
1

On Distributed Virtual Network
Embedding with Guarantees

Flavio Esposito, Donato Di Paola, and Ibrahim Matta

Abstract—To provide wide-area network services, resources
from different infrastructure providers are needed. Leveraging
the consensus-based resource allocation literature, we propose
a general distributed auction mechanism for the (NP-hard)
virtual network (VNET) embedding problem. Under reasonable
assumptions on the bidding scheme, the proposed mechanism is
proven to converge, and it is shown that the solutions guarantee
a worst-case efficiency of (1 − 1

e
) relative to the optimal node

embedding, or VNET embedding if virtual links are mapped to
exactly one physical link. This bound is optimal, that is, no better
polynomial-time approximation algorithm exists, unless P = NP.

Using extensive simulations, we confirm superior convergence
properties and resource utilization when compared with existing
distributed VNET embedding solutions, and we show how by
appropriate policy design, our mechanism can be instantiated
to accommodate the embedding goals of different service and
infrastructure providers, resulting in an attractive and flexible
resource allocation solution.

Index Terms—Network virtualization, approximation algo-
rithms, consensus algorithms, resource allocation, virtual net-
work embedding.

I. INTRODUCTION

THE challenge of deploying wide-area virtualization based
network services recently spurred interest in both the

business and the research communities: from a research per-
spective, this enables the networking communities to concur-
rently experiment with new Internet architectures and proto-
cols, each running on an isolated instance of the physical net-
work. From a market perspective, this paradigm is appealing
as it enables multiple infrastructure and service providers (InPs
and SPs) to experiment with new business models that range
from leasing their infrastructure to hosting multiple concurrent
network services.

A virtual network (VNET) is a set of virtual instances span-
ning a set of physical resources, e.g. processes and physical
links, and by network service we mean the commodity sup-
plied by the VNET, e.g. an online game or the access to a dis-
tributed virtual network testbed. Examples of service providers
are content delivery networks, high-performance computing
systems such as cluster-on-demand, or large-scale distributed
testbed platforms (e.g. Emulab [38], GENI [2]). InPs may
cooperate or compete to provide such services themselves,
or they could lease their resources to an SP. We consider a
model in which a set of InPs receive a VNET request from

F. Esposito, Member of IEEE/ACM, is with the Advanced Technology
Group at Exegy, Inc. St.Louis, MO, fesposito@exegy.com.

D. Di Paola Member of IEEE/ACM, is with the Institute of Intelligent
Systems for Automation, National Research Council (ISSIA-CNR), Bari, Italy,
dipaola@ba.issia.cnr.it.

I. Matta, Senior Member of IEEE/ACM, is with the Computer Science
Department, Boston University, MA matta@cs.bu.edu.

an SP (or an intermediary “connectivity” provider [42]), and
they then attempt to embed it in a distributed fashion: each InP
independently submits a set of bids, and a distributed process
is used to reach consensus.

The virtual network embedding problem 1 consists of three
tasks: (1) resource discovery, which involves monitoring the
state of the physical resources, (2) virtual network mapping,
which involves matching VNET requests to the available
resources, and (3) allocation, which involves assigning the
resources that match the VNET requests. These three tasks are
tightly coupled, and although there exists a wide spectrum of
solutions that solve a particular task, at most two tasks along
with their interactions have been considered (see Section II
or [15] for a complete survey).

Distributed virtual network mapping solutions that allow
different InPs to collectively embed a virtual network already
exist [7], [21], [40]: some of them focus on the desirable
property of letting InPs use their own (embedding) poli-
cies [7], while others rely on truthfulness of a virtual resource
auction [40]. Although they have systematic logic behind
their design, such distributed solutions are still restricted to a
subset of the three virtual network embedding tasks, they have
performance (e.g. convergence speed or resource utilization)
tightly determined by the chosen heuristic, and they are limited
to a single distribution model — the type and amount of
information propagated to embed a VNET.

Existing embedding solutions are also restrictive with re-
spect to VNET’s arrival rate and duration: the lifetime of a
VNET can range from few seconds or minutes (in the case
of cluster-on-demand services) to several months and years
(in the case of a VNET hosting a content distribution service
similar to Akamai [34], or a GENI [2] VNET hosting a novel
architecture looking for new adopters/users to opt-in). For
instance, in wide-area testbed applications, virtual networks
are provided in a best-effort manner, and the inter-arrival time
between VNET requests and the lifetime of VNETs are typi-
cally much longer than the virtual network embedding time, so
existing solutions assume complete knowledge of the network
state, and ignore the overhead of resource discovery and the
VNET embedding time. In applications with higher churns,
e.g., cluster-on-demand such as financial modeling, anomaly
analysis, or heavy image processing, where VNET providers
have rigid Service Level Objectives (SLO) — the technical
requirements within a Service Level Agreement (SLA) — or
where VNETs have short lifetime and expect short response
time, it is desirable that solutions attempt to reduce the VNET

1Two alternative terms for this problem are “slice embedding” coined in
[18], and “virtual network provisioning” [20].

2

embedding time, and employ limited resource discovery to
reduce overhead.

