
Introducing ProtoRINA: A Prototype for
Programming Recursive-Networking Policies

Yuefeng Wang Ibrahim Matta Flavio Esposito∗ John Day
Boston University Boston University Exegy, Inc. Boston University
wyf@bu.edu matta@bu.edu fesposito@exegy.com day@bu.edu

This article is an editorial note submitted to CCR. It has NOT been peer reviewed.
The authors take full responsibility for this article’s technical content. Comments can be posted through CCR Online.

ABSTRACT
ProtoRINA is a user-space prototype of the Recursive In-
terNetwork Architecture. RINA is a new architecture that
builds on the fundamental principle that networking is inter-
process communication. As a consequence, RINA overcomes
inherent weaknesses of the current Internet, e.g., security,
mobility support, and manageability. ProtoRINA serves not
only as a prototype that demonstrates the advantages of
RINA, but also as a network experimental tool that enables
users to program different policies using its built-in mecha-
nisms. In this note, we introduce ProtoRINA as a vehicle
for making RINA concepts concrete and for encouraging re-
searchers to use and benefit from the prototype.

Categories and Subject Descriptors
C. Computer Systems Organization [C.2 Computer Com-
munication Networks]: C.2.1 Network Architecture and
Design.

Keywords
Experimental Evaluation, Future Network, Policy-based Pro-
gramming, RINA, Recursive Networking.

1. INTRODUCTION
The current Internet has been facing many problems due

to its inherently flawed architecture. Many proposals (new
network protocols and architectures) have attempted to ame-
liorate these problems. Our approach has relied on the fun-
damental principle that networking is Inter-Process Com-
munication (IPC) and only IPC. As a consequence, our Re-
cursive InterNetwork Architecture (RINA) [1, 2] subsumes
existing Future Internet Architecture (FIA) proposals and
inherently supports capabilities such as security, mobility,
and manageability. We give a brief overview of RINA, then
we focus on ProtoRINA, which is a user-space prototype of
RINA. We refer the reader to [3, 1, 2, 4] for more details.

Recursive Architecture: RINA is based on the funda-
mental principle that networking is IPC and only IPC. It is
designed based on two main principles: (i) divide and con-
quer (recursion), and (ii) separation of mechanisms and poli-
cies. And it is part of a more general model of distributed
applications, operating systems, and networks. A set of dis-
tributed application processes, called a Distributed Appli-
cation Facility (DAF), cooperate to perform some function,

∗F. Esposito’s work was done while at Boston University.

e.g., communication service, weather forecast, genomics, etc.
A Distributed IPC Facility (DIF) is a specialization of a
DAF which only provides communication service. A DIF
is what constitutes a “layer” in RINA. DIFs are specialized
to manage a given range of operation with respect to per-
formance characteristics and scale. The greater the range
of these in a network the more DIFs that are necessary. In
some cases, the scope of these DIFs increases with increasing
rank, so a higher-level DIF is supported by multiple lower-
level DIFs.

Applications request the allocation of communication re-
sources with another application. Resolving the “what” an
application wants to talk to, to the “where it is” is done by a
Flow Allocator, and may necessitate the dynamic formation
of a wider-scope DIF. Addresses within each DIF are not
exposed to applications, and there are no well-known ports.
One implication of the IPC model is that the application
name space can have greater scope than any one DIF and
hence a global address space is not required.

RINA separates mechanisms and policies. For example,
IPC processes all use the same mechanisms but may use dif-
ferent policies in different DIFs with different scopes. Also
RINA simplifies the network system by only using two policy-
configurable protocols. The Common Distributed Applica-
tion Protocol (CDAP) is the only application protocol re-
quired, and is also used for network management. The Error
and Flow Control Protocol (EFCP) is used for data transfer.

RINA vs. other FIA Proposals: RINA subsumes the
mechanisms and policies of other architectural proposals.
For example, by layer isolation and explicit authentication
of processes to join a DIF layer, RINA supports secure ad-
dress spaces as in XIA [5]. By naming application processes
and not interfaces, RINA supports mobility and multihom-
ing as in Serval [6] or MobilityFirst [7]. Thanks to its di-
rectory mechanism, RINA supports content discovery ap-
plications as in NDN [8]. By instantiating DIF layers with
different scopes and policies, a DIF layer can be thought of
as a virtual “slice” of a physical network, as envisioned by
Nebula [9]. A DIF layer could also be a slice/layer over lower
level slices. RINA references on mobility [10], security [11],
and layer discovery [12], together with other detailed infor-
mation can be found at [1].

ProtoRINA: ProtoRINA provides a framework with com-
mon mechanisms so researchers do not have to implement
these from scratch, rather they can focus on programming
different policies (supported by user applications or network

management applications). ProtoRINA offers several fea-
tures: (i) ProtoRINA is not restricted to the Internet Pro-
tocol (IP), so it enables experimentation with new control
and management applications; (ii) ProtoRINA supports re-
search not only on user applications but also network man-
agement; (iii) ProtoRINA can be used as a teaching tool by
educators in networking and distributed systems classes; and
(iv) ProtoRINA can be used to run real experiments both
on local-area networks and on wide-area network testbeds
such as GENI [13]. Details of ProtoRINA, including code
and user manual and support, can be found at [4].

