented by{u P). The set of paths originating from a
particular node: can be denoted &8.

Definition 3 (Next-Hop Neighbor) At nodew, the next-hop ofP = (ug u; ... wu, d) is denoted

by:
u; = NextHop( P)

Definition 4 (Path PreferencesEach node wishes to obtain a pathdtoEach node: has a set
preference over the paths, represented-hy This preference forms a total order overJ (). For
ease of notation, we represent the combined path prefeseried nodes with the partial order.
If a path P is forbidden then() > P. All paths with repeating nodes are forbidden.

Definition 5 (SPP Instance)An instance of SPP is comprised of the network and the pafierpre
ences of each of its node§Z, ).

Definition 6 (Stable Path Assignment)n policy routing each node broadcasts to its neighbors

its current pathP to the destination nodé Each node chooses its most preferred path over the set
provided by its neighbors. The goal of SPP is to find a staldgament, which is a directed tree,
confluent ad. Each node: in this stable assignment is satisfied if the path froto d is preferred
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over paths through its neighboring nodes. If each node isfigat, then the tree is stablieg(, will
not change).

We represent a path assignment with the functidhat maps each node to a particular path.
The paths available to a particular nodean be represented as:

Choicesu) = {{u 7(v))|(u,v) € E}
A node’s best path is the most preferred path among the peadlilalale to it:
Bes{u) = max Choicesu)
A path assignment is stable if each node is assigned its most preferred patbfétst choices:
Stablér) < Bes(u) = 7(u) forallu € V

Griffin et al. showed in [Griffin et al., 2002] that it is NP-Complete to detae whether a
stable assignment exists.

Definition 7 (Dispute Wheel) Griffin et al. introduceddispute wheelén [Griffin et al., 2002],
whose existence is a necessary condition for an SPP instam# have a stable assignment. A
dispute wheel, as shown in Figure3represents a cyclical set of path preferences.

A dispute wheelV is defined byl = (N, R, Q), where:

e N\ is the set of: unique pivot nodes such thaf = {u,,_1,...,up}.

e R is the set of rim paths, where eaél) € R is a path fromu; to u; 1 (with subscripts
modulon).

e Qis the set of spoke paths, where edghe O is a path fromu; to d.

e Each nodeu; prefers a path through its rim and neighbor’s spoke path isewn spoke
path:

RiQi—1 >~ Q;

3.2 Dynamic Policy Routing Model with Static Path Preferenes

3.2.1 Overview

In this section we outline the DPR model, our theoreticaiieavork for modeling policy routing

dynamics, with static path preferences that will be usechapter 4 and chapter 5.
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Figure 3-2: Dispute wheel.

We introduce the basic notation underlying the DPR modeldsiiohe several novel structures
such as causation chains, causation fences, and policgptligrthat model different aspects of
routing dynamicsi(e., how path changes propagate across nodes in the network)ravidieo
insight into how these dynamics manifest in the network. W&u$ here on presenting the main
intuition behind the model and the structures developed.

Consider the sample SPP instaneab GADGET, shown in Figure 3. In the course of
routing, nodes adopt and discard paths as they attempt ¢h @atable path assignment. The
adopted and discarded paths are the paths that the nodénesvitc and from, respectively. A
stable path assignment exists when no node is able to swiimiore preferred path and no more
path changes are propagated in the network.

While SPP is concerned with the stable assignment of patPR, i® concerned with the propa-
gation of path changes in the network. The central notiol3HR are that o&ctionandcausation
An action, Actior{u, t), corresponds to a possible routing decision made by natdimet upon
the reception of a routing update message. Three possittmadnclude a StepUp (adopting a
more preferred path via a different next-hop neighbor) ep®town (adopting a less preferred path
via a different next-hop neighbor) or StepSame (adoptingvapath via the same next-hop neigh-
bor). A causing node, Cauge t), corresponds to the node sending the routing update message

to nodeu at timet that triggered the action. More specifically, if nodgerforms a StepUp, the
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1 (10)

(4105 (430)
3 (30) 3 (30)
Time = 0 Time = 1 Time = 2
Action(3,1) = StepDown Action(4,2) = StepUp
Caus¢3,1) = 2 Causé4,2) = 3
1 (1430) 1 (1430)

Time = 3 Time = 4
Action(1,3) = StepUp Action(2,4) = StepDown
Causél,3) = 4 Caus¢2,4) = 1

Figure 3-3: Sample actions and causation BEXD GADGET.

causing node is the next-hop neighbor that provided nod#th the more preferred path. On the

other hand, if nodes performs a StepDown / StepSame, the causing node is thénopxteighbor

that removed node’s current path. DPR models these two events to constructisatian chain

overtime,(y; y2 ... yr), Where each nodg causes its successor along the chain to take an action.
Figure 33 outlines a few sample cases of action and causatioBAor GADGET. At time

t = 1, node3 performs a StepDown action as it is forced to discard gag) and adopt path

(30). This is due to node adopting pathf210) at timet = 0. Such sequences of action and

causation represent a causation chain. A sample causdtan (2 3 4 1) while a sample

causation cycle, where a node is triggered twice to updsiegaith, is(2 3 4 1 2).

Itis important to note that each causation chain starts@btecause that can be either a change
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in a link's availability or a change in a node’s path prefeen A causation chain terminates, on
the other hand, when a node does not take an actieni§ not affected by this round of route
updates and hence maintains its current path). A causatiaim cepresents a single sequence of
nodes that induce path changes in one another. A networkdvizgpically observe many causation
chains as a result of a single root cause. In other wordsntfieidual chains branch out in such
a way that their aggregation across space and time would éocommplex graph (or forest) that
simultaneously represents many sequences of route upglaiesgating in the network. In this
thesis whenever we talk about a causation chain we are iregfeiw only one such sequence of
route updates propagating in the network.

Another set of possible actions include Rankinc (adoptingpee preferred path) or RankDec
(adopting a less preferred path) or RankSame (staying Wélctirrent path) without any restric-
tions on the next-hop neighbor used. Depending on the aiglic a different set of possible
actions may be more appropriate. For chapters 4 and 5, tlma@tepUp, StepDown, and Step-
Same are used to construct the causations chains, sinceevabraut how the adopted / discarded
paths depend on the nodes along the chain. Also, we only demstatic path preferences as
outlined in Section 3.2. For chapter 6, on the other hand,atti®mns Rankinc, RankDec, and
RankSame are used since we only care about the relativengaokihe current path and the new
(or next) path. Also, we consider time-varying path prefiees as outlined in Section 3.3.

Using DPR we introduce a time-invariant structure we callasation fence, which under
certain conditions represents a dispute wheel (or polieyflmb). The exact manner in which a
causation fence manifests, in terms of what we call adogimg) discarding subchains, feab
GADGET is outlined in Figure 3!.

These adopting and discarding subchains allow us to catstreausation fence which distills
the core elementd.€., path changes) in a causation chain. In particular, a causé&tince only
concerns itself with the head and tail nodes of the adoptidigdarding subchains as shown in
Figure 35. The causation fence can be seen as an open-ended dispdbwitere each pivot
node also prefers its rim and neighbor’s spoke path ovemits spoke path. For example, pivot

node3 prefers its rim and neighbor’s spoke pa#20) over its own spoke pat{80). The condition



(1430) 4 _ (210)

4 2
e e ST B
;(20> (30) I(a10)  1(10)

e
Discarding Adopting Discarding
Subchain Subchain Subchain

Figure 3-4: Alternating subchains oBAD GADGET. Adopted/discarded paths
are represented by solid/dotted arrows, respectively.iZdotal paths are more
preferred than vertical paths.

under which a causation fence does indeed represent a@iggtel allows us to infer the root

cause of a causation cycle.

1 (21) 2

2 (32) 3 (1:3) 5
I<;>> I<;> ¢ (10)

Figure 3-5: Causation fence (§AD GADGET.

Using DPR we introduce another time-invariant structurecaia policy digraph which cap-
tures how routing update messages can propagate in therketirigure 36 outlines the policy
digraph ofBAD GADGET. Each node irBAD GADGET is represented by a “ladder”. Each step
in the ladder denotes a path from the corresponding nodé'spaference list. The node’s most
preferred path is at the top of the ladder. Two stes, paths) in different ladders are connected
by a directed edge if the source path is a subpath of the taaglet We refer to such edges as “sub-
path” edges. A valid “walk” can start from any step on any kddnd can go down the ladders

and across the subpath edges connecting different laddersider the following sample walk:

(20)(320)(30)(430)(1430)(10)(210)(20)

Walks in this structure capture the routing dynamicsab GADGET. By routing dynamics we
mean how path changes could potentially propagate in thveankeior more specifically how paths

could potentially be adopted and discarded. For exampfeatti (20) is adopted after linK2, 0)
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becomes available, then patB0) will also be adopted since it is nodés most preferred path.
Such dependencies are captured by the subpath edges. Y\@dikim the ladder captures the effect
of adopting or discarding a less preferred path due to a ahanthe availability of a path higher
up the ladder. For example, if patP10) gets adopted, moving from pat10) to path(20) in the
policy digraph captures the effect of nodedopting path210) and discarding patk20). This

results in path(320) getting discarded by nodesince path(20) is no longer available.

1
1430
4 10 2
430 \ 210
410 20
3 /
320
30

Figure 3-6: Policy digraph ofBAD GADGET.

The policy digraph provides insight into the routing dynamiA path (or walk) in the policy
digraph captures how far routing update messages can @iepropagate. In other words, the
longer the paths, the longer it could take for the transignthics to die out following a topology
change €.g.,a link failure). We prove that any valid sequence of route updates is a pathein t
policy digraph. On the other hand, a policy conflict (or dispute wheel) is deya the policy
digraph where a path is repeatédle prove that a dispute wheel is represented as a cycle in the
policy digraph.Policy digraphs will be used in the formulation of RDMP in pker 4.2.

It is important to note that our policy digraphs are easierdostruct and visualize when com-
pared to dispute digraphs [Griffin and Wilfong, 2000]. Intgarlar, the conditions for constructing
a dispute arc require the relative rankings of paths acrodesito be compared—something that
is not required for constructing our policy digraph. Poldigraphs are simpler since they are con-

cerned with capturing the propagation of path changes acrodes in the network. In particular,



18

they are concerned with capturing how paths are adoptediandrded. Dispute digraphs, on the
other hand, are concerned with how policy conflicts can nesbiind hence consider the relative

rankings of paths across nodes which makes the structure coonplicated.

3.2.2 Basic Notation

DPR extends SPP’s notation as follows.
Definition 8 (Time). Time is represented by a non-negative, discrete irdexch that: € [0, o).
Definition 9 (Network). The network is represented by a gragh= (V, E):

e Each vertexu € V represents an AS.

e Each edge it is time dependentfu, v)! € E if u is connected t at timet. Conversely,
a lack of connectivity betweemandv at timet (i.e., link failure) is represented b, v)? ¢
E.

There exists a distinguished destination node, repregersteot, whereroot € V. In other words,
DPR considers a single destination prefix.

Definition 10 (Paths) Paths are sequences of nodes of the fofmy; us ... wug) where the
destination nodeoot is u;. The empty path is denoted BYy. A concatenation of a nodewith a
path@ is represented as? = (u Q). A path originating fromu is represented by*. The set of
paths originating fromu is represented b$“.

Definition 11 (Path PreferencesEach node: has a unique preference over paths originating at
u. This ranking is represented by theoperator. Ifu prefersP* over Q“ then: P* > Q“. If u
prefersP" over@Q" then: P* = Q". Strict preference is defined by:

PU > QUiff P* = Q" andQ" ¥ P!

For each node. € V, - is a total order oveP* U (). Thus each node has an ordered
preference over all its paths toot. If two paths start with different nodes, then they have no
preference relation. Forbidden patRsare those ranked below the empty path for all timgss
P. All paths with repeating nodes are forbidden.

Definition 12 (DPR Instance) A Dynamic Policy Routing (DPR) instance consists of a gramd a
a path preferenc® = (-, G).



19

Definition 13 (Best Paths) At each time index, every nodeu has a path tooot, represented by
P* = 7(u,t). The available path choices of a node, via all possible teigiv, are represented
by Choicesu, t) where:

Choicesu, t) = () U {{u 7(v,t)) : (u,v)" € E}
The Bestu, t) notation represents the current best pathufor
Bes{u,t) = max Choicesu, t)
The paths assigned to nodes at each ftinsetheir best path of the previous round. For all nodes
ueV:
o m(u,0) = ()
o m(u,t) = Bestu,t —1)

The path used by nodeat timet, 7(u, t), was its best path at time- 1, Bestu, ¢t — 1). This best
path was determined using the rankiag

Definition 14 (Next-Hop Neighbor) The p notation is used to represent the next-hop neighbor of
a current path:
p(u,t) = NextHop(7 (u, t))

Definition 15 (Realized Paths)A path P is realizediff there exists a time such thatr(u,t) =
P

Proposition 1 (Forbidden Paths)Forbidden paths are never realized.

Proof. Assume not. Then there exists a forbidden p&th a nodeu, and a timet such that
m(u,t) = P*. However() - P" soP" # Bes{u,t — 1) which is a contradiction. O

Proposition 2 (Path Deconstruction)If p(ug,t) = u; thenmw(ug,t) = (ug w(uy,t — 1))

Proof. By the definition ofr, 7(ug, t) = Bes{ug,t — 1) son(ug,t) € Choicegug,t — 1). So by
the definition of Choicesy(ug,t) = (up 7(u1,t — 1)), whereu; = p(ug,t). O

Remark 1. While DPR does not explicitly model BGP attributes, such semsion is possible
and would only affect the preferential ranking of paths bylem This may lead to a different
assignment of paths by the functian
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#  Action(u,t) Causéu, t) Condition Explanation
1 StepUp v=pu,t+1) w(u,t) < m(u,t+ 1), Nodew was not node:’s next hop at time. How-
p(u,t) # p(u,t+1) ever,v advertised a new path toat timet, causing
u to choose a more preferred path throught time
t+4 1.
2  StepDown v = p(u,t) w(u,t) = m(u,t + 1), Node v was nodeu’s next hop at timet. How-
p(u,t) # p(u,t+1) ever, nodev changed its path at timg causingu
to choose a less preferred path at titne 1.
3  StepSame v = p(u,t) w(u,t) # 7(u,t + 1), Node v was nodeu’s next hop at timet.. Nodew
=p(u,t+1) p(u,t) = p(u,t+1) changed its path at timg which« chooses to use at
timet + 1.

Table 3.1: Cases for action and causation.

3.2.3 Causation Chains and Cycles

Actions represent a change in a node’s chosen path betwedimte steps. A node performs an
action at timef if 7(u,t) # w(u,t + 1). Every action of a node is caused by a neighboring node.
The cases of action and causation are partitioned by mtslaext-hop nodey and the relative
ranking of nodeu’s new and old paths. The functions Actient) and Causeu, t) are defined in
Table 3.1. Consider the first row where nod@erforms a StepUp action and switches to a new

path through a more preferred next-hop nedauch that:

mw(u,t) < w(u,t+ 1)
NextHop(u, t) # NextHop(u,t + 1)

Definition 16 (Causation Chains)A causation chain is a sequence of nodes where each node
y;_1 causes the action af. It is represented by = (yo v1 ...y.)! where Causgy;,t + i) =

yi—1 forall 0 < i < k. Timet is defined with respect tgy, and it takes time steps to build the
causation chain up to nodg.

Definition 17 (Causation Cycles)A causation cycle is a causation chain= (yo v . . . yx ) with
a repeated node whetg = yy.