In summary, due to the wide range of providers’ goals
and allocation models (e.g., best effort or SLO), a flexible
solution that is adaptable to different provider goals and tackles
the distributed VNET embedding with its three phases does
not yet exist. Moreover, none of the previously proposed
solutions give guarantees on both the convergence of the
VNET embedding process, and on allocation performance —
ratio of the number of VNETs successfully allocated on the
physical infrastructure to the total requested.
Our Contributions. To this end, leveraging properties from
the consensus literature [30], we propose a general Consensus-
based Auction mechanism for Distributed virtual network
embedding (CAD). The mechanism is general as it supports a
large spectrum of applications and providers’ objectives along
with their distribution models by tuning its policies. CAD
iterates over a bidding and an agreement (or consensus) phase
to embed virtual nodes, before a third phase embeds virtual
links. By only exchanging bids and few other policy-driven
information with their neighbors, physical nodes discover
available resources, find a mapping solution and agree on a
VNET assignment.

To demonstrate its flexibility, we compare and analyze
the tradeoffs between two different policy configurations of
CAD: the first, that we call Single Allocation Distributed
embedding (SAD), allows bidding on a single virtual node
per auction round. The second, called Multiple Allocation
Distributed embedding (MAD), allows bidder physical nodes
to win multiple virtual nodes simultaneously and therefore
leads to faster VNET embedding (convergence) time. Using
extensive simulations, we show the counter-intuitive result that
despite full knowledge of the entire VNET to be allocated
before bidding, MAD may yield lower allocation efficiency.
This is surprising as typically (online) algorithms that operate
without the full knowledge of the input perform no better
than their offline counterpart. Moreover, we show that SAD
better balances the load and often has shorter response time
— time to identify whether a VNET can be embedded —
independently from the virtual network topology. Furthermore,
we investigate the effects of a path auction (PAD) policy, that
can be instantiated to avoid intermediate non-bidding (relay)
physical nodes when embedding a virtual link on loop-free
physical paths. The PAD policy simultaneously embeds virtual
nodes and links.

It is known that distributed auctions converge to a solution
if the bidding function has a property called Diminishing
Marginal Gain (DMG), that is, the gain in adding another item
to the auction bundle cannot marginally increase [6]. We were
able to improve the bound on optimality by relaxing the DMG
assumption of [6], assuming that our bids on virtual nodes are
obtained using a sub-modular function [26]. 2 Moreover, we
obtain the same convergence result relaxing the sub-modularity
assumption and using the notion of pseudo-submodularity

2This DMG condition is a subset of the sub-modularity condition: both
DMG and sub-modular functions lead to a notion of non-increasing marginal
gain when adding an item to a set, but there is no notion of ordering in the
items of a sub-modular set while a DMG function is defined on ordered sets.

of the utility function that physical nodes use to bid, that
is, each physical node is free to use any private bidding
function for each auction round, provided it communicates
its bids in a way so as they appear to be obtained from a
sub-modular function. We show that independently from the
bidding policy that InPs decide to adopt, CAD has a worst-
case convergence time of D · |VH |, where D is the diameter
of the physical network and |VH | is the size of the virtual
network H to be embedded; as a direct consequence, we
show bounds on the CAD communication overhead as well.
Under the same assumptions, we also show that CAD has a
minimum performance guarantee of (1− e−1) relative to the
optimal solution, and that this bound is optimal, that is, no
better approximation exists unless P = NP .
Paper Organization. The rest of the paper is organized
as follows: in Section II we discuss related centralized and
distributed virtual network embedding solutions, as well as
related work that uses auctions to guarantee some bounds
in other allocation problems. In Section III we describe the
Consensus Based Auction (CAD) mechanisms, as well as the
notion of pseudo sub-modular utility functions. Section IV
contains our theoretical results on convergence, and similar
resource allocation approaches that provide guarantees with
respect to similar network utility maximization problems. Sec-
tion V discusses the evaluation via our simulation campaign,
and we conclude our work in Section VI.

II. RELATED WORK

Centralized virtual network embedding: existing virtual
network embedding solutions either solve a specific task of
the VNET embedding problem, or are hybrids of two tasks.
Some solutions jointly consider resource discovery and virtual
network mapping [22], [35], or discovery and allocation [3]
(mapping single virtual machines); others only focus on the
mapping phase [10], [25], [41], or on the interaction between
virtual network mapping and allocation [39], yet others
consider solely the allocation step [4], [8], [9], [17], [27].
Moreover, there are solutions that assume the virtual network
mapping task is solved, and only consider the interaction
between the resource discovery and allocation [37]. In addition
to considering one [4], [41] or more tasks [35], [39], solutions
also depend on whether their objective is to maximize the
utility of VNET requesters [35] or infrastructure providers [4],
[29], [41]. CAD simultaneously considers discovery, mapping
and assignment, and its policies can be oriented towards the
goals of either users or providers.