In the rest of this note, some details of ProtoRINA are
presented in Section 2. Section 3 summarizes some experi-
mental results obtained using ProtoRINA.

2. PROTORINA: A PROTOTYPE OF RINA
ProtoRINA Version 1.0 has been tested on our Boston

University campus network and on the GENI testbed, and
we have done some preliminary cross-debugging with other
RINA prototypes [14, 15]. The current version consists of
around 55,000 lines of Java code following the RINA spec-
ifications of January 2013. This version is not a complete
implementation of RINA and we continue to modify and
add elements. In particular, as noted below, this version
supports basic recursion of the DIF layer and programma-
bility of user/control/management applications/policies.

2.1 RINA Node
In ProtoRINA, a RINA node is a host (or machine) where

application processes and IPC processes reside. As shown in
Figure 1, application processes or high-level IPC processes
communicate with their peers using the communication ser-
vice provided by underlying low-level IPC processes, which
act as points of attachment. The mapping from an appli-
cation process (or high-level IPC process) to the lower level
IPC process is resolved by the underlying DIF.

Application Process

…

IPC Process (N Level)

IPC Process (N-1 Level)

Virtual Link (Wire) Manager

IPC
API

DAF

N Level
DIF

N-1 Level
DIF

Shim Layer

IPC
API

IPC Process (0 Level)

IPC
API

0 Level
DIF

IPC
API

Figure 1: RINA Node

Physical connectivities between IPC processes in level-0
DIFs are emulated by TCP connections via a shim layer that
exposes a RINA API. The shim layer includes functionalities
such as resolving a user-defined level-0 IPC process name to
an IP address and a port number. More generally, using
the shim layer enables building RINA overlays on top of
Ethernet, TCP, or UDP.

2.2 RINA Components and APIs

RIB
Daemon

RIB

IPC Resource
Manager (IRM)

Management
Application Entity

Routing
Daemon

Flow
Allocator

RIB
Daemon

API

IRM
API

IPC
API

IPC Process

IPC
API

Error and Flow
Control Protocol

(EFCP)

Relay and
Multiplexing

(RMT)

Data Transfer
Application Entity

RIB
Daemon

API

RIB
API

RIB
Daemon

API

IRM
API

IRM
API

Figure 2: IPC Process

Figure 2 illustrates how different components of an IPC
process interact with other components through RINA APIs.
ProtoRINA provides users with two RINA APIs: RIB Dae-
mon API and IRM API. Users can develop new applications
or define new network management policies using these two
RINA APIs.

Each application (or IPC) process has a Resource Infor-
mation Base (RIB) that stores its view of the information
related to the operation of the DAF (or DIF). The RIB
Daemon API is used to access information stored in the lo-
cal RIB or in a remote application (or IPC) process’ RIB
through CDAP messages. The RIB Daemon is based on
a publish/subscribe model, and it provides timely informa-
tion to the layer management (application) tasks of the DIF
(DAF). The IRM API is used by an application (or IPC)
process to allocate and maintain the connections to its peers.
More details of ProtoRINA components and RINA APIs can
be found at [4].

2.3 Configuration and Policies
In this prototype, each RINA node has a configuration

file that includes the information of all processes (applica-
tion processes and IPC processes) residing on it. This infor-
mation includes process’ naming information and location
of its configuration file. When a RINA node is initialized,
IPC processes and application processes on the node are
bootstrapped based on their own configuration files. The
configuration file includes information on the process’ un-
derlying DIF, routing policies, and so on. Users can define
other properties in the configuration file for their own appli-
cations.

Users can specify different policies in ProtoRINA config-
uration files. The following is a portion of an IPC process’
configuration file. In this example, the enrollment of a new
IPC member into the DIF requires it to provide user and
password information, and the IPC process is instantiated
to use a link-state routing protocol where link-state updates
are sent to neighbor processes every 10 seconds, and the
path cost is calculated using hop count.

r ina . enro l lment . authenPol icy = AUTHPASSWD
r ina . rout ing . p ro to co l = l i nkS t a t e
r ina . routingEntrySubUpdatePeriod = 10
r ina . l inkCost . po l i c y = hop

ProtoRINA has policy holders where users can also define
their own policies using the given RINA APIs.

3. RESULTS OBTAINED USING
PROTORINA

We have been using ProtoRINA to demonstrate the RINA
architecture and its advantages, and also to experiment with
different policies. In [16] we demonstrate RINA over the
GENI testbed with two fundamental experiments: enroll-
ment of an IPC process into a DIF layer, and the dynamic
formation of a high-level DIF layer on top of lower-level
DIFs. We also show how RINA naturally supports the pro-
vision of a virtual private cloud service in [17]. In [18] we use
ProtoRINA on GENI to experiment with different routing
policies configured over different DIF topologies.