Remark 2. In terms of the synchronicity of DPR, we show that this is nalrawback and that
DPR has sufficient expressive power to model asynchroniciyppendix A.
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3.2.4 Causation Fences

Next we distill the time-invariant properties of causatidrains using a structure we call the cau-
sation fence. We first show that causation chains are nobrargkéquences of nodes (and their
associated actions) as one would expect. Instead, thegatipa of path changes in the network
can be precisely formalized. More specifically, causatibairts can be decomposed into two
alternating types of subchains, namely, adopting and diswasubchains.

A causation subchain consists of consecutive nddeg;+1 ... ;)™ wherey; andy; are
the head and tail nodes, respectively. The head node irdesda change into the subchain by
changing its current path. Hence(y;, t + i) # w(y;,t +i+ 1). The timet is defined with respect
to the first node on the original causation chain and it takissie steps to reach nodg in the
subchain.

In an adopting subchain the head nggenakes a new path available that all subsequent nodes
adopt. In Figure &, for example, nodé makes path{10) available that node adopts. Nod@& in

turn adopts patt3210) when node2 makes path{210) available.

Time DPR Adopting
1 2 3 Subchain
=0 @@ @ @
=1 ‘4_‘0 > & -® O (101 (21002 (3210)
! ® 0 o« o< -

0 T

3
0
v

<--o~

Figure 3-7: An example of an adopting subchain. Adopted/discardedspati
represented by solid/dotted arrows, respectively.

Definition 18 (Adopting Subchain) An adopting subchain of is (y; yit1 .. ;)™ fromy; to
y; for i < j where Actior{y,) # StepDown for ali < k£ < j. This is irrespective ofj;’s action.

On the other hand, all nodes in a discarding subchain aralipitising a path through the head

nodey;. However,y; discards this path, forcing all subsequent nodes to chdteaate paths.

Definition 19 (Discarding Subchain)A discarding subchain of is (y; yi+1 ... y;)* from y;
to y; for i < j where Actior{y,) # StepUp for alli < k < j. This is irrespective of;'s action.
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Lemma 1 (Chain Decomposition)Every causation chaity’ = (yo v1...yx)! can be decom-
posed into alternating adopting/discarding subchaifis= YY! ... Y™, where the tail node of
subchainY is the head node of subchatff+!.

Proof. This can be trivially shown with a recursive constructioriarng with a causation chain
Y = (yo y1 ... yx)!, we look at the last nodgy, and add it to the end of a new subchaih
We construct either an adopting or a discarding subchaiert#ipg ony;’s action. If the action
of y;, is StepUp or StepSame, théfl is an adopting subchain. We continue adding nagds
Y’ starting fromi = k& — 1 until we reach a nodg; such thatj < i and its action is StepDown.
At this point we start constructing a discarding subchair. ddhtinue recursing until we reagh
which is added to the current subchaihregardless of its action. O

This will serve as the basis for constructing our time-ifesar causation fence structure. Fig-
ure 38 shows the alternating subchainssaiD GADGET.

2 (320) 3 (430) 4 (1430)1 (210) 2

I B A

1(20) (30) ;{mo) ; (10)

~
Discarding Adopting Discarding
Subchain Subchain Subchain

Figure 3-8: Alternating subchains oBAD GADGET. Adopted/discarded paths
are represented by solid/dotted arrows, respectively.izdotal paths are more
preferred than vertical paths.

The causation fence is a structure that distills the commelds {.e., path changes) in a causa-
tion chain. In particular, it only concerns itself with thedd and tail nodes of adopting/discarding
subchains. The only paths that the causation fence conitsetfswith are the adopted and dis-

carded paths in the subchains.

Definition 20 (Causation Fence)A causation fence is formally defined By= (N, R, Q) where:
e N\ is the set of, not necessarily uniquepivot nodes such that = {ug, ..., u,—1}.
e R is the set of rim paths, where ea8h € R is a path fromu; to u;_1.

e Qs the set of spoke paths, where edghe Q is a path fromu, to destinationd.
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e Each nodey; (except the first and last nodes) prefers a path throughnit@rid neighbor’s
spoke path over its own spoke pai®;Q;_1 > Q;.

The causation fence can be seen as an open-ended dispute Wisaenple causation fence
is shown in Figure ®. The first and last pivot nodes are missing their (potentiad and (poten-
tial) spoke paths, respectively. The exact manner in whichusation fence manifestse(, the
alternating adopting and discarding subchains propeidywyhat will allow us to precisely infer

the root cause of a causation cycle.

Uo Ry u4q R, U‘z oo Un.2
I Qo I Q, Qn2

Figure 3-9: Causation fence.

Up-
Rn-1 n-1

Lemma 2 (Chain-Fence RelationshipEvery causation chai” = (yo ...yx)! is equal to the
concatenated rim pathRB; ... R,,_; of a causation fenc& = (N, R, Q).

Proof. Using Lemma 1, we break up the causation chaimto n causation subchains
yo vt oyt

where each subchairi” is of the form
YT = (yh.yn)”

The first nodey, in causation chairt” and the end nodeg] of each subchaiy’™” are added as
pivot nodes into the causation fenge The rim paths of" are the paths that connect each pair of
pivot nodesy; to u;_1. There are two cases to consider. If the pivot nodes are part adopting
subchain then the first pivot node_; is the head of the subchain. Pivot nade ; makes a new
path available that all subsequent nodes along the subui@ining «; adopt. Thus, during the
course of routing, once an adopting subchain is built, allesoin the subchain are on the rim path
that is being created. This rim path connegigo u; 1. A similar argument follows if the pivot
nodes are part of a discarding subchain where all nodes isubehain were on the rim path,
connectingu; to u;_1, that is being discarded. Note that the causation chainggates in the
opposite direction of the paths being created. O

Figure 310 shows the causation fence induced by the causation chkigtlire 38.
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2 (32) 3 (1:3) 1 (21) :
(20) (30) 4 (10)

Figure 3-10: Causation fence example.

3.2.5 Dispute Wheels

Griffin et al. introduced dispute wheels in [Griffin et al., 2002], whereitlexistence is a necessary
condition for an SPP instance to not have a stable assignmfemlispute wheel, as shown in

Figure 311, represents a cyclical set of path preferences.

Figure 3-11: Dispute wheel.

Here we introduceoroper dispute wheels where the rim paths form a simple cycée, (ho
nodes are repeated other than the starting and ending nodeghaw that every dispute wheel

mustcontain a proper wheel inside it.

Theorem 1. Every non-proper dispute wheBl = (N, R, Q) contains within it a proper dispute
wheel.

Proof. AssumelV is not proper, then there exists a non-pivot nodeich that € R; andv € R;,
wherei < j, as shown in Figure-32.

FromW a smaller dispute wheé&l’”” = (N’,R’, Q") can be constructed. There are two cases
for this construction, depending on the path preferences of
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Figure 3-12: Non-proper dispute wheeP(a, b) is the subpath of starting with
a and ending withh. P(a) is the subpath oP starting witha.
1. R;j(v)Q;-1 > Ri(v)Qi—1. W'is defined as:

N, = {’U,Uj_l,...,ui}
R = {Rj(v)>Rj—17"'7Ri+17Ri(ui7v)}
Q" = {Ri(v)Qi-1,Qj-1,-..,Qit1,Q:}

This results in the dispute wheel in Figurd3.

Figure 3-13: Smaller dispute wheel case 1.
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2. Rj(v)Qj_1 =< Ri(v)Qi_1. W'is defined as:

N/ = {un_l,...,uj,’u,ui_l,...,uo}
R/ = {Rnfl,...,Rj(Uj,U),Ri(U),Rifl,...,Ro}
Q = {Qn-1,---,Q5,Rj(v)Qj-1,Qi-1,...,Qo}

This results in the dispute wheel in Figurd 3.

Figure 3-14: Smaller dispute wheel case 2.

Thus, every non-proper dispute whé&l contains a smaller dispute wheéél’. EitherWW’ is
proper or it also contains a smaller dispute whé#l. Since this reasoning can only repeat a finite
number of iterations, every non-proper dispute wHéetontains a proper dispute wheel. [

In the next section we prove that every cycle in a policy digreepresents a dispute wheel and

vice versa.

3.2.6 Policy Digraphs

Policy digraphs simultaneously represent several DPRtsiress. In particular, we prove that

causation chains and dispute wheels are represented asgpaticycles, respectively.

Definition 21 (Policy Digraph) A DPR instance is defined in terms of a time-varying grépk-
(V, E) and a set of path preferences Given a DPR instanc® = (G, >-), the policy digraph is
denoted byO(>) = (V', E’) where each nod® € V' represents a realizable path:nand is
referred to as a pnode. Between each pair of pndtiaad(, there can be one of two edges:
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e Subpath Edgelf @ = (u P) for some node: in GG, thenP has a subpath edge

e Policy Edge If P = @, thenP has a policy edge tQ.

To simplify the representation of a policy digragh(>), all pnodes inO(>-) that are paths
originating from a single node € V' are represented by a single set of stacked boxes—a stacked
pnode. Each pnode within a stacked pnode hamaiticit policy edge to every pnode below it. A
sample policy digraph can be seen in Figuis3

It is important to note that each pnode must have an incomifipath edge. The policy
digraph in Figure 35 includes the destination node for our sampledBSADGET instance. For

simplicity, we omit the destination node from all our polidigraphs in the rest of this thesis.

1 0
10
4 1430 2
430 210
410 20
30
320

Figure 3-15: Policy digraph of B.D GADGET including the destination node

Theorem 2 (Chains in Policy Digraphs)Every causation chai” = (yo y1 ...yx) of a DPR
instanceD = (G, >) is a path in its corresponding policy digrapgh(:-).

Proof. From Lemma 2, every causation chain is equal to the condaignian paths of a causation
fence represented byt' = {N, Q,R}. Each pivot node.; prefers a path through its rim and
neighbor’'s spoke path over its own spoke patthQ;_1 > @;. Thus, causation fencg is a path
in policy digraphO as shown in Figure-36. This in turn implies that every causation ch&ins
a path inO.

O

Theorem 3(Cycles in Policy Digraphs)Every dispute whedl’ = {N, Q, R} of a DPR instance
D = (G, >) is a cycle in its corresponding policy digragh(-). Similarly, every cycle i (>)
corresponds to a dispute whdél.
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Ug uq Un-2 Un-1
Q = RiQ ) o0 0" Rn2Qn3 / Rn-1Qn-2
Q4 r Qn-2

Figure 3-16: Causation fences are paths in policy digraphs. ¥ metation im-
plies a series of subpath edges through pnodes.

Proof. This can be seen by drawing the policy and subpath edges dbrmeode i(e., realizable
path) of W in O, as shown in Figure-37. A sample cycle (and hence dispute wheel) could start

and end at pnod&,Q,,—1 as follows: (RyQn-1 Qo R1Qo Q1 ... Qn-1 RoQn-_1)

Ug
RoQn-1

Qo
u n-1 * \ u1
Rn-1Qn-2 R1Qo
Qn-1
(e}
o) (1)) b

\ R2Q1

*
Q2

Figure 3-17: Dispute wheels are cycles in policy digraphs and vice versa.

O

Remark 3. Policy digraphs essentially complement the SPP framewnd rapresent a novel
structure for understanding and analyzing the dynamic®bfyprouting.

Definition 22 (Length of Policy Digraph) We define the length of a policy digraph:
Length O(>))

to be the number of times subpath edges are traversed inrigedopath (or walk) of)(>) with
repeating nodes.g., policy edges traversed in the walk are not accounted forarlghgth). This
represents the longest possible causation chaii(#) has a cycle, then Lengt®(-)) = oo.
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3.3 Dynamic Policy Routing Model with Time-Varying Path Preferences

3.3.1 Overview

In this section we outline the DPR model with time-varyinghppreferences that will be used in

chapter 6 to derive the properties of safe.(convergent) policy routing dynamics.

3.3.2 Basic Notation

Definition 23 (Path PreferencesAt each timet, each node: has a unique preference over paths
originating atu. This dynamic ranking is represented by theoperator. Ifu prefersP* over Q*
at timet then: P =t Q%. If u prefersP“ overQ* for all ¢t then: P* = Q. Strict preference is
defined by:

Pu >_t Qu iff Pv tt Qu andQu %t Pu

For all timest, for each node, € V, = is a total order oveP“ U (). Thus each node has an
ordered preference over all its pathgoot. If two paths start with different nodes, then they have
no preference relation. Forbidden patRsare those ranked below the empty path for all times:
() = P. All paths with repeating nodes are forbidden.

Definition 24 (DPR Instance) A Dynamic Policy Routing (DPR) instance consists of a grapth a
a path preferenc® = (=!, G).

Definition 25 (Best Paths) At each time index, every nodeu has a path tooot, represented by
P* = 7(u,t). The available path choices of a node, via all possible teighv, are represented
by Choicesu, t) where:

Choicegu,t) = () U {(u (v, 1)) : (u,v)" € E}
The Bestu, t) notation represents the current best pathufor
Bes{u,t) = max Choicesu, t)

The paths assigned to nodes at each tirisetheir best path of the previous round. For all nodes
ueV:

e m(u,0) =)

o 7(u,t) =Bes(u,t —1)

The path used by nodeat timet, 7(u, t), was its best path at time- 1, Bestu, t — 1). This best
path was determined using the ranking .
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#  Action(u,t) Causéu, t) Condition Explanation

1 RankDec v =p(u,t) w(u,t) =t w(u, t + 1) Nodewv was the next hop ai’s chosen path at time
However, node) changed its path at time causing
u to choose a less preferred path at titme 1.

2 Rankinc v=p(u,t+1) w(u,t) <t w(u, t + 1) Node v advertised a new path at time causingu
to choose a more preferred path througlat time
t+ 1.

3 RankSame v = empty w(u,t) = w(u,t +1) v is empty, because’s path did not change between

timest andt + 1.

Table 3.2: Cases for action and causation.
3.3.3 Causation Chains and Cycles

Here we consider slightly different actions when constngcour causation chains and cycles. The
cases for action and causation can be found in Table 3.2 vamdyethe relative rankings of the
current and new paths are considered, irrespective of thiehwg neighbor being used. Also, the
path preferences here are time-varying.

A sample causation chain can be seen in Figut8.3

Y, ¥, Y, Y Y, Y, Yo Y. Y Y, Y, Y,

root root root root
t t+1 t+2 t+3

Figure 3-18: Causation chaitt’ = (yo y1 y2)!. A link failure betweeny, and
root occurred at time, causingy, to have no path to root at timte- 1. This causes
y1 to switch to a less preferred path at time- 2, where Causg;,t + 1) = yo
with causation condition 1. This causgsto switch to a more preferred path via
yp attimet + 3, where Caus@y., t + 2) = y; with causation condition 2.

Definition 26 (Simple and Non-Simple Causation Cycle§jiven a causation chain of the form

(Yo 11 --- Yk yer1)t if yo = yi then a causation cycleyy y1 ... )t exists. Ify; # yri1,
then the cycle isimple otherwise the cycle ison-simple The following causation chains contain
simple and non-simple cycles:

Simple: (o y1 Y2 yo y3)"
Non-Simple: (yo y1 y2 vo ¥1)"

A sample causation cycle is shown in Figuré®
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Yz
Yo
root root root root root

t+1 t+2 t+3 t+4

Figure 3-19: Causation cycl&” = (yo 1 y2 yo)!. A link failure betweeny, and
root occurred at time, causingy, to have no path to root at timte- 1. This causes
y1 to switch to a less preferred path at time- 2, where Causg;,t + 1) = yo
with causation condition 1. This causgsto switch to a path through, at time

t + 3, where Causgp,t + 2) = y; with causation condition 2. The cycle is
closed withy, switching to a path viag- at timet + 4, where Causgyy,t + 3) =

y2 With causation condition 2. Note the existence of a separatisation chain
Y’ = (yo y2)! wheny, switches to the empty path at timet 2 with causation
condition 1.