Distributed virtual network embedding: to avoid restricting
services within a limited single provider’s domain, distributed
solutions to the VNET embedding have been proposed. Some
solutions rely on a centralized authority that partitions the
VNET and orchestrates the mapping [20], [42], while others do
not require such orchestration and hence we classify them as
fully distributed [21]. The only (to the best of our knowledge)
fully distributed embedding solution existing today [21] has
discouraging discovery overhead as each mapping information
is flooded to all physical nodes. The resource discovery phase
is different in PolyViNE [7], where an SP sends the entire
VNET to a subset of trusted InPs, which can eventually

3

map the VNET partially, and forwards the residual virtual
subgraph to another set of trusted InPs. The process continues
and the VNET is rejected if a threshold number of hops is
reached before its mapping is complete. The SP does the
final allocation, based on the best price among the multiple
candidate mapping solutions returned by different sets of InPs.
The mapping and the allocation depend on the discovery,
that is, on the sequence of visited InPs and therefore the
proposed heuristic in practice lead to heavy sub-optimalities
or to significant overhead (in case the residual virtual network
is flooded to all remaining InPs).

Our mechanism also supports VNET splitting and
centralized embedding orchestration, but its bidding
mechanism (thanks to the max-consensus strategy)
provides a complete resource discovery relying on low
overhead nearest-neighbor communications, and furthermore
mapping/assignment is concurrently done.

Auctions and guarantees: the idea of using auctions for a dis-
tributed VNET allocation has been floated before: V-Mart [40]
ensures a fair market but its auction winner determination
algorithm does not provide any guarantees with respect to
the sum of provider utilities. Auction algorithms and their
optimality performance have also been theoretically studied
in several application domains [5]. In electronic commerce
for example [11], truthful auction strategies are sought when
multiple items are released by a centralized auctioneer, and
guarantees on an equilibrium are proven to exist [28]. Our
approach does not need a centralized auctioneer, and we
also prove bounds on the number of iterations to reach an
equilibrium (convergence to an embedding), as a function of
the physical network diameter, and the size of the VNET to
allocate. Moreover, in our settings truthful strategies may not
work as there is uncertainty on whether more VNETs, or even
more virtual nodes in the same VNET, are to be assigned in
the future; bidders may have incentives to preserve resources
for stronger future bids.

In different settings, Choi et al. [6] present a decentralized
auction that greedily assigns tasks to a fleet of robots. Not only
our problem formulation allocates virtual nodes and links, and
physical nodes do not move as robots do, but most importantly,
in [6], the notion of Diminishing Marginal Gain has been used,
a stronger notion than sub-modularity that yields a bound of
0.5 w.r.t. the optimal utility. We show how we can obtain
a bound of 1 − 1/e (circa 0.632) using the known sub-
modularity property, but without using sub-modular functions
(pseudo-submodularity is enough.) We also show that no
better approximation exists using a novel reduction from the
maximum k-coverage problem (see Appendix B).

III. CONSENSUS-BASED AUCTIONS FOR
DISTRIBUTED VIRTUAL NETWORK EMBEDDING

Problem statement. Given a virtual network H =
(VH , EH , CH) and a physical network G = (VG, EG, CG),
where V is a set of nodes, E is a set of links, and each
node or link e ∈ V ∪ E is associated with a capacity

TABLE I
SYMBOLS AND NOTATIONS

Virtual Network Embedding Model

SP , Service Provider
InP , Infrastructure Provider
H , Virtual Network to be embedded
G , Hosting Physical Network of InP processes
D , diameter of the physical network G.

VN , Virtual Node
VL , Virtual Link

VNET , Virtual Network
VH (VG) , Node set in the virtual (physical) network H (G)
EH (EG) , Edges set in the virtual (physical) network H (G)
EH (EG) , Edges set in the virtual (physical) network H (G)

P , Set of loop-free physical paths in G
lH ∈ EH , (sH , rH) virtual link starting at at virtual node

source sH and ending at virtual destination rH

p ∈ P , (sG, . . . , rG) physical loop-free path starting at
physical node source sG and ending at rG

C(e) , Constraint associated to element e ∈ V ∪E of the
(virtual or physical) network

M , H → (VG,P) mapping function
U i , R|VH |

+ → R+ utility function of physical node i

Ni , set of neighbors for physical node i

CAD Mechanism Definitions

bi ∈ R|VH |
+ , vector of highest bids bij known so far by physical

node i on virtual node j

Ti , size of the bundle vector at physical node i

Ti , target virtual node and link capacity at physical
node i

Sij , stress on physical node i, including virtual node j,
whose bidding is being evaluated

mi ∈ VTi
H , vector (bundle) of size Ti containing virtual node

IDs currently mapped on physical node i

ai ∈ V
|VH |
G , vector of size |VH | containing the latest infor-

mation on the assignment of all virtual nodes as
known by physical node i

wi ∈ V
|VH |
G , vector of size |VH | containing the latest informa-

tion on physical node IDs currently hosting all
virtual nodes as known by physical node i

xi ∈ V
|VH |
G , binary vector of size |VH | containing the latest

information on the assignment of all virtual nodes
as known by physical node i

hij =

{
1, if Uij > bij
0, otherwise

Wij(Uij ,bi) , R|VH |
+ → R+ warping function of physical node

i, with bid vector bi when bidding on virtual node
j using utility Uij

constraint C(e), 3 a virtual network mapping (or embedding) is
a mapping of H onto a subset of G, such that each virtual node
is mapped onto exactly one physical node, and each virtual
link is mapped onto a loop-free physical path p. Formally,
the mapping is a function M : H → (VG,P) where P
denotes the set of all loop-free paths in G. M is called a
valid mapping if all constraints of H are satisfied, and for
each lH = (sH , rH) ∈ EH , ∃ at least one physical loop-free