Readers interested in running ProtoRINA on GENI can
refer to our recent tutorial delivered at the GENI Engineer-
ing Conference (GEC19) [19].

4. ACKNOWLEDGEMENT
We would like to thank the National Science Foundation

(NSF grant CNS-0963974), the GENI Project Office (CNS-
1346688), and also Lou Chitkushev and other members of
the RINA team for their support.

5. REFERENCES
[1] Boston University RINA Lab. [Online]. Available:

http://csr.bu.edu/rina/

[2] J. Day, I. Matta, and K. Mattar, “Networking is IPC:
A Guiding Principle to a Better Internet,” in
Proceedings of the 2008 ReArch Workshop, co-located
with the ACM CoNEXT Conference, Madrid, Spain,
December 2008.

[3] J. Day, Patterns in Network Architecture: A Return to
Fundamentals. Pearson, January 2008.

[4] ProtoRINA. [Online]. Available:
http://csr.bu.edu/rina/protorina/

[5] D. Han, A. Anand, F. Dogar, B. Li, H. Lim,
M. Machado, A. Mukundan, W. Wu, A. Akella, D. G.
Andersen, J. W. Byers, S. Seshan, and P. Steenkiste,
“XIA: Efficient Support for Evolvable
Internetworking,” in Proceedings of the 9th USENIX
Symposium on Networked Systems Design and
Implementation (NSDI 12). San Jose, CA, USA:
USENIX, April 2012, pp. 309–322.

[6] E. Nordström, D. Shue, P. Gopalan, R. Kiefer,
M. Arye, S. Ko, J. Rexford, and M. J. Freedman,
“Serval: An End-Host Stack for Service-Centric
Networking,” in Proceedings of the 9th USENIX
Symposium on Networked Systems Design and
Implementation (NSDI 12). San Jose, CA, USA:
USENIX, April 2012, pp. 85–98.

[7] I. Seskar, K. Nagaraja, S. C. Nelson, and
D. Raychaudhuri, “MobilityFirst Future Internet
Architecture Project,” in Invited Talk at the Asian
Internet Engineering Conference (AINTEC),
K. Kanchanasut, Ed. Thailand: ACM, November
2011, pp. 1–3.

[8] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F.
Plass, N. H. Briggs, and R. L. Braynard, “Networking
Named Content,” in Proceedings of the 5th
International Conference on Emerging Networking
Experiments and Technologies, ser. CoNEXT ’09.
Rome, Italy: ACM, December 2009, pp. 1–12.

[9] “NEBULA: A trustworthy, secure and evolvable
Future Internet Architecture.” [Online]. Available:
http://nebula-fia.org/

[10] V. Ishakian, J. Akinwumi, F. Esposito, and I. Matta,
“On Supporting Mobility and Multihoming in
Recursive Internet Architectures,” Computer
Communications, vol. 35, no. 13, pp. 1561–1573, July
2012.

[11] G. Boddapati, J. Day, I. Matta, and L. T. Chitkushev,
“Assessing the Security of a Clean-slate Internet
Architecture,” in Proceedings of the 7th Workshop on
Secure Network Protocols (NPSec), co-located with the
International Conference on Network Protocols
(ICNP). Austin, Texas, USA: IEEE, October 2012,
pp. 1–6.

[12] E. Trouva, E. Grasa, J. Day, and S. Bunch, “Layer
Discovery in RINA Networks,” in Proceedings of the
IEEE 17th International Workshop on Computer
Aided Modeling and Design of Communication Links
and Networks (CAMAD), Barcelona, Spain,
September 2012, pp. 368–372.

[13] GENI. [Online]. Available: http://www.geni.net/

[14] The IRATI Project. [Online]. Available:
http://irati.edu/

[15] TRIA Network Systems, LLC. [Online]. Available:
http://www.trianetworksystems.com/

[16] Y. Wang, F. Esposito, and I. Matta, “Demonstrating
RINA Using the GENI Testbed,” in Proceedings of the
Second GENI Research and Educational Experiment
Workshop (GREE2013), Salt Lake City, UT, USA,
March 2013.

[17] F. Esposito, Y. Wang, I. Matta, and J. Day,
“Dynamic Layer Instantiation as a Service,” in Demo
at the 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI),
Lombard, IL, USA, April 2013.

[18] Y. Wang, I. Matta, and N. Akhtar, “Experimenting
with Routing Policies Using ProtoRINA over GENI,”
in Proceedings of the Third GENI Research and
Educational Experiment Workshop (GREE2014),
Atlanta, GA, USA, March 2014.

[19] I. Matta, Y. Wang, and N. Akhtar, “GEC19 Tutorial:
Running RINA on GENI,” video at
https://www.youtube.com/watch?v=qUDvduy-JEs.
[Online]. Available:
http://groups.geni.net/geni/wiki/GEC19Agenda/RINA