3.4 Economic DPR Model
3.4.1 Overview

In this section we model the economic constraints that goieay of commercial relationships (or
agreements) between ASes in the Internet [Gao and Rexfodd,|2We refer to routing policy in-
stances that adhere to the Gao-Rexford guidelinesf@sand ones that do not adherepentially

unsafe The Gao-Rexford guidelines we consider are as follows:

1. Every node is customer, peer, or provider to its neighigpriodes. The commercial agree-

ment {.e., relationship) between any two nodes does not change over tim

2. Each node prefers a path through a customer over a patigtheopeer / provider and prefers

a path through a peer over a path through a provider.

3. Each node provides transit service only to its custom@&rss is achieved by configuring
the appropriate import / export policies for pathe.( which paths are advertised to which
neighbors and which paths are accepted from which neighbdise end result of these

import / export policies is that all paths are valley-free vélley-free path consists of zero
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or more customer-to-provider links followed by an optiopakering link followed by zero

or more provider-to-customer links.

4. A node cannot be a provider to itself. There are no custgr@rider cycles. Furthermore,
a node cannot be both a (direct or indirect) provider andr@¢tor indirect) peer to another

node as shown in Figure 2.

u .\ peer .

provider : :
provider

kY

Figure 3-20: Strict economic relationships where nodeannot be an indirect
provider and an indirect peer to node The crossed edge represents a peering
edge that cannot exist in this configuration as it would masaen both an indi-
rect provider and peer to node

The restrictions of the economic model, in particular theety of relationships allowed be-

tween nodes, enable equivalence classes of peers as shbiguia 321.
5

Figure 3-21: Equivalence classes of peers in economic DPR.
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The economic constraints we consider are a stricter versidhe Gao-Rexford guidelines
which are sufficient to guarantee stability in a static grajphparticular, the Gao-Rexford guide-
lines have no restrictions on the relative ordering of pewf provider paths. Thus, the economic
DPR model is also safe. We utilize economic DPR when corisiglsafe policy routing instances
that are guaranteed to converge. More specifically, wezstili when we introduce economic

RDMP in Chapter 4 and when we derive properties of safe potiaying dynamics in chapter 6.

3.4.2 Basic Notation

Definition 27 (Economic Operator)The economic relationship between nodes are described usin
the operator-g. This operator is essential for reasoning about the econagtationships between
nodes in both paths and causation chainstrict economic relation is defined by:

u =g v iff u=gvandu £g v
and an equivalence relation is defined by:
u=g v iff u>gvandu <gwv
Economic relationships can be derived from the operatgr
e If uis a customer of thenu <g v.
e If uis a provider tov thenu >g v.

e If uis a peertaw thenu =g v.

The properties of the economic operateg can be modeled usingre-order conditions [Davey
and Priestley, 2002]:

1. (reflexive)z =g x
2. (transitive)r =¢ y andy =g z impliesx =g z
The following transitive relationships hold:
x >g yandy >g z impliesz >g z

x =g yandy =g z impliesx >¢ 2
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Definition 28 (Customer, Peer, and Provider Pathd)e define paths by the economic relationship
between a path’s starting nodeand its next-hop. For all path3:

Custome(P") iff u >g NextHopP“)
Pee(P") iff w =g NextHopP")
ProvidefP*) iff u <g NextHogP")

Definition 29 (Valley). We define a valley to be a sequence of three distinct nodég;) satisfying
the condition:
a>gb=gc

The four types of valleys can be seen in Figur223 Every valley-free sequence is a series of
zero or more ascending customer-to-provider relatiorssHiglowed by an optional peer relation-

ship, followed by a series of zero or more descending pravioleustomer relationships.

Figure 3-22: Valleys

Definition 30 (Economic DPR Instancespn economic DPR instancg-g, =¢, G) satisfies the
following conditions:

1. All paths which have a valley are forbiddare(, are not realizable).

2. Customer paths are always preferred over peer/providdrspand peer paths are always
preferred over provider paths. Thus given paltfsand Ps':

Custome(P}*) and not Custome¢Py') = P/ > Py
Pee(P}') and ProvidefFy') = P'>P



Chapter 4
Minimizing Policy Routing Dynamics

4.1 Overview

In this chapter we formulate the Routing Dynamics MinimiaatProblem (RDMP) and show its
complexity class both in the general case and under cemimiations. The formal proofs can
also be found in [Mattar et al., a, Mattar et al., 2010a]. Weuofirst on motivating the problem
and on presenting the main intuition behind our results.

RDMP utilizes policy digraphs, a time-invariant structuvhich captures how routing update
messages can propagate in the network, to solve a graphipgtiom problem. This optimiza-
tion problem minimizes the longest possible sequence dfmpwpdate messages in a dynamic
network by changing the path preferences of nodes. The riratian of the longest possible se-
guence is only one possible optimization goal that reptssesimple min-max optimization. The
correspondence between the length of the longest sequaddbeaoccurrence of a dispute wheel
(or policy conflict) is of particular interest to us and pgnthotivated this choice. If the longest
possible sequence has infinite length, it implies that autiesgvheel (or policy conflict) exists.
Hence, if the optimization produces an RDMP instance whesgth is finite, it implies that the
routing instance is safe.¢., convergent). This allows us to explore the correspondereteden
the length of causation chains in an RDMP instance and tle¢ysaff the selected path preferences
across nodes.

Consider the policy digraph tdAD GADGET in Figure 36. Consider the hypothetical toy
example where the path preferences of exastiynodes inBAD GADGET mustbe swapped. The
resulting possible policy digraphs are outlined in Figurg. 4The optimal solutionB, where the

length of the longest causation chaire(, path) is minimized, is obtained by swapping the path

35
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Figure 4-1: All possible policy digraphs where the path preferencesxaicdy

two nodes are swapped. The bolded nodes represent the atigmetformed a
swap in their path preferences. The dashed arrows représesubpath edges
that are on the longest walk in the policy digraph. The optiswution is B
where noded and3 swapped their path preferences and the length of the policy
digraph is2. The lengths of£ and F' are infinite since they have cycles.

preferences of nodesand3. We show that finding a policy configuration which minimizes th
length {.e., the size of the longest walk with possibly repeated nodet)eopolicy digraph is
NP-Hard.

Even though RDMP as described in this thesis requires aateetl solver which cannot be
easily realized in practice, we view RDMP as a complemenfB.$Vhile SPP is concerned with
the stable assignment of paths irrespective of the reguttinting dynamics, RDMP is concerned
with optimizing the routing dynamics (by changing the patbfprences) irrespective of the paths
assigned.By routing dynamics we mean the lengths of the causatiomshahich capture the
propagation of path changes across nodes in the netwibtkie routing dynamics in RDMP are
optimized in such a way that the length of all causation chéie., paths) in the policy digraph are
finite, then the policy routing instance is stable and alipagations of path changes are bounded
(i.e., a stable unique path assignment exists as proved in [Griffah €2002]). We envision that

the formulation of RDMP will allow us to explore problems whehe dynamics of policy routing
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can be examined. In particular, an immediate extensioniegoderiving policy guidelines that
limit the control overhead due to the propagation of pattngea in the network. Alternatively,
one may develop distributed protocols that exchange dgtgnioformation to explicitly minimize
(or reduce) the routing dynamics by having nodes dynanyiehpt their routing policies. Such
control-plane optimizations to reduce the overhead ofingutlynamics (or the propagation of
route updates) could also serve as the basis for perforngtigridraffic engineering. In particular,
the routing policies can be adapted to not only minimize thging dynamics but may incorporate
other traffic engineering objectives to increase the ptaditity of traffic loads and aid operators
in capacity planning / dimensioning of their network [Feéan&nd Rexford, 2007, Quoitin et al.,
2005, Uhlig and Bonaventure, 2004].

We also consider more realistic restrictions on RDMP. Intipalar, we consider the case
where nodes abide by the Gao-Rexford guidelines that gtesrasafety i(e., convergence).We
show that finding a policy configuration which minimizes tegth of the policy digraph when
nodes abide by the Gao-Rexford guidelines can be solved yngquiial time.This result provides
insight into possible approaches for developing distedyprotocols to minimize the dynamics of
policy routing in the Internet today. Such solutions, hoareare outside the scope of this thesis.

While RDMP, as described here, minimizes the length of thgést path in the policy digraph,
many other optimizations are possible such as the (weiylaeztage or median path length, the
number of cycles in the grapkic Nodes in the policy digraph (representing paths) could bés
labelled with weights to capture many possible metrics aagtraffic load, relative path prefer-
ence, probability of using that pathic This thesis focuses on formalizing an unlabelled policy
digraph and on minimizing the length of the longest path ,(a standard min-max optimization
problem). Solving particular RDMP instances with othenpary objectivesé.g.,traffic engineer-
ing requirements) is outside the scope of this thesis.

The rest of this chapter is organized as follows. Sectionfdralizes RDMP and proves
it is NP-Hard. Section 4.3 formalizes Economic RDMR.( RDMP instances that abide by the

Gao-Rexford guidelines) and proves that it can be solveaiynomial time.
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4.2 Routing Dynamics Minimization Problem

In this section we formalize the Routing Dynamics MinimiaatProblem (RDMP). RDMP is an
optimization problem—its goal is to change the path prefees of a subset of nodes to minimize
the worst case routing dynamics regardless of changes toritherlying topology €.g.,link fail-
ures). While SPP is concerned with the stable assignmenatbiprrespective of the resulting
routing dynamics, RDMP is concerned with minimizing thetnog dynamics (by changing the

path preferences) irrespective of which paths are assigned

4.2.1 Formal Definition

Let a set of nodes in a network be denotedibyLet Q2 be a set of path preferences for this set
of nodesV'. In other words, eachk-€ (2 represents the path preferences across every nad¥ .
Each path preferencec (2 has a corresponding policy digragh(:-), representing all possible
causation chains over the set of nodlesThe set reflects the degree of flexibility in changing the
nodes’ preferences. An examglkeis where only the path preferences of a single noedel” can

be changed and the path preferences of all other nodes atle RE2MP is thus formally defined
by (V,€). The goal of RDMP is to find the path preferencesc 2 which will minimize the

worst case routing dynamics represented by the policy digra
= in Lengt
- arg min Leng hO(>))

Note that LengthO(>)) represents the length of the longest path.(causation chain) in
O(>). Thus RDMP represents a framework to tailor preference®dés in a network to minimize

the worst case routing dynamics regardless of underlyimg-varying topology.

4.2.2 Sample Instance

RDMP formalizes the example in Figureldwhere exactly two nodes must swap their path pref-
erences. In that examplg)| = 6 which each-¢<  resulting in a particular policy digraph. The
solution to this problem is configuratiaB where LengthO(>~*)) = 2. In generak) can be used

to formalize other conditions (or restrictions) on the pptbferences of nodes. For example,
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can be used to encode popular constraints such as the GéordRe@nditions [Gao and Rexford,

2001] where AS path preferences abide by the commercialnfcen@ agreements.

4.2.3 Complexity

Theorem 4. RDMP is NP-Hard.

Proof. The RDMP problem is given by a set of nodes in a netwior&nd an allowable set of path
preferences? across all the nodesc V: (V, ).

Overview of reduction fronVIAX SAT:

To prove that RDMP is NP-Hard, a reduction fromAMISAT is required. The MXSAT
problem consists of a set of variablés = {z1,z9,...,z,} and a collection of clauses =
{C1,Cs,...,C,}, consisting of disjunctions of three literals (a litet&l is a variablex or its
negationz). The goal of MaAX SAT is to determine a truth assignmentihwhich maximizes the
number of satisfied clauses. TheaMISAT problem is known to be NP-Hard. Without loss in gen-
erality we assume that each cladseonsists of literals corresponding to exactly three vadgeisb

An example of the MX SAT problem with three clauses and three literals is as follows:

Ch = XjUXy UY;;
Cy = Xl UYQUX:S
C; = XjUX9UXj5

An assignmen®t’ = {x1,z2, 23} = {1,0,0} results in all three clauses being satisfied.

Given an algorithmA which solves the RDMP problem, there is a polynomial timerilyo
B which usesA to solveMAX SAT. This reduction implies that RDMP is NP-Hard.

We can assume that algorithireceives as input a set of nodésaand a set of path preferences
Q. Algorithm A then returns path preferences e 2 whose corresponding policy digraph has a
minimal length. AlgorithmB takes as input an instandeof MAX SAT and constructs a set of
nodesV” and a set of path preferenc8s Algorithm B then utilizesA to return the optimal path
preferences-*< 2 which can then be converted to a solution to the instadnacEM AX SAT.

Algorithm B will construct a series of “structures” dependent on theutnpp Each structure
represents one or more nodes in thelsdhat will be sent to algorithmi. Each structure also rep-
resents the path preferences for those particular nodes féheach node € V represented by a
structure, a set of path preferendesis defined. AlgorithmB constructs multiple interconnected
structures to create a final “gadget”. This gadget is cordeitito a resultant set of path prefer-
ences2 which represents the permutation of all possible path peefees(2, across the nodes in
V. Finally, algorithmA is used to solve the RDMP problem on the input tu@fe?). This output
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from algorithm A is used to obtain a solution to the instancef MAX SAT. First we must define
the set of required structures. Instead of describing teéepenced?, directly, we describe the
resultant set of policy digraphs.

Continuation structure:

The continuation structure shown in Figur@4as 2 input links and 2 output links where any
input link can be connected to any output link. In other wordput link e; can be connected to
output linksegz or e4. While the example shows two input links and two output linksgeneral
the continuation structure can haweinput links andk output links.

The continuation structure maps to a single policy digrdptparticular it represents a single
network noden that has fixed path preferences whéig | = 1. The policy digraph is a single
stacked pnode. For example the connectian to ez in the continuation structure is mapped to
a causation chain from subpath edgeto subpath edges. This is possible because the policy
digraph has implicit policy edges from each pnode to the aievbit within a stacked pnode. In
general there are causation chains from subpath eglges e, to subpath edges; or e4. The
continuation structure will be used in the constructionhaf bverall gadget to obtain a solution to
the instancd of MAX SAT as we will see.

Resulting Set of
Policy Digraphs

n
e e
e 3 1
ezj:(
84 e—2>

Continuation Structure

€3

€4

Figure 4-2: Continuation structure and its resulting policy digraph.

Switch structure:

The switch structure is outlined in Figure34 This structure maps to a single network node
n. Noden has four available paths and two available path prefereneis |2,,| = 2. For the
first path preference-1 € 0, there is a path from subpath edgeto subpath edge; in its policy
digraph. Similarly, for the second path preferenegs (2, there is a path from subpath edge
to subpath edge,. If algorithm A returns a solution containing policy prefereneg, then we
say A chooses to connect structure linksto es of the switch. Similarly for the choice of it
represents a connection betwegrandey.

Variable structure:
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Resulting Set of

Policy Digraphs
n
—» e,
e —»
Switch Structure —>€s3
€y —»|
€1——= es3
n
Go—= €4 |—>e3
€y —»|
- e,
eq1 —»

Figure 4-3: Switch structure and its resulting policy digraph for eaeb Q.

For each variablé&X € X of the MAX SAT instancel, algorithm B creates a variable structure,
shown in Figure 4. This structure is composed of three continuation strestand a switch. If
A connects linke; to link T we say thatA sets the variabl&X to TRUE. Otherwise ifA connects
link e; to link F we say thatA sets the variabléX to FALSE. If the input instancd of MAX SAT
hask variables, then exactly variable structures will be created.