3Each C(e) could be a vector (C1(e), . . . , Cγ(e)) containing different
types of constraints, e.g. physical geo-location, delay, or jitter. Such con-
straints can be expressed as Service Level Objectives (SLOs) with an object
specification language, such as JSON or Google Protocol Buffers, as described
in our technical report [13].

4

VN1

(6)

VN2

(9)

VN3

(5)

VN4

(4)

PN2

(10)

PN5

(40)

PN3

(20)

PN4

(30)

VL1

(10)

VL2

(6)

VL3

(8)

PL3

(30)

PL4

(60)PL2

(30)

(a)

PL5

(60)

(b)

PN1

(8)

PN6

(10)

PL6

(60)
PL1

(30)

(c)

Node Bidding

Node Embedding

Path
Exists

Complete
Assignment

Reject
VNET

No
Yes

No

Yes

Yes
Node

Agreement

Release Next VNET Partition

No

Link Embedding

Fig. 1. (a) Virtual network with capacity constraints to be embedded. (b)
Each physical node (PN) can be owned by a different InP, and can have a
different capacity. Virtual Nodes (VNs) connected by Virtual Links (VLs)
are embedded on Physical Nodes (PNs) connected by Physical Links (PLs).
(c) CAD workflow: a virtual link embedding phase follows the virtual node
bidding and agreement phases.

path p : (sG, . . . , rG) ∈ P where sH is mapped to sG and rH

is mapped to rG. All the symbols and notations used in this
paper are summarized in Table I.

Objective: multiple valid mappings of H over G may exist;
each physical node i has a utility function Ui : R|VH |

+ → R+.
We are interested in finding in a distributed fashion the
embedding solution that maximizes the sum of the utilities
of all providers

∑
i∈VG

Ui, e.g., by letting InPs instantiate
policies according to their goals and run the auction. A natural
objective for an embedding algorithm is to maximize revenue.
The revenue can be defined in various ways according to
economic models. As in [39], we use the notion of a higher
economic benefit (reward) from accepting a VNET or virtual
request that requires more resources (e.g., bandwidth, CPU)
from the physical network, assuming that such revenue is
proportional to the amount of requested resource. This means
that physical nodes bid first on virtual nodes with the highest
capacity, in a descending order, to maximize their potential
“revenue”.

CAD mechanism: consider a VNET embedding request by an
SP (Figure 1a) on a physical network (Figure 1b) where each
physical node (PN) belongs to a different InP. The SP sends
to (a subset of) all physical nodes a request with (a subset of)
the virtual elements (nodes and links), e.g. virtual nodes VN1
and VN2 connected by virtual link VL1. Each physical node i,
where i ∈ VG, uses a private utility function Ui ∈ R|VH |

+ to bid
on the virtual nodes, knowing that it could be the winner of a
subset (for example VN1 or VN2 or both), and stores its bids
in a vector bi ∈ R|VH |

+ . Each entry bij ∈ bi is a positive real
number representing the highest bid known so far on virtual
node j ∈ VH . Also, physical nodes store the identifiers of
the virtual nodes on which they are bidding in a list (bundle
vector) mi ∈ V Ti

H , where Ti is a target number of virtual
nodes mappable on i. After the private bidding phase, each
physical node exchanges the bids with its neighbors, updating
an assignment vector ai ∈ V |VH |

G with the latest information
on the current assignment of all virtual nodes, for a distributed
auction winner determination.

The winner physical nodes communicate the mapping to the
SP which, if possible, releases the next VNET(s) or the next

VNET partition if any (e.g. VN3, VN4, VL3 in Figure 1a) 4.
Once the physical nodes have reached consensus on who is
the winner for all the virtual nodes of the (partial or full)
VNET released for the auction, a distributed link embedding
phase is run to embed each virtual link on a set of (one or
many) loop-free physical paths (Figure 1c.) The mechanism
iterates over multiple node bidding and agreement (consensus)
phases synchronously, that is, the second bidding phase does
not start until the first agreement phase terminates. Physical
nodes act upon messages received at different times during
each bidding phase and each consensus phase; therefore, each
individual phase is asynchronous. In the rest of the paper, we
denote such rounds or iterations of node bidding followed by
consensus with the letter t and we omit t when it is clear from
the context.

