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Abstract—Traditional network management is tied to the
TCP/IP architecture, thus it inherits its many limitations. Ad-
ditionally there is no unified framework for application manage-
ment, and service providers have to rely on their own ad-hoc
mechanisms to manage their application services. The Recursive
InterNetwork Architecture (RINA) is our solution to achieve
better network management. RINA provides a unified framework
for application-driven network management along with built-in
mechanisms. It allows the dynamic formation of secure commu-
nication containers for service providers in support of various
requirements. In this paper, we focus on how application-driven
network management can be achieved over the GENI testbed
using ProtoRINA, a user-space prototype of RINA. We use video
multicast as an example, and experimental results show that
application-driven network management enabled by ProtoRINA
can achieve better network and application performance.

I. INTRODUCTION

Software-Defined Networking (SDN) [1] and Network
Functions Virtualization (NFV) [2] both aim to provide bet-
ter and more flexible network management. SDN simplifies
network management by enabling programmability of the
network through high-level network abstractions. NFV im-
plements network functions as software instead of dedicated
physical devices (middleboxes) to virtualize and consolidate
network functions onto industry standard servers. However
most work on SDN and NFV is tied to the TCP/IP architecture,
and inevitably inherits many of its limitations, notably its static
management and one-size-fits-all structure.

The Recursive InterNetwork Architecture (RINA) [3], [4]
is a network architecture that inherently solves the problems
of the current Internet. RINA’s management architecture [5]
is our solution to achieve better network management, and it
inherently supports SDN and NFV concepts [6], [7]. Most im-
portantly, RINA supports application-driven network manage-
ment, where a federated and secure communication container
can be dynamically formed to support different application
requirements.

In this paper, we explain how application-driven manage-
ment can be achieved using our policy-based management
architecture with ProtoRINA [8], [9], a user-space prototype
of RINA, and as an example we illustrate how video can be
efficiently multicast to many clients on demand. Comparing
to our previous published work [5], [6], [7], this paper is a
detailed description of our application-driven management ar-
chitecture and its support for programmability via application
or IPC process relays.

II. BACKGROUND

A. RINA Architecture and ProtoRINA
The Recursive InterNetwork Architecture (RINA) [3], [4]

is a new network architecture which inherently solves the

communication problem in a fundamental and structured way.
It is based on the fundamental principle that networking is
Inter-Process Communication (IPC) and only IPC.

1) Distributed Application Facility: As shown in Fig-
ure 1(a), a Distributed Application Facility (DAF) is a col-
lection of distributed application processes with shared states.
Each DAF performs a certain function such as video streaming
and weather forecast. Particularly, a Distributed IPC Facility
(DIF), i.e., a collection of IPC processes, is a special DAF
whose job is only to provide communication services over a
certain scope (i.e., range of operation) for application pro-
cesses. Recursively, a higher-level DIF providing larger scope
communication services is formed based on lower-level DIFs
that provide smaller scope communication services. Different
DAFs use the same mechanisms but they may use different
policies for different purposes and over different scopes.
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Fig. 1: (a) RINA overview. (b) Application process components and APIs

2) ProtoRINA: ProtoRINA [8], [9] is a user-space pro-
totype of the RINA architecture. It provides a framework
with common mechanisms which enable the programming of
recursive-networking policies (supported by network applica-
tions). It can be used by researchers as an experimental tool
to develop network applications, and also by educators as a
teaching tool in networking and distributed systems classes. A
RINA node is a host (or machine) where application processes
and IPC processes reside. A DIF Allocator is a management
DAF with application processes running on RINA nodes to
manage the use of various existing DIFs and can create new
DIFs on demand to provide communication services or meet
different application-specific requirements.

B. Application-Driven Network Management

By application-driven network management, we mean given
the physical topology, virtual networks can be built on the
fly to satisfy application-specific demands and achieve bet-
ter network performance. In RINA, each virtual network is
actually a secure transport container providing inter-process
communication. Processes inside such transport containers
are authenticated and instantiated with policies that meet the
needs of applications running atop, and such policies include978-1-5090-0223-8/16/$31.00 c© 2016 IEEE



private addressing, access control, routing, resource allocation,
error and flow control, etc. A DIF is such a secure transport
container. Each DIF has its own scope, and DIFs all use the
same RINA mechanisms but can have different policies.