T

€1
Fo

Figure 4-4: Variable structure.

Literal structure:

Each claus€ consists of literals corresponding to three variables.eampleC’ = X UY U Z
contains three literals: one positiv&,, and two negativeY andZ. For each literalX or X in
a clause,B constructs a literal structure consisting of a single switor the literal X that is
connected to the corresponding variable structugs shown in Figure-8 for a positive literal.

We say positive literal structures are satisfiedlifissigns the variable structure to bRUE.
We say negative literal structures are satisfied i&ssigns the variable structure to b&LsE. If
a literal structure is satisfied, then we can safely assdnvéll choose not to conneai; to e;.
This is because in the construction of our overall gadget la we will ensure that the causation
chain leading up te; will be large enough to discouragéfrom making such a choice. If a literal
structure is not satisfied, we can assurhevill connecte; to e, to avoid creating a cycle. For
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e

Figure 4.5: Literal structure for a positive literal. The variable stture z is on
the left while the switch structur& is on the right. A negative literal structure
would connect to th& link of the variable structure.

example if the literal structure in Figure34is not satisfied then the variabtewill be assigned
FALSE. If e is not connected te, there would be a cycld.€., a path of infinite length). Hence,
A will avoid the cycle (in an attempt to minimize the length bétpolicy digraph) by connecting
eq 1o eo.

Clause structure:

For each claus€' € C algorithm B constructs a clause structure consisting of three literal
structures as shown in Figure64 We sayA satisfies a clause structure if and only if it satisfies
at least one literal structure. It follows that if a clauseagisfied there is no connection between
e1 andes. If a clause is not satisfied then there is a connection be&tweandes. This follows
directly from the definition of a literal structure. If thegat instancd of MAX SAT hasm clauses,
then exactlym clause structures will be created.

€q

'
b

)4
A

~ 4

z

)J

<

A
(-]

Figure 4-6: Clause structure corresponding to the cladise X UY U Z.
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Overall gadget to solv&1 AX SAT:

All the links between the clause structures are connectgether as shown in Figure@ The
boxes represent a path of pnodes of some lehgithe length_ is large enough to force the longest
possible pathife., causation chain) to contain such a box. Each clause steuttat is satisfied
implies there is no connection betweenande, (as shown in Figure-8). Thus the longest path
will not traverse the box and the clause structure assatiatth it. Instead the longest path will
will traverse the continuation structures at the top. Fargwclause structure that is not satisfied,
the length of the longest path will increase bbyas it includes the box. The size of the longest
possible path is equal tal. + ¢, wheres is the number of unsatisfied clause structures aisca
term not dependent oh. Thus for large enough, e can be made irrelevant td’s solution. Since
algorithm A chooses path preferences that minimize the length of trgekirpossible path in the
policy digraph, §L +¢), this is equivalent to satisfying the largest number of clause structures in
the gadget. Hence algorithf® can use algorithmd to maximize the number of satisfied clauses.
This implies that RDMP is NP-Hard.

Figure 4-7: Gadget to solve Mx SAT.

4.3 Classes of RDMP

We have defined the overall space of RDMP instances and havenghe complexity of RDMP
to be NP-Hard. One may, however, put more realistic regtristto focus on particular RDMP
instances that may provide insight into the structure ofggofouting dynamics in the Internet
today. In particular, a visual representation of a few sangfdsses of RDMP instances are outlined
in Figure 48.

One may consider RDMP instances that are cycle-free. Byedyek we mean RDMP in-

stances defined y where every possible policy digrapf>-), for every>¢< 2 has finite length.
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All RDMP
instances

Cycle-free RDMP
instances

RDMP instances that
follow the Gao-Rexford
guidelines

Figure 4-8: The space of RDMP instances.

This essentially implies tha®(-) for any random-¢< 2 contains no cycles between pnodes. An
example of afinite length policy digraph is shown in Figur@ @ eft) and an example of an infinite

length policy digraph is shown in Figure#(Right).

n1 n1
p1 p2
p2 p1
ps3 p3
p4 p4
N2 n2

(a) (b)
Figure 4-9: A policy digraph consisting of two stacked pnodes with a &héngth
of 2 (Left) and a policy digraph consisting of two stacked ge® with infinite
length (Right).
One may also consider instances where the restrictionslowadlle path preferences abide
by the Gao-Rexford guidelines [Gao and Rexford, 2001]. The-Bexford guidelines consider
the commercial / economic relationships between ASes toicethe path preferences of nodes

in such a way as to guarantee safety. One particular gualefor example, is that ASes must
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prefer customer paths over peer / provider paths. RDMP ngsta that follow the Gao-Rexford
guidelines must also be cycle-free. Otherwise there eaipath preference € (2 that follows the
Gao-Rexford guidelines but still contains a dispute whegktvwould contradict the safety of the

guidelines as proved in [Gao and Rexford, 2001].

4.3.1 Simple RDMP

RDMP instances without cycles guarantee routing safetyafiyr solution. We are interested in
further classifying RDMP instances by the level of consitisiion the nodes. For example, the
RDMP instance in Figure-4 describes a constraint where exactly two nodes in the mktmast
swap their preferences. We defiRéexible RDMP instances to have no constraints, where each

node can freely choose to swap its non-forbidden paths ertEmitly.

Definition 31 (Flexible RDMP) An RDMP instanc€V, ) is flexible if there is a set of allowable
pathsP and{2 represents every possible orderingfaf This implies that all non-forbidden paths
within every stacked pnode are interchangeable.

Definition 32 (Simple RDMP) An RDMP instancéV, Q) is simple if it is flexible and cycle-free.
Thus, the policy digraphs)(>), of every preference-< 2 have finite length.

If an RDMP instance isimple every node is flexible to change its policies and no cyclést.ex
Thus all simple RDMP instance represent safe policy routiyigamics i e., instances that do not
contain cycles or dispute wheels). Instances that are @isploeel free represent easy instances of
the Stable Path Problem, in that there is a single uniquéespaith assignment. Such instances are
interesting as they represent the type of dynamics that mwe $or: safe dynamics that converge.
All simple RDMP instances are flexible, implying that there ao inter and intra node constraints
to hinder the minimization of the routing dynamics.

The complexity of this class of problems are of particulderast as they constitute the simplest
class of routing dynamics against which comparisons candmemWe show that minimizing the

dynamics of simple RDMP instances can be done in polynornia.t

Theorem 5. Let >* be a solution to a simple RDMP instan(¥, €2). Then there exists a longest
causation chain of the policy graphl(>-*) that consists only of subpath edges.
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Proof. Assume not. Led be the set of longest causation chaing*). Based on the assump-
tion, every causation chaii € ) must have at least one policy edge. We choBse ) such
that the number of subpath edges before its first policy eslgeaiximized ovep). Letn represent
the stacked pnode through which the first policy edgé dfaverses, as shown in Figureld.
Causation chairy” traverses stacked pnodefrom subpath edge to subpath edgé via one (or
more) policy edges.

n
LN L
~ —
b—/™ P2 ‘T’ d  Longest Causation Chain Y

Length(Y) =La + Ld

Figure 4-10: The stacked pnode through which the longest causation ch&in
traverses. Links andb are incoming subpath edges, while linkandd are out-
going subpath edges. Causation chitraverses stacked pnodgfrom subpath
edgea to subpath edgé.

Let L, and L; represent the lengths of the longest incoming causatiomghaa subpath
edges: andb, respectively. Similarly, leL. and L, represent the lengths of the longest outgoing
causation chains via subpath edgesndd, respectively. For causation chaifito be the longest
causation chain traversing stacked pnagléhe following inequalities must hold:

La+Lc < La+Ld
Ly+Lg < Lo+ Ly

ThereforeL,. < Ly andL, < L,. Furthermore it must be thdt. < L;. Otherwise ifL. = Ly,
then there is a maximum causation ch&ihe ) that uses subpath edgesndc such that its first
policy edge occurs at a later stacked pnode. This conteathet assumption thaf contains the
maximum number of subpath edges before the first policy eslggaversed.

Since(2 is simple, there exists another preference ) identical toY but with the paths of
the stacked pnode swapped as shown in Figureld. This creates a maximum causation chain
oflength Ly + L. < L, + Lg. Thus>=* is not optimal as the length of the longest causation chain
was reduced. This causes a contradiction and completesdbt p

O

Theorem 6. Simple RDMP instances can be solved in polynomial time.

Proof. Let 2 be a simple RDMP instance for nod&sof a network. We describe a polynomial
time algorithm to find a preference* < 2 whose resulting policy digrap®(>-*) has minimized
length.
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B AN Ny

Lb [~ | Ld

N

a .y p1 tT’ c Causation Chain Y of Length

Length (La + Ld) no longer exists

Figure 4-11: The stacked pnode after pnode®; andp- are flipped. Links: and
b are incoming subpath edges, while linkeaindd are outgoing subpath edges.
The longest causation chaihof length(L, + L4) no longer exists.

We start with a random preferengec 2 and compute its corresponding policy digrapfr-),
as well as its longest causation chaif. This can be done in polynomial time sin€&:-) has no
cycles. IfY* consists solely of subpath edges then the algorithm stoph®atputs-. This is an
optimal solution based on the result of Theorem 5.

Otherwise we select a stacked pnede O(>) at which a policy edge of is traversed. This
policy edge is from pnodg; to policy edgeps. We perform a preference swap of pnogigsand
po in n which Y* traverses. This new policy graph has a corresponding meder-'c ) since
the RDMP instance is simple. An example is shown in Figulid 4vhere pnodep; andp, are
swapped. The longest causation cheihof length L, + L4 no longer exists since the swapping
operation removes the policy edge between subpath edgel subpath edgé. While it does
create a new causation chain of lendth+ L., we know thatl;, + L. < L, + Lg. Furthermore
this swapping operation does not create any new causatansbf lengthZ, + L.

This operation will occur onlyO(m?) times, wheren is the number of nodes . This is
because after the swap occurs, nogeandp- will not be swapped again for a causation chain of
length L, + L,;. Thus node$; andp, will be swapped once for every maximal causation chain
length L, + L,. Sop; andp, will be swapped at most times, sincel,, + Ly < m. There are
O(m?) pairs of pnodes, hence the swapping operation will occuy Orin?) times. Thus there is
a polynomial time algorithm which always returns an optis@ltion to a simple RDMP instance.

]

4.3.2 Economic RDMP
Next we consider RDMP instances that abide by the Gao-Rexgigidelines that guarantee safety [Gao
and Rexford, 2001].

Definition 33 (Economic RDMP) An RDMP instanceV, €2, =¢) is economic if there is a set of
allowable valley-free path® and(2 represents every possible ordering/fconsistent with the
Gao Rexford guidelines and the economic relationships of

Theorem 7. Let =* be a solution to an Economic RDMP instan@é (2, =g). Then there exists
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a longest causation chain of the policy digraph{-*) that consists only of subpath edges and
policy edges between pnodes representing paths of difftees based ok .

Proof. This proof proceeds in a similar fashion to the proof in Tieeor5.

Assume not. Le} be the set of longest causation chaingdf-*). Based on the assumption,
every causation chaiii € ) now has at least one policy edge between pnodes represgiating
of the same type based er;. We again choos& < ) such that the number of subpath edges
before this first policy edge is maximized ov@r Causation chairt’” must have a policy edge
traversing at least one stacked pnedas shown in Figure-42. The pnodes within the stacked
pnoden represent paths of three distinct types: customer, proddd peer paths. In general there
are two types of policy edges: policy edges between pnogeegenting paths of the same type
and policy edges between pnodes representing paths ofeditfeypes. The policy edges we are
considering here must be between pnodes representing gfaties same type. In Figure 2 the
longest causation chailn traverses stacked pnodefrom subpath edge to subpath edge via a
policy edge between two pnodes representing customer.gdtis that this is the first occurrence
of this type of policy edge irY".

n

La Lc

_L_§\\ P | ¢ Longest Causation
A . Custom:r paths Chain Y
E P2 +— > =

Lo [ Length(Y) = La + Ld

e

\
Peer paths

Provider paths

Figure 4-12: The stacked pnode through which the longest causation ch&in
traverses. Links: andb are incoming subpath edges, while linksand d are
outgoing subpath edges. Causation chaitraverses pnode from subpath edge
a to subpath edgeé.

Using an argument similar to the one in Theorem 5, the sangpiaiies hold and there exists
another preference’e ) that is identical tdr” but with the paths of the stacked pnogdswapped
as shown in Figure-43. This creates a causation chain of lengih+ L. < Ly + L,. Thus
>~* is not optimal, causing a contradiction. Note that the swedppnodes represent paths of the
same type and hence can be swapped. Thus, all causatios cbataining policy edges between
pnodes representing paths of the same type can be eliminglegionly leaves causation chains
consisting of subpath edges and policy edges between pregtesenting paths of different types.
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Note that pnodes representing paths of different typesatamm swapped as such a swap would
violate the Gao-Rexford guidelines since all customerpathst be preferred over peer paths and
all peer paths must be preferred over provider paths.

Lb Ld
b N d Causation Chain Y

N Customer paths of Length (La + La)
a—| \ pr ——*>¢C no longer exists

La Lo Lc

Peer paths

Provider paths

Figure 4-13: The stacked pnodewhere two pnodes representing customer paths
are swapped thus eliminating the longest causation cHaihinks ¢ andb are
incoming subpath edges, while link@ndd are outgoing subpath edges.

Theorem 8. Economic RDMP instances can be solved in polynomial time.

Proof. The proof is identical to the one presented for Theorem 6. drte difference is that path
preference swaps can only occur between pnodes that repreeths of the same type in order
to abide by the Gao-Rexford guidelines. Hence the only diffee is with a node’s flexibility in
setting its routing policies. O



Chapter 5

Detecting Policy Conflicts

5.1 Overview

In this chapter we derive all the required theoretical rsstd develop our detector for policy
conflicts. We also provide pseudocode fatr& 7Y PULSE—our token-based distributed algorithm
for detecting policy conflicts in any dynamic networkar&TyPULSE diagnoses and monitors the
health of the network by detecting policy conflicts that cbpbtentially lead to unbounded routing
dynamics i.e., protocol divergence) in realtime. The formal proofs andalhm specification can
be found in [Mattar et al., b, Mattar et al., 2010b]. We focesehon motivating the problem and
on presenting the main intuition behind our results.

Detecting policy conflicts has been a long-standing probfepolicy routing [Varadhan et al.,
1996]. Policy conflicts induce unhealthy (and unnecessamyling dynamics that should (and
could) be avoided or eliminated. The existence of policyflixis indicates that routers may not
be able to agree on any stable path assignment and BGP cdalttiptty be divergentife., could
lead to potentially unbounded routing dynamics). Suchimgubscillations are hard to diagnose
in realtime as path changes do occur in the network and iténdfard to classify a route flap as
a result of transient routing dynamics or a persistent gatmnflict. This is especially true if the
conflict is among many nodes in the network that are disttgeographically and are managed
by many independent entities. This reduces QoS prediitiabiicreases delay variability, causes
service disruption, and increases packet loss [Laboviét. €2000].

We utilize causation fences, a time-invariant structurectvlunder certain conditions repre-
sents a dispute wheel, to prove tlaay cycle of route updates where a node ends up with a more

preferred path must be due to a policy conflitherwise, we prove that the cycle must be due to

50
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a transient route flap.