Adapting the definition of max-consensus from the consen-
sus literature [30] to the VNET embedding problem we have:

Definition 1. (max-consensus.) Given a physical network
G, an initial bid vector of physical nodes b(0)

∆
=

(b1(0), . . . ,b|VG|(0))
T, a set of neighbors Ni ∀i ∈ VG, and

the consensus algorithm for the communication instance t+1:

bi(t+ 1) = max
j∈Ni∪{i}

{bj(t)} ∀i ∈ VG, (1)

Max-consensus on the bids among the physical nodes is said
to be achieved with convergence time τ , if ∃ τ ∈ N such that
∀ t ≥ τ and ∀ i, i′ ∈ VG,

bi(t) = bi′(t) = max{b1(0), . . . ,b|VG|(0)}, (2)

where max{·} is the component-wise maximum.

Assumptions: we assume that physical nodes are aware of
the physical outgoing link capacity to reach each of its first-
hop neighbors to propagate the highest bids, the routing
table for the path embedding phase, and the diameter D of
the physical network, useful as a termination condition: if a
physical node has received more than D messages the auction
phase terminates. 5

CAD Policies: one of the design goals of CAD is its flexibility
— ability to create customizable VNET embedding algorithms
to satisfy desired policies, rules, and conditions. We describe
here such policies, and later in this section we show a few
examples of how CAD can be instantiated to satisfy other
goals. A straightforward example of policy is the (normalized)
utility function U that InPs use to bid on virtual resources
(nodes). In our evaluation (Section V), the bid value of
physical node i on virtual node j is equivalent to Uij , where:

Ti = Ci +
∑
k∈Ni

Cik, Uij =
Ti − Sij

Ti
(3)

where Ti is the target virtual (node and links) capacity that
is allocatable on i, and Sij is the stress on physical node i,

4The VNET partitioning problem has been shown to be NP-hard, e.g in [20]
and it is outside the scope of this paper. In this work, we consider the VNET
partitioning as a separate mechanism, necessary for the VNET embedding
problem, and we let SP decide the objective, the type, and the size of each
VNET partition.

5Algorithms to compute the diameter of a network in a distributed way are
well known [30], and they are outside the scope of this paper.

5

namely, the sum of the virtual node capacity already allocated
on i, including virtual node j on which i is bidding, plus
the aggregate (allocated and requested) virtual link capacity
attached to the virtual node under bidding. Note that we do
not need any link embedding information to compute Sij as its
value is obtained based on the residual node and adjacent link
capacities known from the previous embedding round. After
a VNET is successfully embedded, the residual physical node
and link capacity are updated with a new final value. Note that,
due to the max consensus definition, the bid bij at physical
node i on virtual node j is the maximum utility value seen
so far. The normalization factor 1

Ti
ensures that such bids are

comparable across physical nodes.
We have seen from related work, e.g. [21], [42], how

embedding protocols may require SPs to split the VNET
request. CAD is able to express this requirement by enforcing
a limit on the length of the bid vector bi, so that physical
nodes bid only on the released VNET partition. Each InP can
also enforce a load target on its resources by limiting its target
allocatable capacity Ti, which, in turn, limits its bundle size
Ti.

Another auction policy is the assignment vector ai, that is,
a vector that keeps track of the current assignment of virtual
nodes. ai may assume two forms: least and most informative.
In its least informative form, ai ≡ xi is a binary vector where
xij is equal to one if physical node i hosts virtual node j and
0 otherwise. In its most informative form, ai ≡ wi is a vector
of physical nodes that are so far winning the hosting of virtual
nodes; wij represents the identifier of the physical node that
made the highest bid so far to host virtual node j. Note that
when ai ≡ wi the assignment vector reveals information on
which physical nodes are so far the winners of the auction,
whereas if ai ≡ xi physical node i only knows if it is winning
each virtual node or not. As a direct consequence of the max-
consensus, this implies that when the assignment (allocation)
vector is in its least informative form, each physical node only
knows the value of the maximum bid so far without knowing
the identity of the bidder. We also leave as a policy whether
the assignment vector is exchanged with the neighbors or not.
In case all physical nodes know about the assignment vector
of the virtual nodes, such information may be used to allocate
virtual links in a distributed fashion. Instead, if ai ≡ xi, to
avoid physical nodes flooding their assignment information, i
asks the SP about the identity of the physical node hosting the
other end of the virtual link and then attempts to allocate at
least one loop-free physical path.

A. Phase 1: CAD Bidding (Auction) Phase

Consider Procedure 1 (locally executed by the physical
nodes): after the initialization of the assignment vector ai,
the bid vector bi and the bundle vector mi for the current
iteration t (line 3) 6, each physical node checks if another
bidding phase is needed (line 4), for example because there is
enough capacity or because the auction policy allows another
bidding, or else terminates. If a physical node can bid, but
cannot outbid any virtual node, the bidding phase terminates.
If instead there is at least one biddable virtual node j, i.e.

6We elaborate on the need to reset mi at the end of Remark 2, Section III-C.