Most recent work on network management, such as SDN
management platforms (e.g., [10], [11]) or NFV management
platforms (e.g., [12], [13]), focuses on managing the network
in a flat way where there is only one scope that includes
all elements (physical components, i.e., devices, and logical
components, i.e., processes) of the network. And they do
not allow dynamic instantiation of such transport containers
with different subscopes (subset of network elements) based
on application requirements. Some work has been done to
support network virtualization based on application require-
ments (e.g., [14] and [15]), but their virtual network is limited
to routing and not for transport purpose, and they do not
support the dynamic formation of virtual networks. With
the development of new service models (e.g., Software as a
Service), as well as the demand for different SLAs (Service-
Level Agreements), we believe application-driven network
management is necessary and will become the norm.

III. RINA MECHANISMS FOR APPLICATION-DRIVEN
NETWORK MANAGEMENT

A. DAF-Based Management Architecture

A DAF is a collection of distributed application processes
cooperating to perform a certain function (Section II-A1).
RINA’s management architecture is DAF-based [5], i.e., ap-
plication processes providing management functionalities form
different management DAFs, and the same DAF-based man-
agement structure repeats over different management scopes.

We would like to highlight two forms of management based
on scope. The first is DIF management, i.e., managing the DIF
itself to provide communication service within a small scope.
Examples of such management include different policies for
routing traffic or establishing transport flows among IPC
processes. The second is network management, i.e., managing
various DIFs that form the whole network. Examples of such
management include the dynamic formation of new DIFs to
provide communication services between remote application
processes. In the former case, the Management Application
Entity [9] of each IPC process inside the DIF forms the man-
agement DAF, and in the latter case, the DIF Allocator forms
the management DAF for the whole network (Section II-A2).

Our previous work [6] focused on the DIF management
where policies of a single DIF can be configured to satisfy
different requirements, while in this paper we focus on net-
work management where new higher level DIFs can be formed
in support of application-specific demands. Our management
architecture is built on top on the RINA architecture, but it is
general, and can be used as a stand-alone management system
overlayed on top of any infrastructure, such as the Internet.

B. Application Process Components and RINA APIs

Figure 1(b) shows the common components of an applica-
tion process in ProtoRINA. The Resource Information Base

(RIB) is the database that stores all information related to
the operations of an application process. The RIB Daemon
helps other components of the application process access
information stored in the local RIB or in a remote application’s
RIB. Each application process also has an IPC Resource
Manager (IRM), which manages the use of underlying IPC
processes belonging to low-level DIFs that provide commu-
nication services for this application process. The Applica-
tion Entity is the container in which users can implement
different management (or application-specific) functionalities.
ProtoRINA (Section II-A2) provides two sets of APIs, RIB
Daemon API and IRM API, for users to write management (or
regular) applications and to support new network management
policies. The RIB Daemon API is based on a publish/subscribe
model and allows application processes to retrieve or publish
network information from/to other application processes. The
RIB Daemon also supports the traditional pulling mechanism
to retrieve information. The IRM API allows allocating/deallo-
cating a connection (flow) to other application processes, and
sending/receiving messages over existing connections. More
details about RINA programming APIs can be found in [9].

IV. VIDEO MULTICAST WITH PROTORINA

Next we explain how video can be efficiently multicast
to different clients on demand as an example of application-
driven network management. In order to support RTP (Real-
time Transport Protocol) video streaming over the RINA
network, RTP proxies (server proxy and client proxy) are used
as shown in Figure 2. The RTP server proxy is connected
to the video server over the Internet, and each RTP client
proxy is connected to a video client also over the Internet.
The RTP server proxy and RTP client proxies are connected
over the RINA network which consists of DIFs. Namely,
the RTP server proxy redirects all RTP traffic between the
RTP server and RTP client to the communication channel
provided by the RINA network. In our experiments, we use
the VLC player [16] as the video client, and the Live555
MPEG Transport Stream Server [17] as the RTP video server.
The video file used in the experiments is an MPEG Transport
Stream file, which can be found at [18].