Our theoretical results are outlined in Figured 5 We utilize these theoretical results to de-
velop SAFETYPULSE—our token-based distributed algorithm that is both préyvatmrrect (as
SPVP [Griffin and Wilfong, 2000]) and computationally eféot (as some of the light-weight
heuristic approaches [Yilmaz and Matta, 2007, Cobb and Muwsu2004]). In particular, we
identify the root cause of a causation cycle as either a igahsoute flap or a policy conflict.
SAFETYPULSE has several characteristics, namely, it is computatigrefficient (a constant fac-
tor reduction in message size and number of messages wheraoeuto SPVP), provably correct,
and backwards compatible. More specifically in terms of igfficy, S\FETYPULSE requires each
node to append onl¥ bits alongside each message update. Thus, fer-ande causation chain,
an overhead ofn bits is incurred, compared ten bits in SPVP wherer >> 2 represents the
number of bits required to encode the history informaticat theeds to be appended by each node.
Also, SAFETYPULSE reduces the number of messages required to detect a polidlyctdoy at

least a factor of as we will see.

Time-Varying Time-Invariant
Structures Structures
Causation alternating subchains | Causation |

] l
Chains | ! Fence |
|

" Dispute |
Wheel i

yes

Figure 5-1. Overview of the theoretical results underlying our conftietection
algorithm.

One could also visualize our conflict detection algorithrimmgsolicy digraphs. Consider the

following sample walk in the policy digraph &AD GADGET in Figure 36:

(20)(320) (30)(430) (1430) (10)(210)(20)
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It is easy to see that if a node is involved in a cycle of routdaips such that it ends up with
a more preferred path, then a policy conflict exists. In thega walk above, nod2 initially had
path (20) but ended up with patf210). Clearly the cycle can repeat indefinitely as the walk can
go down the ladder at nodkand follow the same sequence of nodes again.

Our policy digraphs also provide intuition into the opeoatiof existing solutions that pass
diagnostic information alongside route updates. In paldic they provide insight into how the
diagnostic information should bencoded For example, SPVP [Griffin and Wilfong, 2000] ex-
changes extended path histories to detect policy conflitte existence of a policy conflict is
inferred when a node adopts and discards the same path ihneacfyouting update messages. To

detect the cycle from our sample walk, SPVP encodes the ageldgpath histories as:

(+20)(+320) (—430) (—1430) (+210) (—320)
(+430) (+1430)(—210)

In SPVP, any node that switches between two paths alwaysidpplee more preferred path. When
a switch to a more preferred path is made}; @& appended. Conversely, when a switch to a less
preferred path is made, a is appended. To detect a policy conflict, SPVP needs one ofcle
updates to adopt patf210) and another cycle to discard it as we can see from our samgke wa

SAFETYPULSE, our token-based distributed algorithm, leverages owrttecal results to con-
struct the most generalized detector for policy conflicigs the most generalized detector because
a node does not need to flap on geme pathtwo (or more) times for a conflict to be detected
as in SPVP [Griffin and Wilfong, 2000]. Instead, ifn@deis triggered twice by a cycle of route
updates, checking if the node ended up with a more prefeatdip sufficient. This is irrespective
of how the underlying topology changes over time. To complaegankings of the paths involved
in the cycle, 3FETYPULSE requires each node to know which one of its paths is part ofs(or
involved in) the cycle of route updates propagating in thevoek. Such is the type of information
that must be encoded im8ETYPULSE'S token.

One could also use policy digraphs to synthetically comstpolicy routing instances with

more complex routing dynamics. Consider a walk in Figugtbat starts when path is adopted.
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The adoption of path, triggers a cycle of updates that makes patlavailable and in turn causes
it to get adopted. Since nodes B and C are involved in a policy conflict, path, will get
withdrawn after another cycle of updates between notle® and C. The more preferred path
az, however, may be adopted via another cycle of updates throodesA, D and E. In this
case if the network stabilizes, no policy conflict will be eleted if the detection criteria is a single
path being adopted and discarded. This highlights thatutdcpotentially take a long time for a
node to adopt and discard a path. It is also important to rateany changes in the underlying
topology could stop the propagation of path changes (sinogesaths may not be available to
continue inducing path changes across nodes) making potinflicts harder to detect. That is
precisely why the condition used byABETYPULSE to detect a policy conflict reduces the number
of messages required by at least a facto? efhen compared to SPVP.

/( E

a > d;

ai dy
5 .
b2

c, t4— by
(o} B
C

Figure 5-2: Sample policy digraph.

The rest of this chapter is organized as follows: Sectionuilzes DPR to derive all our

theoretical results that will serve as the foundation far®FETYPULSE algorithm in Section 5.3.
5.2 Detecting Dispute Wheels

Once a causation cycleé = (yo y1 ... y,)t whereyy = vy, is realized, it implies that the change
instigated byyg caused a series of actions to propagate alonmtil v, (i.e., yo) receives another

route update. Given any causation cykElewe answer the following questions:
e Could the cause that inducédbe inferred?

e Couldy, perform that inferencéocally and independent®y
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To infer the exact cause that inducgdwe show that iy, has a more preferred path at the end
of the causation cycle, at timet k, than the path it had at timethen a dispute wheehustexist.
Otherwise a transient route flap occurred at tiffee., a path was withdrawn or made available).
We also show thay, can indeed perform that inference locally, Imait independently This has
implications on how policy conflicts can be detected in pecact

We know that any causation cyclé, of a DPR instance) = (G, ), induces a causation
fence ' = {N,R, Q} where the first and last pivot nodes are the sames u,,_1, as shown in
Figure 53. Using F', we show the necessary condition Brto be a dispute wheel in Lemma 3.
That condition is based on the relative ranking of p&fhsandR,,_1Q.,_», irrespective of whether
these paths were adopted or discarded. In Lemma 4 and Lemnessbaw how these paths can
be determined. This allows us to infer either the existeri@edispute wheel in Theorem 9, or the
occurrence of a transient route flap in Theorem 10. Finallyowtline howy, could theoretically

infer the existence (or lack thereof) of dispute wheels.

U R, U1O oo U2 R, Un1
‘ I ‘ : Ui
QO Q1 Qn-2

Figure 53: If ug = u,—1 andQy < R,_1Q,_o then a causation fence is a
dispute wheel.

Up = Un

Lemma 3 (Fence-Wheel RelationshipA causation fencéd” = {N, R, Q} of a DPR instance
D = (G, >), induced by a causation cycle of sizewhere the first and last pivot nodes are the
sameuy = u,_1, IS a dispute wheel i)y < R, 1Qn_o.

Proof. A sample causation fence is outlined in Figurd.@Pivot nodeu has a spoke patty, but
not a rim path while pivot node,,_; has a rim pathk,,_; but not a spoke path. A dispute wheel
W can be constructed frotAl as shown by removing pivot nodg and setting?,, 1 = Qo. O

Lemma 4. Given a causation fencé = (N, R, Q) of a DPR instance) = (G, >), induced by
a causation cycle of size where the first pivot node ifi is ug, Qo = 7(ug, t + a) for some time
offseta € {0, 1}. If ug is part of an adopting subchain then= 1. Otherwisea = 0.
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Proof. The offseta simply determines whether the pafly of nodeu, is the current pathr(ug, t)

or the new pathr(ug,t + 1). As shown in Figure 8, nodeu only has a spoke patfy. If ug

is part of an adopting subchain then subsequent nodes dlergybchain are adopting a new path
via ug. This implies thatQ)y must have become available and hefke = 7 (ug,t + 1) where

a = 1. If, on the other handy is part of a discarding subchain then subsequent nodes Hieng
subchain are discarding the path they were initially usitaguwg. This implies that)y must have
been discarded and hen@ = 7 (ug,t) wherea = 0. O

Lemma 5. Given a causation fencE = (N, R, Q) of a DPR instancé) = (G, >-), induced by a
causation cycle of sizie, where the last pivot node iR isu,—1, Ry, 1Qn—2 = m(up—1,t+k+0b)
for some time offsét € {0, 1}. If u,,_; performed a StepDown thén= 0. Otherwisep = 1.

Proof. The offseth simply determines whether the palt), 1@, _» of nodeu,_; is the current
pathm(u,—1,t + k) or the new pathr(u,—1,t + k + 1). The offsetb simply determines whether
un—1 Should consider the current patfiu,,_1,t + k) or the new pathr(u,—1,t + k + 1). As
shown in Figure 8, pivot nodeu,,_1 only has pathR,, 1Q,_». If pivot nodew,,_; performed

a StepDown then it is part of a discarding subchain wheresitadids pathk,,_1Q,,_2. Hence,
R, 1Qpn—o = m(up—1,t+ k) whereb = 0. Conversely, ifu,,_ performed a StepUp or StepSame
then it is part of an adopting subchain where it adopts @gath,@,_»>. Hence,R,, 1Q,_2 =
m(up—1,t+ k+ 1) whereb = 1. O

Theorem 9(Dispute Wheel Inference)Given a causation cycl¥, such tha” = (yo y1 ... yi)!
wherey, = yy, there exists time offsets € {0,1} andb € {0, 1} such that ifr(yo,t + a) <
7(yk, t + k + b) then a dispute wheel exists aroukd

Proof. Let F' be the causation fence induced ¥y Using Lemma 4 we can determine time offset
a and hence patly,. Similarly, using lemma 5 we can determine time offéetind hence path
R,_1Q,_o. From Lemma 3 we know that if the conditidpy < R,,_1Q._> is satisfied then the
causation fencé’ is a dispute wheel. Hence, the existence (or lack thereaf)di$pute wheel can
be inferred. O

Theorem 10(Route Flap Inference)Given a causation cycl®, such thaty” = (yg 1 ... yi)!
whereyy = yp, if no dispute wheel exists thep received a transient route flap during the causa-
tion cycle.

Proof. From Theorem 9 there exists time offsets {0,1} andb € {0, 1} such that the condition
m(yo,t+a) > 7w(yk, t+ k+b) holds, otherwise a dispute wheel must exist. Thus péth,t+ a)
had to be withdrawn byyy's next-hop neighbor during the causation cycle to fajgeo use the
new, less preferred, patt{yy, t-+k+0b). Otherwisey;, would not have changed its patiy, t+a).
This would imply thatr (yo, t + a) = 7(y, t + k + b) which is a contradiction. O
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If nodey, observes causation cyclg to infer the existence of a dispute wheel, nggenust:
e Compute time offset to determine patld)q
e Compute time offset to determine patt,, _1Q,_2

The computation of offset depends only on the action gf at timet + £ (Lemma 5). The
computation of offset is dependent on whethgy is a part of an adopting or a discarding subchain
(Lemma 4). Lety; be the first node irY” afteryg whose action is not a StepSame. If the action
of y; is a StepUp theny, is part of an adopting subchain. Otherwigg,is part of a discarding
subchain.

Thus, given the type of subchain thatbelongs to, the dispute wheel inference problem can
be solved. The solution is indeed local but cannot be peddrindependently—it requires the

cooperation of the first node along Y that performed a Steptpt@pDown action.

Remark 4. A causation cycleY” is triggered by one and only one event. An event could be a
change in alink’s availability causing a node to adopt ocalid a particular path. If multiple events
occur, their effects would be propagated along separateatian chains. If nodg, observes
causation cycle” it needs to determine pathy that triggered the cycle and patt),_1Q,,_» that

it had when the cycle was detected. Even if nggi@erforms other actions due to other causation
chains propagating in the network, the relative rankingathpQy andR,,_1Q,,_+ is still sufficient

to infer the existence of a dispute wheel.

5.3 SAFETYPULSE

Dispute wheels may result in protocol divergence. The dieteof dispute wheels is of practical
value to system administrators. By their fundamental g dispute wheels represent cyclic
policy conflicts, which break from the traditional tierecchitecture of the Internet [Gao and Rex-
ford, 2001], and could potentially lead to unbounded dymamiAFETYPULSE is a distributed
algorithm to detect dispute wheels. Once dispute wheelsletected, they can be reported to

administrators for further analysis.
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5.3.1 Overview

SAFETYPULSE piggybacksmessageslongside route updates. One possible implementation of
SAFETYPULSE on BGP would be to use message options. Each node places aodtaihin this
message. As a node receives a route update with this messelgegses a new path and broad-
casts a new message alongside its own route updateETS PULSE essentially sends messages
between nodes along causation chains.

If a nodey receives a message from a neighbor which giadoken, then it can be inferred
thaty has been involved in a causation cycle. Assume that gosient out a token at timg,y;
and received the token back at tifje A dispute wheel can be detected by comparing the relative
ranking ofy’s realized paths around these times. Using Theorem 9 it eanférred that a dispute

wheel exists if for two given time offsets€ {0,1} andb € {0, 1}:

(Y, tout + @) < 7(y, tin + b)

Generally speaking, this means that if ngdead a more preferred route around the time when
it received the token (at timg, + b) than around the time when it sent out the token (at time
tout + @), then a dispute wheel exists.

The time offsets: andb represent whether the paths used are the ones adopted anddidat
timestqy andtjy, respectively. Time offset is determined by the structure of the causation cycle.
According to Lemma 4, it depends on whetheis part of an adopting or a discarding subchain.
As we will see, time offset, can be computed by a third party node on the causation cyoiee T
offsetd, on the other hand, is determined by nadeaction at time;,. According to Lemma 5, if
y performed a StepDown theén= 0. Otherwisep = 1.

The information in the token received by nogés enough fory to recover paths (y, tout+ @)
andr(y, tin + b) for the comparison. We describe ther&ETYPULSE algorithm in three sections

as shown in Figure-8.

1. Sending out token with ProcessNode()

2. Computing time offset with SetTimeOffset()
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3. Receiving token with DetectDisputeWheel()

2. SetTimeOffset()

node v

0,=(k,a)
0,=(k,_)

node y

1. ProcessNode()
3. DetectDisputeWheel()

Figure 5-4: Overview of S\FETYPULSE algorithm.

5.3.2 Sending the Token

We defineM (y,t) to be the BFETYPULSE message that nodg sends out alongside its route
update at time. In general, if nodey changes its assigned path at timéen it has performed an
action, switching from path(y, t) to pathn(y,t + 1). Every timey performs an action, it stores
the paths associated with its actiariy, ¢) andr(y, ¢ + 1), in a hashtable using a newly generated
key k. The token to be sent outts = (k, ), wherek is the key identifying the action performed
and_is an empty slot in which the time offsetwill be placed by another node. The new message
M (y,t+ 1) to be sent out alongside a route update at tirrel following an action performed by

y at timet must contain the following:
e the message received initially from the node that causeddtien

¢ nodey’s new tokend,

More formally, if w(y,t) # 7 (y,t + 1) then:

M(y,t +1) < M(Causgy,t),t) + 0,
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1. function PROCESINODE(y, t)
Bes{y, t) «— max, Choicesy,t)
m(y,t+ 1) — Besty,t)
0y — 0
if m(y,t) # m(y,t+ 1) then
k < new key
Storek, ((y,t), w(y,t +1)))
Hy - (kv —)
M(y,t +1) «— M(Causéy,t),t) + 6,

Figure 5:5: SAFETYPULSE token creation and action storage.

Messages are propagated along causation chains whereadehlong the chain appends its
token to the received message that triggered an action ad seit a new message. The algorithm

for sending the token is outlined in Figureb5

5.3.3 Receiving the Token

When a nodey receives a tokerd, that it has previously created in a routing update message,
it checks to see if a dispute wheel has been created. Thentsrikthe token aré, = (k,a)
wherek represents the key to lookup the action anekpresents whether to use the discarded or
the adopted path of the action. Note thawill be created by a third party node as described in
the next section. Here, we assume thdtas been set appropriately andy, tout + a) can be
determined.