Procedure 1 CAD biddingPhase for physical node i at iteration t

1: Input: ai(t− 1), bi(t− 1)
2: Output: ai(t), bi(t), mi(t)
3: ai(t) = ai(t− 1), bi(t) = bi(t− 1),mi(t) = ∅
4: if biddingIsNeeded(ai(t),Ti) then
5: if ∃ j : hij = I(Uij(t) > bij(t)) then
6: η = argmaxj∈VH

{hij · Uij}
7: mi(t) = mi(t)⊕ η // append η to bundle
8: biη(t) = Uiη(t)
9: update(η,ai(t))

10: Send / Receive bi to / from k ∀k ∈ Ni
11: if ai ≡ wi then
12: Send / Receive wi to / from k ∀k ∈ Ni
13: end if
14: end if
15: end if

if Uij(t) > bij (line 5), 7 physical node i registers in its bid
vector the bid with the highest reward η = argmax

j∈VH

{hij ·Uij}
(line 6) and updates the state vectors (lines 7−9.) At the end of
the bidding phase, the current winning bid vector (line 10) and
if the auction policy allows it (lines 11− 13), the assignment
vector ai is exchanged with each neighbor. Depending on
the configured policies, the functions biddingIsNeeded()
and update() of Procedure 1 may behave differently.
SAD configuration: in particular, let us consider a scenario
in which InPs (1) wish to reveal the least possible information
to other (competitor) InPs, and (2) they are interested in
the quickest possible response time for a VNET request. To
accommodate these goals, we set the assignment vector policy
to its least informative form, the partition size to two (so that
a VNET is rejected as soon as one of the two virtual nodes or
their adjacent virtual link is not allocatable), and the bundle
vector size to one, so that the auction is on a single item.
As we are forcing physical nodes to bid on a single virtual
node per auction round, we refer in the rest of the paper to
this policy configuration as Single Allocation for Distributed
embedding (SAD).
SAD bidding: given such policy configuration, the
biddingIsNeeded() function can be implemented
by only verifying if A(t) =

∑
j∈VH

xij(t) = 0, knowing that
bidders are only allowed to win one virtual node per round
“t”, that is, A(t) ≤ 1. Given the SAD policy configuration,
the update() function implementation simply changes the
assignment vector from xiη(t) = 0 to xiη(t) = 1.

Example 1. (SAD bidding). Consider Figure 1: virtual nodes
VN1 and VN2 are released by the SP. Assuming that all
nodes use as utility their residual node capacity, PN1, PN3
and PN5’s initial bidding vectors are bPN1(0) = (8, 0),
bPN3(0) = (0, 20), and bPN5(0) = (0, 40). Note that the
first bid of each physical node is its initial capacity, and
PN1 could not bid on VN2 since VN2 requires 9 capacity
units whereas PN1’s capacity is 8. Also we assume that a
physical node, whenever feasible, bids on the virtual node
with highest residual capacity as this brings higher reward

7I(·) is an indicator function, unitary if the argument is true and 0 otherwise.

6

(revenue.) In their first bidding phase, physical nodes assign
themselves as winners for the virtual nodes as they do not
know yet each other’s bids, and so xPN1 = (1, 0) and
xPN3 = xPN5 = (0, 1).

MAD configuration: let us now consider a scenario in which
embedding VNETs with the least possible auction iterations
(convergence time) is more desirable than hiding information
from other physical nodes. To this end, we remove the limit on
the number of biddable virtual nodes within the same auction
round, and we do not partition the VNET request so that
each physical node has an offline knowledge of the entire
VNET request (as opposed to SAD that releases the VNET
components in an online fashion, i.e. the VNET embedding
algorithm runs without a complete knowledge of the input.)
Moreover, we set the assignment vector policy to its most
informative form, so that the consensus is run simultaneously
on both the bid vector and on the assignment vector.
MAD bidding: under these settings, the function
biddingIsNeeded() is implemented so that it returns
true while there is still room for additional virtual resources.
The amount of virtual resources that physical node i is
attempting to host can be expressed either in terms of the
total number of virtual nodes in its current bundle mi(t), i.e.
|mi(t)|, or in terms of the resulting virtual capacity stress
on physical node i as in (3). Also under these settings, the
update() function implementation updates the allocation
vector with wi,η(t) = i (not just with 1 or 0 but with the
identifier of the winning physical node).

Example 2. (MAD bidding). Let us consider Figure 1 and let
us assume that the target allocated capacity of PN3 is 16 units,
and that the requested virtual capacity is equivalent to the
reward that a physical node gets if it wins the hosting of that
virtual node. In this example, let us also assume that physical
node bids are equivalent to their residual physical capacity,
e.g., a physical node with residual capacity 10 units bids 10 to
attempt the hosting of a virtual node whose requested capacity
is no higher than 10 units. Let us apply MAD to construct the
bundle of PN3. First PN3 bids on VN2, as it is the virtual node
with the highest requested capacity (reward) and so bPN3 =
(0, 20, 0, 0). After filling its bundle with VN2, PN3 updates its
residual capacity from 20 to 11 (as VN2 requested capacity
is 9). The next virtual node to be inserted in the bundle is
hence VN1, as it has the highest requested capacity among
the remaining virtual nodes. PN3 bidding phase terminates
with bPN3 = (11, 20, 0, 0), wPN3 = (PN3, PN3,−,−) and
bundle mPN3 = (V N2, V N1), as embedding more virtual
nodes would increase the allocated capacity beyond the target.