RTP Client Proxy

VLC Client

RTP Server Proxy

Live555
RTP Server

RINA Network

Internet connection

RTP Client Proxy
VLC Client

Fig. 2: Video clients (VLC players) are connected to the RTP video server
through RTP proxies over a RINA network

Figure 3 shows a scenario, where the whole network is made
up of four enterprise (or university) networks. The RTP server
and RTP server proxy are running in Network A, and they



provide a live video streaming service. There are two video
clients along with RTP client proxies (one in Network C
and the other one in Network D) that would like to receive
video provided by the RTP video server. Network A and
Network B are connected through DIF 1, Network B
and Network C are connected through DIF 2, and Network
B and Network D are connected through DIF 3. DIF 1,
DIF 2 and DIF 3 are three level-zero DIFs that can provide
communication services for two connected networks.

A very simple way to meet clients’ requirements is as fol-
lows. Two video clients can receive live streaming service from
the video server through two unicast connections supported
by two separate DIFs as shown in Figure 3. The unicast
connection between RTP Client Proxy 1 and the video
server proxy is supported by DIF 4, which is a level-one DIF
formed based on DIF 1 and DIF 2. The unicast connection
between RTP Client Proxy 2 and the video server proxy
is supported by DIF 5, which is a level-one DIF formed based
on DIF 1 and DIF 3. However, it is easy to see that the same
video traffic is delivered twice over DIF 1, which consumes
unnecessary network bandwidth. In order to make better use of
network resources, it is necessary to use multicast to stream
the live video traffic. Next we show two different solutions
of managing the existing DIFs to support multicast, i.e., two
ways of application-driven network management.
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Fig. 3: Video streaming through unicast connections, where same video traf-
fic is delivered twice over DIF 1 consuming unnecessary network bandwidth

A. Solution One: Application-Level Multicast

The first solution is enabled through a video multicast video
server as shown in Figure 4a. The connection between the
video server and the video multicast server is supported by
DIF 1. The connection between the video multicast server
and RTP Client Proxy1 is supported by DIF 2, and
the connection between the video multicast server and RTP
Client Proxy 2 is supported by DIF 3. The video server
streams video traffic to the video multicast server, which
multicasts video traffic to each client through two unicast
connections supported by DIF 2 and DIF 3, respectively.
We can see that the video traffic is delivered only once over
DIF 1 compared to Figure 3. And we only rely on existing
level-zero DIFs, and no new higher-level DIF is created.

Actually the video multicast server provides a VNF (Vir-
tual Network Function [2]) as in NFV (Network Function
Virtualization), i.e., RINA can implicitly support NFV. In a
complicated network topology with more local networks, if
there are more clients from different local networks needing
the live streaming service, we can instantiate more video
multicast servers, and place them at locations that are close
to the clients, thus provide better video quality and network
performance (such as less jitter and bandwidth consumption).

B. Solution Two: DIF-level Multicast

The second solution is supported using the multicast service
provided by the DIF mechanism. As shown in Figure 4b,
we form a level-one DIF DIF 4 on top of existing level-
zero DIFs. The video server proxy creates a multicast channel
through DIF 4, and streams live video traffic over this
multicast channel. Each client joins the multicast channel to
receive the live video traffic. Note that the allocation of a
multicast connection is the same as the allocation of a unicast
connection, and both are done through the same RINA API.
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Fig. 4: (a) Video multicast through an RTP multicast video server. (b) Video
multicast through the multicast service provided by the DIF

Here we can see that RINA implicitly supports SDN [1]
by allowing the dynamic formation of new DIFs (virtual net-
works). What’s more, it allows instantiating different policies
for different DIFs. In a complicated network topology with
more local networks, if there are more clients from different
local networks accessing the live streaming service, we can
either dynamically form new higher-level DIFs or expand the
existing DIFs providing the multicast service.