Next, using Lemma 5 we determine the second time offdetfind 7 (y, tin + b). According
to Theorem 9 if:

m(yo,t +a) < w(yg,t + k +b)

then a dispute wheel exists aroulid Using this information, the dispute wheel detection algo-

rithm can be constructed as shown in Figuié. 5

5.3.4 Computing Time Offset

The remaining part is to determine time offgetin Lemma 4, we showed that the valuedois

dependent on the type of subchain thdielongs to. This can be determined by the action of the
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1. function DETECTDISPUTEWHEEL(y, t)

2: if 6, € M(Causéy,t),t) then

3: 0y = (k,a)

4: (Pl, PQ) “— LOOkUp(]{J)

5: if a = 0then

6: Prest— P

7: else

8: Prest— P

o: if Action(y,t) = StepDowrthen
10: b—20

11: else

12: b—1

13: if Pest< 7(y,t+ b) then

14: ReportDisputeWheelest, 7 (y, t + b))

Figure 5:6: SAFETYPULSE token receival and dispute wheel detection.

next nodey, along the causation cycle.dfperformed a StepUp thepis in an adopting subchain.
If v performed a StepDown thegnis in a discarding subchain. ifperformed a StepSame, thg's
subchain type is decided hys next node in the causation chain. Thus a node can fill inithe t
offsets of the uncategorized nodes based on the actionrpextb If a node performs a StepDown
or StepUp action, it can fill the time offsets withor 1, respectively. The algorithm in Figure®

shows how third-party nodes can fill in the time offaet

1. function SETTIMEOFFSET(y, t)

2: for all unclassified), = (k,_) € M(y,t+ 1) do
3 if Action(y,t) = StepUpthen

4: 0, — (k,1)

5: else ifAction(y, t) = StepDowrthen

6: 0, — (k,0)

Figure 5-7: SAFETYPULSE time offset computation.

5.3.5 Complete Algorithm

The complete S8FETYPULSE algorithm is outlined in Figure-B. Each node; at timet simply

executes the three algorithms described above.
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1. function SAFETYPULSE(y, t)
2: ProcessNode( t)

3 SetTimeOffsety, t)

4: DetectDisputeWhee}( t)

Figure 5-8: SAFETYPULSE algorithm.

5.3.6 Space Requirements

The token sent by every nodehas two parts, the kel and the time offset.. The key needs to
index an action stored locally at nogelf nodey is expected to switch betweéhpaths, then the
size ofk only needs to bé. The time offsets can be represented by two bitgp,. The first bit

bo is initially set to 0, indicating that has not been set. The secondiiis set to a random bit.
Once a third party node wants to set:, it manipulates: = byb; as follows: seby to 1 and flip

by if the action ofv is a StepUp. When nodgreceivesa = byb; it checks ifp, is set and ifb; is
flipped (compared to a locally stored versionaf If so, then nodey knows that it should check
against the adopted path. Otherwise, ngd#hecks against the discarded path. It is important to
note that the key: does not need to be appended to the token itself as each nodeea track

of its index in the list of appended tokens. Then when a cygldeiected, the node can index its
token appropriately using the keéythat is stored locally. Thus the overhead added by each node

can be exactly two bits.

5.3.7 Characteristics

SAFETYPULSE has the following characteristics:

e Provably Correct. SAFETYPULSE is based on a theoretical framework of policy routing
dynamics and changes in network topology do not affect tieectmess of detecting policy

conflicts.

e Efficient Space A small token of space complexit{(1) (two bits) is appended to each
routing update message irrespective of how the routing mhjcemanifest in the network.

Thus a causation chain consistingrohodes incurs a message overheadrobits.
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e Policy Freedom Since 3\FETYPULSE is a dynamic detection algorithm, it does not require

any restrictions on routing policies to be imposed.

e Backwards Compatible SAFETYPULSE requires only a minor extension to BGP and is
therefore backwards compatible. To detect policy confliotdy the ASes along the causa-

tion chains / cycles to be diagnosed need to adopt the pirotoco



Chapter 6

Properties of Safe Routing Dynamics

6.1 Overview

In this chapter we distill three properties of safe routiygamics {.e.,dynamics when the policies

of all nodes adhere to the Gao-Rexford guidelines). Thesgegpties hold irrespective of changes
to the underlying topology or path preferences and can be tesdiagnose the health of the net-
work, in particular its routing dynamics. To this end, wecatievelop a token-based distributed
algorithm, NTERFERENCHEAT, to check adherence to these properties. We discuss and mode
reasons why ASes violate the Gao-Rexford guidelines whdal to potentially unsafe dynamics
where the properties no longer hold. We show that these disasan still be precisely character-
ized and can be used to enhance the diagnostic powerT#RFERENCHBEAT. Our distributed
algorithm, NTERFERENCHBEAT, essentially diagnoses and monitors the health of the mktayo
detecting invalid routing dynamics.€., causation chains that do not adhere to the derived prop-
erties) in realtime. The formal proofs and protocol speatimn can be found in [Mattar et al.,

c, Epstein et al., 2009]. We focus here on motivating the lpraband on presenting the main

intuition behind our results.
6.1.1 What are the properties?

Non-Interference Property: If an ASy is not at a higher tier-level than (provider to) any two of
its neighborsr and z, thenz and z cannot directly induce path changes in each other through

This property holds regardless of changes in the underlyapgplogy or path preferences.

The notion of “inducing path changes” is synonymous with aticmous propagation of path

changes across nodes, which we model in DPR as a causatian tTha basic premise of the non-

63
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interference property comes from a theoretical result whee proved that any causation chain
must not contain sequences such as a provider-to-custmapeovider. The relative tier-level of
ASes can be easily derived from the commercial relatiorsshgiween ASes. For example, an AS
x that is a provider to AS is at a higher tier-level.

It is important to note that all the properties we derive)uding the non-interference property,
are with respect to a single causation chain propagatingeémetwork. This causation chain is
initiated by one and only one root cause such as a changeni’s éivailability or a change in a
node’s path preferences.

Figure 61 outlines all the Internet configurations where ASannot directly affect A&

through ASy. More specifically, non-interference holds if:

1. ASy is multi-homed with providers AS and ASz.
2. ASy is a customer of AS and a peer of AS.
3. ASy is a peer of ASt and a customer of AS.

4. ASyis a peer of both AS and ASz.

AS x ASz ASx AS z

ASy ASy ASz ASx ASy ASx ASy ASz

Case 1 Case 2 Case 3 Case 4

Figure 6-1: All Internet configurations where A3 cannot directly affect AS.
Horizontal edges represent peering links and diagonalsdegresent customer-
to-provider links.

Single Cycle Property: In any cycle of routing update messages between ASes, esergffects
its neighbory at most once. This property holds regardless of changeseinitinlerlying topology

or path preferences.
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The notion of “cycle” is synonymous with a continuous progiggn of path changes across
nodes where at least one node is affected twice. We modelsaygtie of path changes in DPR as
acausation cycleThe single cycle property comes from a theoretical reshitne we proved that

any causation cycle in safe policy routing occurs only once.

Multi-Tiered Cycle Property: Every cycle of routing update messages between ASes masithav
least two ASes in different tier-levels. This property Bakebardless of changes in the underlying

topology or path preferences.

The multi-tiered cycle property comes from a theoreticaluiewhere we proved that no cau-

sation cycle in safe policy routing can occur exclusivelyneen peering ASes.

6.1.2 Why do the properties not always hold?

Violations of safe policy routingie., the Gao-Rexford guidelines) result in unpredictable, blac
box dynamics that are potentially unsafe. When policy viofes occur, the properties no longer

hold. The reasons for such violations are:

1. Intentional: representing legitimate policy configurations for backinks or complex

agreements [Feamster et al., 2004].

2. Unintentional: representing misconfigurations or complex realtime irdgoas between

routers that do not reflect the intentions of the administsat

6.1.3 How do we check the properties?

Network administrators can locally check whether they &idiag by the Gao-Rexford guidelines
where the dynamics are guaranteed to conform to the prepedierived. This can be done by
inspecting their local preferences and ensuring that ail timport / export policies are set cor-
rectly. Local checks are inadequate, however, since notagles are necessarily compliant with
the guidelines. Non-compliance by some nodes has globdicatipns on the routing dynamics
that cannot be easily checked locally. This creates the tweelteck adherence to the properties in

realtime using a distributed algorithm such agkERFERENCEBEAT.
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Figure 62 illustrates “interference” between nodesnd3. The interference is due to policy
violations by node2 which cannot be locally checked by node Instead, nod& will need to
discover the interference by somehow detecting the causahain propagating through nodks
2 and3.

1 320> 3 1

0 O

0 0

0
t t+1 t+2 t+3

Figure 6:2: Sample dynamics where interference occurs. The list of pegh
erences for node8 and3 are organized such that the most preferred path is at
the top. Paths not explicitly listed are forbidden. All ned&re trying to reach
destination node.

Node 3 is abiding by the Gao-Rexford guidelines and initially usies customer patk30)
which is valley-free. Node, however, violates the guidelines by preferring a pathuploits
provider (210) over a path through its customé20). At time ¢, the link connecting nodeé to
node0 is lost, causing nodé to have an empty path to no@eat timet + 1. Attime ¢ + 2, node
2 switches from path210) to (20). This action in turn causes no@eto switch from path(30)
to (320) at timet + 3. Even though nod8 abides by the Gao-Rexford guidelines, the forbidden
interference occurs. The causation chain consists of @g@oynodel), followed by its customer
(node2), followed by another provider (nods.

If node 2 does not violate the guidelines, the dynamics would manifiéerently. For exam-
ple, suppose that patt20) is forbidden,forcing node2 to use its provider pat210). The loss
of link connectivity between nodesand0 at time¢ causes node to lose connectivity at time
t + 2. Node 3 is unaffected. The causation chain solely consfsaspoovider (nodel) followed
by its customer (hod@). Since this chain is valley-free, the dynamics conformhie properties

we derived.
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INTERFERENCHBEAT, our token-based distributed algorithm, checks if the progs hold or
whether policy violations exist. This is accomplished byggiag a small token alongside route
updates to detect forbidden causation chains (includitesyinduced by policy violations. Once
a forbidden causation chain is detected, the ASes involeed o collaborate to resolve the po-

tential problem.
6.2 Causation in Economic DPR

This section characterizes causation chains and cyclesclmmomic DPR instances. For con-
venience of notation, we drop the time index of certain temith respect to a given chain

Y = {yo w1 ... yr)t asoutline in Table 6.1.

Table 6.1: Notation

m(yi) = 7y, t+1)
7Tnext(yz‘) = W(yi,t 414+ 1)
p(yi) = p(yit+1)
pnext(yz‘) = p(yiyt + 1+ 1)

RankDecy;) iff RankDedy;,t+ 1)
RankSamgy;) iff RankSaméy;,t + i)
RankIndy;) iff  Rankinc(y;,t + )

Theorem 11. Every causation chain of an economic DPR instafieg, =!, G) is valley-free.

Proof. Assume not. Then there exists a causation chaia (yo y1 ... yx)! and an index such
that0 < i < kandy;—1 =g ¥; =g ¥i+1. Thusy;_1 andy; are peers or providers tg.

The first part of this proof shows that if this is the case, theno time during the causation
chain didy; have a customer path. The second part of this proof showsdmaé¢time during the
causation chaim;; had a path through;. Thereforey;,; had a realized valley path singedid
not have a customer path apgdis a customer of or peer g ;. Since valley-paths are forbidden
(not realizable) in economic DPR instances, this resulta aontradiction. Since Caugg) =
yi—1, either the first or second condition of causation from Tab&holds fory; at timet + 1.

Case:y; Causation Condition 1

If the first condition of Table 3.2 holds fay; then: p(y;) = y;—1 and RankDegy;), as shown
in Figure 63. Thereforer(y;) =" Tnext(yi). Letv = pnext(y:). It cannot be that <g ;.
Otherwise, sincerpex(y;) is a customer path and(y;) is not a customer path (singgy;) =
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vi1 =g ¥i), by the conditions of economic DPR instances(y;) </t mnex(y:), causing a
contradiction as shown in Figures Thusv =g y; andpnext(vi) =g ¥;-

Vv
e W Ve
®

root root
t+i t+i+1

Figure 6-3: Causation condition 1: RankDgg)

yi_l yi yi+l yi-l yi yi+1
)
root root
t+i t+i+1

Figure 6-4: Contradiction: RankIng;)

Case:y; Causation Condition 2

If the second condition of Table 3.2 holds fgrthen: ppexi(y;) = yi;—1 and Rankin€y;), as
shown in Figure &. Thereforer(y;) <! mnext(yi). Letv = p(y;). It cannot be that <g v;.
Otherwise, since (y;) is a customer path anthex(y;) is Not (SINCenext(vi) = yi—1 =g ¥i), by the
conditions of economic DPR instancesy;) =/ mnext(y;), causing a contradiction, as shown in
Figure 66. Thuspnexi(yi) =g y; andv =g y;. So for both cases, at no time in the causation chain
did y; have a customer path:

p(yi) =g yi andppexd(yi) =s i

Case:y;;1 Causation Condition 1
If the first causation condition of Table 3.2 holds gt 1, thenp(y;+1) = y;. By Proposition
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root root
t+i t+i+1

Figure 6-5: Causation condition 2: Ranklfig)

Yia Yi  Yia Yia i Y
)
%V v
root root
t+i t+i+1

Figure 6-6: Contradiction: RankD€g;)

2: 7(yit1) = Wi+1 7(v:)). m(yi41) is a valley path since;+1 =g vi =g p(yi). Since all valley
paths are forbidden (not realizable),y;+1) can never be realized, causing a contradiction.

Case:y;,1 Causation Condition 2
Similar arguments can be used if the second causation gamait Table 3.2 holds foy; 1:

Prext(Yi+1) = yi. Thus by Proposition 2mnexd(i+1) = (Yi+1 Tnext(¥:)). Tnext(¥i+1) is @ valley
path sincey; 11 g y; =g pnext(vi), and can never be realized. Thus in all cases a contradiction
occurs, proving the theorem. O

Definition 34 (Horizontal Cycle) A causation cycle is horizontal if all adjacent nodes in thele
are peers.

Definition 35 (Vertical Cycle) A causation cycle is vertical if there is at least one custome
provider relationship between adjacent nodes in the cycle.

Figure 319 represents a simple vertical causation cycle, where golises a path taot and

reroutes throughy,.
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Lemma 6. Given a causation cycl€ = (y, ... yx)' of an economic DPR instance g, =*, G),
every node irY” is a provider to the first nodg,.

Proof. Lety; € Y, where0 < i < k. By Theorem 11Y is valley-free and eithey;_; <g y; or
¥i =g yiv1. If the first case is true, then by the definition of valleyefneathsy;_ <g y; for all
0 < j < i, and by the transitive nature of economic relationshipgs<s ;. If the second case is
true, then by the definition of valley-free paths~¢ y;4+1 forall i < j < k, and by the transitive
nature of economic relationshipg, =g yx. Thus every node; is a provider toyy = yy. O

Theorem 12. Every causation cycl& = (yo ... yi)* of an economic DPR instance is vertical
and simple.