B. Phase 2: CAD Agreement Phase

In this phase, physical nodes make use of a maximum
consensus strategy to converge on the winning bids b̄, and
to compute the allocation vector ā (Procedure 2).

The consensus, for example on the bid vector bi after
receiving the bids from each physical node k in i’s neigh-
borhood Ni, is performed by comparing the bid bij with bkj
for all k members of Ni. This evaluation is performed by the
function IsUpdated() (line 5.) In case the auction requires

Procedure 2 CAD agreementPhase for physical node i at iteration t

1: Input: ai(t), bi(t), mi(t)
2: Output: ai(t), bi(t), mi(t)
3: for all k ∈ Ni do
4: for all j ∈ VH do
5: if IsUpdated(bkj) then
6: update(bi(t),ai(t),mi(t))
7: end if
8: end for
9: end for

consensus only on a single virtual node at a time, i.e. |mi| = 1
as in SAD, the function IsUpdated() merely checks if there
is a higher bid, that is, if ∃ k, j : bkj > bij . This means that
when a physical node i receives from a neighboring physical
node k a higher bid for a virtual node j, the receiver i always
updates its bid vector bi (bij ← bkj), no matter when the
higher bid was generated. In general, i.e., when |mi| > 1,
physical nodes may receive higher bids that are out of date.
We discuss the conflict resolution of CAD in Section III-C.

Example 3. (SAD consensus.) We have assumed that hosting
higher capacity virtual nodes brings higher revenue, and so
continuing Example 1, after exchanging its bid vector with
PN5, PN3 updates bPN3 from (0, 20) to (0, 40), and xPN3

from (0, 1) to (0, 0). Having lost the auction for node VN2
(the most profitable virtual node) to PN5, PN3 bids on VN1,
and so updates again its bid vector from bPN3 = (0, 40) to
(20, 40), as all PN3’s capacity can now be used for VN1 and
PN5’s bid on VN2 is recorded. PN3 also changes its allocation
vector again from xPN3 = (0, 0) to (1, 0). Eventually, all
physical nodes agree that PN5’s bid is the highest for the
most profitable virtual node VN2, while PN4 wins VN1 as it
has the highest residual capacity after VN2 assignment.

When instead physical nodes are allowed to bid on multiple
virtual nodes in the same auction round (|mi| > 1) as in MAD,
even if the received bid for a virtual node is higher than what
is currently known, the information received may not be up-
to-date. In other words, the standard max-consensus strategy
may not work. Each physical node is required to evaluate the
function IsUpdated(). In particular, IsUpdated() com-
pares the time-stamps of the received bid vector, and updates
the bundle, the bid and the assignment vector accordingly
(Procedure 2, line 6.) Intuitively, a physical node loses its
assignment on a virtual node j if it gets outbid by another
physical node that has a more recent bid, or after realizing
that its bid for j was subsequent to another previous bid that
it had lost more recently.

More precisely, in CAD, bids from a physical node for
the same virtual node are required to be lower if more
virtual nodes are previously allocated. This is obvious in our
examples, as to bid, a physical node uses its residual capacity
that decreases as more virtual nodes are added to the bundle —
as we show later, this monotonically non-increasing condition
must hold for any other utility function. This means that if a
physical node i is outbid on a virtual node j, all the subsequent
virtual nodes mij′ , for all j′ appended in the bundle mi after

7

virtual node j, were computed using an invalid value and
therefore need to be released, that is, bij′ = 0.

C. Conflicts resolution

When it receives a bid update, physical node i has three
options: (i) ignore the received bid leaving its bid vector
and its allocation vector as they are, (ii) update according
to the information received, i.e. wij = wkj and bij = bkj , or
(iii) reset, i.e. wij = ∅ and bij = 0. When |mi| > 1, the
bids alone are not enough to determine the auction winner as
virtual nodes can be released, and a physical node i does not
know if the bid received has been released or is outdated. We
show the complete conflict resolution table in the appendix.

We conclude this subsection with two remarks that explore
how such conflicts are resolved. In particular, we illustrate how
bids should be ignored or reset if they are outdated, and how
subsequent bids to a more recently lost bid should be released.

Remark 1. (bids may be ignored or reset.) There are cases
in which the bid values are not enough to resolve conflicts,
and so the time-stamps at which the bid was generated are
used to resolve conflicts. In particular, (1) if a sender physical
node i thinks that a receiver k is the winner and k thinks the
winner is n /∈ {i, k}, or (2) when i thinks n is the winner and
k thinks the winner is m /∈ {n, i, k}, or when (3) both i and k
think m is winning but with a different bid. In all these cases,
knowing which bid is most recent allows k to either ignore or
update its bid based on the bid from i. In other cases, even the
time-stamps are not enough and i and k need to reset their
bids. In particular, (4) when i thinks the winner is k and k
thinks the winner is i. In this case, even if i’s bid were more
recently generated, it might have been generated before k’s
bid was received by i.