V. EXPERIMENTS OVER GENI

GENI [19] is a nationwide suite of infrastructure that
supports large-scale experiments, and it enables research and
education in networking and distributed systems. Through
GENI, users can obtain computing resources (e.g., virtual ma-
chines (VMs) and raw PCs) from different physical locations
(GENI aggregates), and connect these computing resources
with layer-2 (stitched VLAN) or layer-3 (GRE Tunnel) links.
In this section, we show our experimental results over GENI.
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A. Bandwidth Usage
We reserve four VMs from four GENI aggregates (Rutgers,

Wisconsin, Chicago and NYSERNet) shown in Figure 5a, and
we connect the VMs using stitched VLANs. Each aggregate
corresponds to one network in Figure 3, where the RTP server
and RTP server proxy are running on VM N1 in the Rutgers
aggregate, the RTP Client Proxy 1 is running on VM
N4 in the Chicago aggregate, and the RTP Client Proxy
2 is running on VM N3 in the NYSERNet aggregate.

Figure 6 shows the bandwidth usage for the unicast solution
and the two multicast solutions (cf. Figure 3 and 4). We can see
that, as expected, the bandwidth usage for the two multicast
solutions are close to half of that of the unicast solution.
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B. Video Quality
We reserve five VMs from five GENI aggregates (GPO,

Chicago, NYSERNet, Stanford, and Wisconsin) shown in
Figure 5b, and we connect the VMs using stitched VLANs.
The RTP server and RTP server proxy are running on VM
N1 in the GPO aggregate, the RTP Client Proxy 1 is
running on VM N3 in the Stanford aggregate, and the RTP
Client Proxy 2 is running on VM N5 in the Wisconsin
aggregate.

(a) (b)

Fig. 7: (a) Video observed when the path selected is with less jitter. (b)
Video observed when the path selected is with more jitter

The goal is to observe the effect on the video quality at
the video client side when placing the video multicast server
(cf. Figure 4a) in different locations, i.e., placing the video
multicast server either on VM N2 in the Chicago aggregate or
VM N4 in the NYSERNet aggregate. Since GENI does not yet
allow specifying parameters when reserving stitched VLANs,
such as capacity and latency, we use a network emulation
tool, NetEm [20] to add delay (1000ms ±500ms) on the link
between VM N1 in GPO and VM N2 in Chicago. To observe
video quality, we have VLC players running locally on our BU
campus network and connect them to the RTP client proxies
running on GENI aggregates (i.e., VM N3 and N5) via Internet
connections. Note that the jitter on the Internet connections is
negligible, and the jitter in our experiments is mainly from
jitter emulated on GENI links.

We run a VLC player locally and connect it with the
RTP Client Proxy 1 running on VM N3 in the Stanford
aggregate. Figure 7(b) shows the video observed when placing
the multicast server on VM N2 in the Chicago aggregate. Fig-
ure 7(a) shows the video observed when placing the multicast
server on VM N4 in the NYSERNet aggregate. We can see that
by placing the video multicast server at a location experiencing
less jitter we can achieve better video quality.

Regarding the time taken to establish/modify the multicast
tree, our recent measurements as shown in [21] indicate that
it is proportional to the size of the DIF and typically in the
order of a few seconds.

VI. FUTURE WORK AND CONCLUSION

In this paper, we described how to achieve application-
driven network management using ProtoRINA. As an example,
we show how video can be efficiently multicast to many clients
on demand by dynamically creating a delivery tree. Under
RINA, multicast can be enabled through a secure communi-
cation container that is dynamically formed to support video
transport either through application proxies or via relay IPC
processes. We also highlighted RINA’s inherent support for
envisioned SDN and NFV scenarios. The experimental results
over the GENI testbed show that application-driven network
management enabled by ProtoRINA achieves better network
and application performance. As future work, we plan to
investigate how to build a RINA network and compose policies
given the physical topology to achieve better network and
application performance for different applications. Also we
plan to have our ProtoRINA run on a long-lived slice (virtual
network) over the GENI testbed to make a RINA network
available to researchers and educators so that they can opt-in
to offer or access new services.
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