Proof. Lemma 6 directly implies that every causation cycle in eeoiecdDPR instances is vertical.
The second part regarding simple causation cycles is proyedntradiction. Assume there exists
a non-simple causation cycl§ = (yo y1 ... yx y1)t Whereyy = yi. From Lemma 6y <g v1.
However a new causation cyclé exists where:Ys = (y1 2 ... yr_1 yr y1)'". Thus by
Lemma 6,1 <g yr = yo Which is a contradiction. O

The theoretical results in this section are the proofs ferttiree properties of safe policy routing
dynamics introduced in Section 6.1. The non-interferengecjple comes from Theorem 11,

which states that every causation chain in an economic DBRrine must be valley-free. The
single and multi-tiered cycle properties come from Theofdgmwhich states that every causation

cycle in an economic DPR instance is vertical and simple.
6.3 InterferenceBeat

In this section, we outline a distributed algorithm,TERFERENCHBEAT, that checks if the prop-
erties of safe policy routing dynamics are maintained ortiwepolicy violations exist. This is
accomplished by detecting forbidden causation chaindu@itg cycles) induced by policy vio-
lations. Once a forbidden causation chain is detected, ®BesAnvolved need to collaborate to

resolve the potential problem.
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6.3.1 Overview

In INTERFERENCHBEAT, each node appends a small token alongside the route upeéstage.
When a nodgy receives a route update from its neighhoat timet, it also receives a tokefy,.

If node y selects a new path then it broadcasts a new tékgnalongside its own route update
at timet + 1. Tokens are passed along causation chains. In generalsatiauchain is started
when a link flapsi(e., is lost or becomes available) or when a node changes its pafirences.
A token consists of three partg, r,n). The identifier of the causation chainiisThe economic

relationship between and its predecesseron the causation chain is:

re {>$7 =% =% @}

For example, ifv is a provider tay, thenr is >g. The counter keeps track of the number of times
the token was passed along a customer-to-provider or agaptd-customer link.

The RRocEssfunction outlined in Figure § performs basic routing tasks and handles the
incoming and outgoing tokens. It is invoked in every ngdat timet after receiving all routing
update messages. In steps 2 and 3, npadooses and adopts its best available pathy'df
assigned path has changed in step.€l,(@n action occurred), then nodés causing neighbov
is identified in step 5. The token received from neighbas recovered in step 6. In step 7, the
CREATETOKEN function is called which returns the contents of the new toteebe sent out by
y at timet + 1. The GHECKPROPERTIESfunction is called in step 8. Nodgstores information
about the outgoing token in step 9, which is later used toctieieles in the GECKPROPERTIES
function. The outgoing token is then disseminated tg 'alheighbors in step 10.

The CREATETOKEN function is outlined in Figure 8. Step 2 retrieves the needed parts from
the incoming token. If the identifiek, is empty in step 3 then a new one is generated in step 4.
Otherwise, in step 6, the outgoing identifigy; is set to the incoming identifief,. In step 7ot
is set to the economic relationship betwaeeandy. In steps 8 through 11, the outgoing counter
neut IS Only incremented if nodeg andv arenot peers. The outgoing token is returned in step 12.

The GHECKPROPERTIESfunction is outlined in Figure 8. Steps 2 and 3 retrieve the needed
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1. function PROCESgy, t)

Besty,t) «+ max,: Choicesy, )

m(y,t+ 1) — Besty,t)

if (y,t+1) # 7n(y,t) then
v = Causéy, t)
0in =GETTOKENFROMNEIGHBOR(y, v, )
Oout = CREATETOKEN(y, v, Oin)
CHECKPROPERTIERY, v, bin, Oout)
STORETOKEN(Y, v, Qout)

10: SENDTOKEN(y, t, Oout)

Figure 6-7: PROCESsfunction.

1: function CREATETOKEN(y, v, fin)

2 (iim - nin) = Oin

3 if 4in is @ then

4 (Zout, Tout, Mout) =(NEWID(), 0, 0)
5: else

6: Tout = lin

7 rout = ECONOMICRELATION (v, ¥)
8 if routiS equal to =¢ then

9

: Nout = MNin
10: else
11: Nout = Nin + 1
12:  return (iout, Tout, Mout)

Figure 6-8: CREATETOKEN function.

parts from the tokens. Step 4 checks for the existence ofleyvedusation chain. If one is found,
then interference is reported, where the causing nodee chain identifief;, and the relationship
rin are identified. In step 6, nodedetermines if it has previously received a token with id@stti

iin. If SO, then a cycle is detected. Nogeecovers the old information in step 7. If the token was
previously received from the same neighlkxahen a non-simple cycle is reported in step 9. Step
10 checks if the token previously received contained theesemuinter value. If so, then the token

was only passed between peers since leaving paiel a horizontal cycle is reported in step 11.
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1: function CHECKPROPERTIESY, v, Oin, Oout)

(’iim Tin, —) = 0Oin

(—7 - nout) = Oout

if (rin is equal to-g or =¢) and @ <g y) then
REPORTINTERFERENCHyY, v, 6in)

if HASRECEIVEDTOKEN(y, iin) then
(vold, Mold) = GETSTOREDTOKEN(y, iin)
if volq IS equal tov then

REPORTNONSIMPLECYCLE(y, v, fin)

if ngig Is equal tong then
REPORTHORIZONTALCYCLE(y, v, fin)

e
= Qo

Figure 6:9: CHECKPROPERTIESfunction.

6.3.2 Sample Operation

Figure 610 shows the operation offfERFERENCHBEAT on the DPR instance described in Figure
318, assumingyg, y1 andys are all peers. At time + 1, nodey, initiates a new causation chain
with identifier iD1 and sends a token tg. Sinceyy initiated the chain, the count is 0 and the
relationship ig). Nodey; takes an action and sends a new tokemptoSincey,; andy, are peers,
the relationship is set te-g and the count is stilD as the token only traversed a peering link.
Finally, sinceys is a peer to its causing nodge, interference is detected hy upon receiving the

token.

Yo Y1 Y2
o- -I:I- >0~ {:I- >@®
(ID1,0,0) (ID1,=4,0)
t+1 t+2

Figure 6-10: Sample operation ONTERFERENCHBEAT.

6.3.3 Characteristics
INTERFERENCHBEAT has the following characteristics:

e Provably Correct. INTERFERENCHBEAT is based on a theoretical framework of policy

routing dynamics and changes in network topology or patliepeeces do not affect the
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correctness of detecting policy violations.

¢ Efficient Space A small token of space complexity(1) (a few bytes) is appended to each

routing update message irrespective of how the routing miycemanifest in the network.

e Policy Freedom Since NTERFERENCHBEAT is a dynamic detection algorithm, it does not

require any restrictions on routing policies to be imposed.

e Backwards Compatible INTERFERENCHBEAT requires only a minor extension to BGP
and is therefore backwards compatible. To detect policiatitms, only the ASes along the
causation chains to be diagnosed need to adopt the protdbak neighboring ASes can

use NTERFERENCHBEAT to detect misconfigurations.

6.3.4 Practical Considerations

INTERFERENCHBEAT could be implemented over BGP where the token is passed iméissage
options. When an AS initiates a new causation chain it musatera new identifier using the
NEwID() function. This can be accomplished by hashing the AS numbeter identifier, time
and destination prefix. A fixed number of bits can be allocdtethe identifier, with more bits
reducing the probability of a hash collision.

In INTERFERENCHEAT, if a cycle or valley is detected by a nogeonly its causing neighbor
nodewv can be immediately identified. In order to identify/notifyher nodes along the chain, a
back-propagating alert protocol may be used. Each nodeesamage its stored tokens to find
its previous causing neighbor. Note that a token only needststored for the duration of the
causation chain, thus the local storage requirements al@ &@ expected to be minimal.

In Appendix A we show that the synchronicity of DPR is not adnance and that it has suffi-
cient expressive power to model asynchronicity. Hene@ERFERENCHBEAT can be extended to

a realtime setting.



6.4 Violations of the Economic DPR Model

We formally define four common policy violations, which repent different relaxations to the
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strict economic DPR modelIn the next sections we prove the invariant properties efésultant

causation chains and cycles for each violation. By invarioperties we mean the properties
that hold irrespective of changes in path preferences ongdwthe underlying topology. The

modelled dynamics induced by each violation can be compagadhst the dynamics observed by

INTERFERENCHEAT. If a violation cannot cause the observed behavior, theanth= ruled out.

6.4.1 Overview of Violations and their Induced Dynamics

To describe paths and causation chains in better detail tegaaze valleys into four subtypes.

Definition 36 (Valley Types) We extend definition 29 of valleys to four subtypes as shown in

Table 6.2.
Table 6.2: Valley types given sequence b c).
Valley Type | Condition | Illustration

A a g b <g C .\O/.

B a =g b =g C .\'—0

C a=g¢gb=<gc -’

D a :$ b :$ C oo

Table 6.3: Violations of the Economic DPR Model

Violation Valley Types in Causation Chains: Vertical Cycles Horizontal Cycles | Potentially
A B C D Unsafe?
0: None simple none no
1: Non-Strict Economics simple none no
2: Transiting PR simple | non-simple, simple yes
3: Peers Preferred o—o/. oo simple | non-simple, simple yes
4: Providers Preferred .\-/. .\0—0 non-simple, simple none yes

There are other relaxations that can be considered suchblisgsielationships i(e., backup links) between

ASes [Gao, 2001].
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Violation 1: Non-Strict Economic Relationships
With non-strict economic relationships, a node can be bdttiract or indirect) provider and
a (direct or indirect) peer to another node. Figurgléshows a comparison between strict and

non-strict economic relationships.

u eer u eer
provider provider
\.\ NE \.\ peer
provider provider
\. z \. z
Strict Non-Strict

Figure 6-11: Strict and non-strict economic relationships. In the stvariant,
node v cannot be an indirect provider and peer to nadeThe crossed edge
represents an edge that cannot exist in this variant.

Violation 2: Transiting Between Peers

Generally, an AS only carries traffic that is destined to (dgioating from) one of its cus-
tomers. However, due to misconfigurations or complex agezgsnbetween peers, an AS may
transit traffic between its peers. Economic DPR instancel this violation have an enlarged
set of realizable paths. Paths containing valleys of Bpean be adopted by nodes. However,
paths are forbidden (not realizable) if they contain vatlgyesA, 5, or C. Paths are forbidden by
having nodes configure their import / export policies forhzaaccordingly i(e., which paths are
advertised to which neighbors and which paths are accepoed Wihich neighbors). Therefore,
every realizable path consists of a series of zero or morenalicg customer-to-provider edges,
followed by zero or more peer edges, followed by zero or mascdnding provider-to-customer

edges, as shown in Figurel@.



77

With Peer Transiting Without Peer Transiting

Figure 6-12: Allowable paths in economic DPR with and without violation 2
Nodes at the same level are peers. On the other hand, nodighet tevels are
providers for the nodes at lower levels that they are coruetd.

Violation 3: Prefer Peer Paths Over Customer Paths

Whereas violation 2 is a relaxation on the set of realizalalihg violation 3 is a relaxation
of the path preferences. Nodes in economic DPR instancésviaiiation 3 can prefer peer paths
over customer paths. Nodes, however, cannot prefer propatas over peer/customer paths. Only

valley-free paths are realizable.

Violation 4: Prefer Provider Paths Over Peer / Customer Patls

Nodes in economic DPR instances with violation 4 can preferiger paths over peer/customer
paths. Again, only valley-free paths are realizable. Agdhin is achieved by having each node
configure its import / export policies for paths accordingly

The four violations describe different variants of the emmic DPR model. Each variant
results in different types of causation chains and cycle®lél6.3 summarizes the effects of each
violation on the characteristics of causation chains amtesy The first and second rows show the
strict and non-strict economic DPR models. They are the tidyvariants guaranteed to be safe.
The three other violations induce routing behavior whichagentially unsafe.

INTERFERENCHEAT can be extended using the results of Table 6.3. Upon thetatetexf a
valley in the causation chain, its typd (B, C, or D) can rule out possible causing violations. For
example, if a valley of typ# was detected usingNTERFERENCHBEAT, then violations 1, 2, and

3 can be immediately ruled out as the possible causes folberneed behavior. Similar methods
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can be used upon detection of non-simple or horizontal tiemseycles.

The theoretical proofs for the dynamics induced by eaclatiimh are presented next.

6.4.2 Violation 1: Non-Strict Economic Relationships

First we consider the dynamics induced by violation 1, oeti in the second row of Table 6.3,
where ASes can have non-strict economic relationships én AS can be both a provider and a
peer to another AS). Similar to the case where there are niatidos, we prove that vertical cycles
must be simple, horizontal cycles are not possible, all atéms chains are valley-free, and the
resulting routing policy configuration is safe.

We start by formally defining non-strict economic relatibips. If an economic DPR instance
has non-strict economic relationships, then it contaiesdperator—, whereD = (=, =, G).

From >, a tight economic relation is defined by:
u>*viffut*vanduﬁ*v

and no relation is defined by:

w|[xviff u . vandu A, v
The customer, peer, and provider economic relationshipseaderived from the operatét,:
e If wis a customer of, thenu <, v.
e If uis a provider tov, thenu >, v.
e If wis a peer ta, thenu||,v.
The properties of the economic operatoy can be modeled using post-order conditions:
1. (reflexive)r =, =
2. (anti-symmetric) =, y andy =, x impliesz =y

3. (transitive)x >, y andy >, z impliesz =, z
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The key difference between a strict and non-strict econaparator is that peering relation-
ships are not transitive in the non-strict variant. Whergaering is represented by the equivalence
relation =g in the strict variant, peering is represented by no relafjpim the non-strict variant.
Strict economic relationships form equivalence classéeh thie peering relatios=g as shown in
Figure 613. Such equivalence classes are not present in the nohasriant. This enables a
node to be both an indirect peer and provider to another notteesi non-strict variant as shown in
Figure 611. However it should be noted that provider-to-customéatianships are transitive in

both variants.

=
x>

Strict Non-Strict

Figure 6:13: Strict and Non-Strict economic relationships. The ciralesr the
nodes in the strict variant represent equivalent classeserfs.

For ease of exposition, the following notation is used tocdbe that noder is a peer or

provider to nodey:
r 2 yliff o Ay
We define paths by the economic relationship between a pst#rsng nodeu and its next-hop.

For all pathsP":

CustomefP") < u >, NextHopP“)
Pee(P") < u |, NextHopP“)

Provide(P") < wu <, NextHop P")

Given a sequence of nodésb c), valley types are represented as follows:
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Valley Type | Condition | lllustration
A a4 b=y "
B a > bll«c -
C all«b <. c -’
D a b |« oo

Theorem 13. All causation chains of non-strict economic DPR instanaesvalley-free.

Proof. This proof is identical to the one for Theorem 11, by replgdime-¢ with >, and>g with
i:*- D

~

Theorem 14. All causation cycles of non-strict economic DPR instangesvartical and simple.

Proof. LetY = (yo y1 ... yx)' be a causation cycle, whegg = y;. The cases for this proof can
be partitioned byy;'s economic relationship witl:

Case (a):yo =« y1
If yo >« y1, SinceY is valley-free,y; =, y;+1 for 0 < i < k. Howeveryy =, yr = yo, causing a
contradiction and eliminating this case.

Case (b):yo [+y1

If yo ||«y1, SinceY is valley-free,y; =, y;4+1 for 1 < i < k. ThusY is vertical. Y has to
be simple, otherwis€y,_1 yo y1) would be a realized causation chain. Singe; >. yo and
Yo ||«y1, the causation chain is a valley, causing a contradictidverdforeY” is simple and vertical.

Case (C):yo <« ¥1

If yo0 <« y1 thenY is vertical. The cases can be further partitionedilpy,’s economic rela-
tionship withy. If yx_1 <« yi, then by the definition of valley-free sequencgs,; <. y; for
all 0 < i < k. Thusyy <. yr = yo, Which is a contradiction. Thereforg,_1 Z. yr. If Y
is non-simple, ther{y,_1 yo y1) would be a realized causation chain. Singe; T« vo = Yk
andy, <. 1, the causation chain is a valley, causing a contradictidrerdforeY is simple and
vertical. O

Remark 1. DPR instances with non-strict economic relationships afe.sThis follows directly
from the results in [Gao and Rexford, 2001].
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6.4.3 Violation 2: Transiting Between Peers

Next we consider the dynamics induced by violation 2, oatirin the third row of Table 6.3,
where ASes can transit traffic between their peers. We proat dll vertical cycles must be
simple, horizontal cycles can be simple or non-simple, a@alysation chains of valley ty@e are

possible, and the resulting routing policy configuratiopagentially unsafe.

Theorem 15. Every causation chain in an economic DPR instance with timte2 does not admit
valley typesA, B or C.

Proof. Assume not. Then there exists a causation chaia (yo y1 ... yx)! and an index such
that0 < i < k and at least one of these two conditions hold:

(@) yi—1 =g ¥i =g Yit1

(0) yi—1 =g yi <s Yi+1

Case ():yi-1 = ¥Yi =g Yi+1

If case (a) holds, then it can be shown that befl;) > y; and pnexi(v:) >3 v:. This can be
seen by looking at the causation conditiongofif causation condition 1 holds fgg, theny, | =
p(y;) and RankDey;). It cannot be the case thatexi(v:) =g i, since this would imply thay;
switched from a provider path through_; to a non-provider path, sinag < p(y;) = y;—1 and
¥i =g pnext(yi). This would imply Rankingy;), causing a contradiction. Thygy;) =g vy; and
pnext(yi) =g y;. If causation condition 2 holds fay;, theny;_1 = pnext(y;) and Ranking¢y;). It
cannot be the case thaty;) =g v;, since this would imply tha; switched from a non-provider
path to a provider path through_1, sincey; =g p(y;) andy; <g pnext(v:) = yi—1. This would
imply RankDe¢y; ), causing a contradiction. Thus for both casgg;) > v; andpnext(vi) =s Vi-

Thus given the results above, we can prove that had a realized path with valley typé or
B. If causation condition 1 holds fay;;1, thenn(y;+1) = (yi+1 7(y;)). Sincey;11 =g y; and
yi <g p(yi), thenm(y;+1) is a realized path with valley typd or 53, causing a contradiction. If
causation condition 2 holds fak, 1, thenmex(yi+1) = (Yi+1 Tnext(v:)). Sincey;11 =g y; and
¥i <g prext(¥i), thenmexd(yi+1) is arealized path with valley typd or 3, causing a contradiction.

Case (b):yi—1 =5 yi <3 Yi+1

If case (b) holds, then using an argument similar to case ¢anibe shown that boi(y;) =g
yi and pnexi(v:) =g y;- We can then prove that; had a realized path with valley typé or C,
causing a contradiction. O
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Theorem 16. Every vertical causation cycle = (yo ... yx)" in an economic DPR instance with
violation 2 is simple.

Proof. This proof proceeds by determining’s economic relationship withy, andy;_1's eco-
nomic relationship withy, = yo. SinceY is a vertical causation cycle, there exists a minimal index
i1, 0 < i < k such thaty; #s y;—1. Note thati # k, otherwiseyy =¢ y1 =g ... =g Yk—1 #$ Yk
implying yo #s yx, Which is a contradiction. Eithey; ~¢ y;_; ory; <g y;—;. It cannot be that
yi—1 s y; since by Theorem 1%y =g yi—1 > ¥i >s Yi+1 ... =s Yk, IMPlying yo ¢ yi which
is a contradiction. Thereforg_1 <g v;. If i > 1, theny;_» =g y;—1 <g v:, representing a valley
of typeC, which is a contradiction. So= 1 andyy <g y1.

Let j be the first index]l < j < k, wherey;_; >g y;. Note thatj has to exist otherwise
Yo <g Y1 =g -..- =g Yk, Implying yo <g yi which is a contradiction. From Theorem 15,
yn—1 =g yp forall j < h < k. Soyip_1 >¢ yr = yo. ThereforeY must be simple, otherwise
(yk—1 Yo y1) Must be a causation chain. However sipge; >3 yo andyy <g y1, Y contains a
valley of type.A, contradicting Theorem 15, and thus proving the theorem. O

Theorem 17. An economic DPR instance with violation 2 admits simple amtsimple horizon-
tal causation cycles.

Proof. This follows directly from the example shown in Figuré.é which is identical to the “Bad
Gadget” instance described in [Griffin et al., 2002]. O

Theorem 18. An economic DPR instance with violation 2 is potentiallyafas

Proof. Again from the example shown in Figureld, no stable assignment exists. O
a b b
eer
Path preferences:
Nodea: (a b root) Peer Peer
{a root) root
Nodeb: (b c root) Peer Peer
(b root) Poer
Nodec: ({c a root)
(c root)

c

Figure 6:14: Non-simple horizontal cycle for an economic DPR instancthwi
violation 2. Paths not listed in the path preferences atadden.
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6.4.4 Violation 3: Prefer Peer Paths Over Customer Paths

Next we consider the dynamics induced by violation 3, oatinn the fourth row of Table 6.3,
where ASes can prefer peer paths over customer paths. Tdi&ion induces dynamics that are
similar in nature to those induced by violation 2. We provattall vertical cycles must also be
simple, horizontal cycles can be simple or non-simple, &ed¢sulting routing policy configura-
tion is potentially unsafe. The only difference is that, dd#ion to causation chains of valley type

D, we prove that causation chains of valley typare now also possible.

Theorem 19. Every causation chain in an economic DPR instance with tima3 does not admit
valley typesA or 5.

Proof. Assume not. Then there exists a causation chais= (yo v1 ... y)! and an index
such thal) < ¢ < k andy;_1 >g ¥; =g ¥:;+1. The same reasoning as case (a) from the proof of
Theorem 15 can be used. By considering the causation conslitify;, it can be shown that both
p(yi) »¢ yi andpnext(v:) =3 y;- We can then prove that . ; had a realized path with valley type

A or B, causing a contradiction. O
a Peer b
Path preferences: . Dot
Nodea: (a b root) < .
(a root) Y e
Nodeb <b c root> rovider roviaer
<b r00t> Provider
Nodec: (c a root)
{c root)
root

Figure 6-15: Non-simple horizontal cycle for an economic DPR instanctwi
violation 3. Paths not listed in the path preferences atadden.

Theorem 20. Every vertical causation cycle in an economic DPR instandk wiolation 3 is
simple.

Proof. Assume not. Let vertical causation cydfe= (yo 31 ... yx)' be non-simple. Sinck¥ is a
vertical causation cycle, there exists a minimal index< ¢ < k such thaty; #g¢ y;_1. Following
an argument similar to the one used to prove Theorem 16, wercae thatY” contains a valley
of type A or B, which is a contradiction. O
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Theorem 21. An economic DPR instance with violation 3 admits simple amgsimple horizon-
tal causation cycles.

Proof. This follows directly from the example shown in Figurd.b which is identical to the “Bad
Gadget” instance described in [Griffin et al., 2002]. O

Theorem 22. An economic DPR instance with violation 3 is potentiallyafas

Proof. From the example shown in Figurel§, no stable assignment exists. O

6.4.5 Violation 4: Prefer Provider Paths Over Peer / CustomePaths

Finally we consider the dynamics induced by violation 4 lioet in the last row of Table 6.3,
where ASes can prefer provider paths over peer / custombs pal/e prove that vertical cycles
can be simple or non-simple, horizontal cycles do not oamuly; causation chains of valley types

A andB are possible, and the resulting routing policy configurai®potentially unsafe.

Theorem 23. Every causation chain in an economic DPR instance with timte4 does not admit
valley type< or D.

Proof. Assume not. Then there exists a causation chaia (yo y1 ... yx)! and an index such
that0 < i < k andy;—1 =g y; =<g y;+1. The rest of the proof is similar to that of Theorem 15.
First we show that both(y;) >¢ v; and pnext(yi) =5 v;- Then we show that either(y;.1) or
mnext(¥i+1) IS @ valley path of typ€ or D, causing a contradiction. O

Theorem 24. There are no horizontal cycles in economic DPR instanceds viatiation 4.

Proof. This follows directly from Theorem 23, which states thatgation chains of typ® do not
exist. ]

Theorem 25. An economic DPR instance with violation 4 admits simple amatsimple vertical
causation cycles.

Proof. This follows directly from the example shown in Figuré.6 which is identical to the “Bad
Gadget” instance described in [Griffin et al., 2002]. O
Theorem 26. An economic DPR instance with violation 4 is potentiallyafes

Proof. From the example shown in Figurel®, no stable assignment exists. O
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a
Path preferences:
Nodea: (a b root) b
{a root)
Nodeb: (b c root)
(b root)
Nodec: ({c a root)
{c root)

root

Figure 6-16: Non-simple vertical cycle for an economic DPR instance with
olation 4. All edges are customer/provider links. Paths listéd in the path
preferences are forbidden.



Chapter 7

Conclusion

We introduced the Dynamic Policy Routing (DPR) model whigteads the Stable Paths Problem
(SPP) [Griffin et al., 2002] with discrete synchronous tird#®R captures the propagation dynam-
ics of path changes due to arbitrary changes in topology thrgr&ferences. We introduced policy
digraphs—a time-invariant structure which captures houtimgy update messages can propagate
in the network.

Using our policy digraphs we formalized the Routing Dynasritinimization Problem (RDMP)
to solve a graph optimization problem. This optimizatioolgem explicitly minimizes one pos-
sible metric, namely, the longest sequence of routing @dassages in any dynamic network.
This is done by changing the path preferences of nodes. We gtai finding a policy configu-
ration which minimizes the length of the policy digraph is-NRrd. While RDMP is NP-Hard,
we believe that it complements SPP and we envision thatiitsulation will allow us to explore
problems where the dynamics of policy routing can be exathine

We characterized policy routing in the presence of poliayfiicts to develop an efficient policy
conflict detector. We introducedABETYPuULSE—a distributed policy conflict detection algorithm.

We derived several invariant properties of routing dynasica safe (economic) policy con-
figuration. We introducedNTERFERENCEBEAT—a distributed algorithm to detect and diagnose
policy violations. NTERFERENCHBEAT was further enhanced by modeling common policy vio-

lations and characterizing the resulting dynamics.
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Appendix A

Asynchronicity with DPR

A.1 Overview

This section describes how the DPR model can simulate asymicity. We assume that we have
a regular DPR instanc® = (=, G) which we wish to augment with asynchronicity. There are
several ways to represent asynchronicity. We will use lielags. This choice enables us to use the
existing DPR model without adding new constructs. At anyetioreach link(u, v)! € E admits a
variable time delay between 1 and a finite upper litit

This delay is specified by the functioh(u, v, ¢) which outputs an integer ifii, M]. The
time delays are considered ordered, such fhat, v,t) — L(u,v,t + k) < k. Thus the values
L(u,v,4) = 100 and L(u,v,5) = 2 are not allowed since would getu’s path at time 5 before
receivingu’s path at time 4. From DPR instande and delay function’., a new DPR instance
D' = (¥',G") can be constructed to simulatewith the time delays.

For every pair of nodes in the original instante a set ofM — 1 transit nodes will be added
to D’. These transit nodes represent the “communication wirévéen every two nodes. The
dynamic nature of the links in DPR instances will be used ttrob the length of the “communi-
cation wire”. If L(u,v,t) = 5, then a path of length 5 betweerandv through the transit nodes

will appear at time.
A.2 Graph of Asynchronous DPR Instances

For every node: in the original DPR instanc®, there is a corresponding node in the asynchronous

DPR instance)’:

veV=ueV
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00 00 - (L,¢E

Figure A-1: Transit Nodes

For every two nodes, v in D, there areM/ — 1 transit nodes:
wv eV =a eV for2<i<M

Each transit node is connected to its neighbors. This cdiumeforms the longest possible com-
munication between nodesandv. It toggles on/off with the connectivity dfu, v)! € E for each

timet, as shown in Figure A.

(u,z49)t € E'
(z¥),2) e E'foralll <i< M o iff (u,v)t € E

(x40 v)t € B/

The time delayd.(u, v,t) describe the “shortcut” available through the transit rsodeeach

timet:

(u,v)t € E' iff  (u,v)! € EandL(u,v,t) =1

(u,z¥*) e B iff  (u,v)' € EandL(u,v,t) =i

An example of a delay of one and three between nadesdv can be seen in Figures2and

A-3.

Figure A-2: Transit nodes simulating a delay bfu, v,t) = 1.
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Figure A-3: Transit nodes simulating a delay bfu, v,t) = 3.

A.3 Path Preferences of Asynchronous DPR Instances

The path preferences of the asynchronous DBR= (>-', G’) discount the presence of transit
nodes in paths. Let the operation RemoveTransit removeaalbit nodes of a sequence. This
operation allows us to derive the asynchronous path pmedesefrom the original synchronous

path preferences. Thus for all non-transit nodes V':
P="" P iff RemoveTransitP!) = RemoveTransitPy)

Each transit node;" prefers a path through its source nadthan through its transit neighbor to-
ward the sourcer;;. Paths containing sequences in the opposite directioredttimmunication

link” (from =} to z;*,) are forbidden.
A.4 Redundant Connections

The transformation from synchronous to asynchronous DRRuites described above needs to
be enhanced to avoid transient routing losses. This carr dercing abrupt changes in connection
delays as shown in Figure-&

In order to remedy this situation, redundant links betwdendource node and the transit
nodes are established, as shown in Figurg. AThis enables path consistency during changes of

communication delays. Thus the proper transformation rislifrom synchronoud to asyn-
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chronousD’ can be represented as:

(u,v)t € E' iff  (u,v)' € EandL(u,v,t) =1

(u,z¥*) e B iff  (u,v)' € EandL(u,v,t) <i

A.5 Causation Chains in Asynchronous DPR Instances

The definition of causation chains is not changed for asyomaius DPR instances. Given delay
L(u,v,t) = 3, a causation chain gfu v)! in the original DPR instanc® would correspond to a

causation chain ofu z4* z4* v)! in the asynchronous DPR instante.
A.6 Asynchronous Economic DPR Instances

Asynchronous economic DPR instances can follow the GadeRixguidelines. Transit nodes
have no economic relationships with the other nodes. Theadoof the economic operatorg

is only over non-transit nodes. Characterization of segegr{causation chains or paths) is ac-
complished by using the RemoveTransit operator. A gath D’ is valley-free if its correspond-
ing transit-free path RemoveTrandh) is valley-free. Similarly, a causation chali in D’ is
valley-free if its corresponding transit-free chain Rem®dransitY’) is valley-free. Similar use of
RemoveTransit can be employed to characterize custonesr,goed provider paths. From this con-
struction, the proofs in this thesis are unchanged exceghéapplication of the RemoveTransit

operator.
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Graph Node Path
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Figure A-4: Nodewv has a transient path loss from node This is due to an
increase in delay frond(u,v,0) = 1to L(u,v,1) = 3. Attime ¢ = 0 only node

u has a path teoot and link (u, v) becomes unavailable. Attinte= 1, nodez}"
receives a route update from nodevhile nodev has the best patte}” u root)
from the previous round. Attime = 2, nodex4" receives a route update from
nodez4” while nodev realizes that link(u, v) is unavailable and loses its path.
Attime ¢t = 3, nodev receives a new route update from nadg and updates its
path to(v x4 z4* u root).

uv uv

c

root

Figure A-5: The transient path loss at nodas prevented by having redundant
connections. Node will never have an empty path when lirfk, v) becomes
unavailable.
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