Remark 2. (releasing subsequent bids.) Given PN3’s bid-
ding phase in Example 2, and computing PN5’s vectors
we have: mPN5 = (V N2, V N1, V N3, V N4), bPN5 =
(31, 40, 25, 20) and wPN5 = (PN5, PN5, PN5, PN5). Af-
ter receiving the bids from PN5, PN3 realizes that its first
bundle’s entry is outbid (20 < 40) and so it must release VN2.
Therefore PN3 needs to also release the other subsequent node
in its bundle VN1, as its bid value was a function of the bid
on VN2, i.e., the bid on VN1 assumed the residual capacity
after VN2 is allocated on PN3 (see also Figure 2).

Since CAD allows physical nodes to bid using their most
updated residual capacity, releasing subsequent items from a
bundle intuitively improves the sum of the utilities of the
physical nodes and hence, when physical nodes cooperate, this
improves the number of virtual networks allocated. Moreover,
as we show in Section IV, such residual capacity utility
guarantees convergence to a VNET embedding. Note also
that, if the utility considers both node and link capacity as in
equation (3), a change of assignment of any virtual node not
present in a bundle may invalidate all bids due to the VNET
topology constraints. Assume, for example (Figure 1), that
PN5 is winning VN2 when PN3 bids on VN1. The utility (and
so the bid) on VN1 may change if the connected VN2 is later
hosted by another physical node e.g. PN4, given a variation

Non
Sub-modular

Sub-modular

Iteration 1 Iteration 2 Iteration 3

b1={10,30 } ,m1={A,C }

b2={10,20 } ,m2={C , A }

b1={}, m1={}

b2={} ,m2={}

Both PNs outbid on first VN

b1={10,30 } ,m1={A,C }

b2={10,20 }, m2={C , A }

b1={20,10 }, m1={A ,C }

b2={20,10 } ,m2={C , A }
b1={20 } ,m1={A}

b2={20 },m2={C }

Agreement

Utility

identical to iteration 1

Fig. 2. Releasing outbid items (see Remark 2) combined with non sub-
modularity may lead to instability: with a non sub-modular utility, after the
first round both physical nodes have been outbid on the first virtual node, and
their bids on the second virtual node have been invalidated, so the bundle is
empty. Bids subsequent to an outbid are released seeking a Pareto optimality.

of a link stress during the bidding process. In particular, the
residual physical link capacity to connect physical nodes PN3
and PN4 may become bigger than the residual capacity of the
physical link connecting PN3 and PN5, for example due to a
release of a VNET previously co-hosted by PN4 between two
bidding phases of the current VNET. In another example, the
residual capacity of the physical link PN3-PN4 can become
null, not allowing the embedding of the VNET at all. To
avoid storing bids computed with an out-of-date utility value,
physical nodes simply reset their own bundle at the beginning
of every bidding phase, regardless from the embedding policy
(Procedure 1, line 3).

D. Pseudo sub-modular utility functions

As we will see in Section IV, our CAD mechanism guar-
antees convergence allowing InPs to use their own bidding
policies, as long as the function appears to be sub-modular to
other bidders [24]. Sub-modularity is a well studied concept
in mathematics [33], and applied to the distributed VNET
embedding problem, can be defined as follows:

Definition 2. (sub-modular function.) The marginal utility
function U(j,m) obtained by adding a virtual resource j to
an existing bundle m, is sub-modular if and only if

U(j,m′) ≥ U(j,m) ∀m′ |m′ ⊂m. (4)

This means that if a physical node uses a sub-modular utility
function, a value of a particular virtual resource j cannot
increase because of the presence of other resources in the
bundle. CAD relies on the notion of sub-modularity to work:
releasing outdated bids without a sub-modular utility may
break the convergence to a conflict-free VNET embedding (see
e.g., Figure 2). 8

Although having sub-modular utility functions may be
realistic in many resource allocation problems [26], in the
distributed VNET embedding problem this assumption may
be too restrictive, as the value of a virtual node may increase
as new resources are added to the bundle, e.g. the cost of
mapping a virtual link between two virtual nodes decreases if
a physical node hosts both virtual source and destination.

To guarantee convergence without using a sub-modular util-
ity function, as in [24], we let each physical node communicate

8Figure 2 shows a counterexample of how a non sub-modular utility
function may lead to non convergence of our mechanism. However, given our
policy of physical nodes bidding on virtual nodes in the same (decreasing)
order of their resource requirements, a non sub-modular utility function will
converge to a stable virtual node assignment.

8

its bid on virtual node j obtained from a bid warping function:

Wij(Uij ,bi) = min
k∈{1,...,|bi|}

{Uij ,Wik} (5)

where Wik is the value of the warping function for the kth

element of bi. Note how by definition, applying the function
W to the bid before sending it is equivalent to communicating
a bid that is never higher than any previously communicated
bids. In other words, bids appear to other physical nodes to
be obtained from a sub-modular utility function.

E. Phase 3: Virtual Link Embedding

Similar to the bidding and agreement phases for virtual
nodes, in the virtual link embedding phase, our CAD mech-
anisms allow applications and provider’s goals to tune the
VNET embedding protocol behavior through policy instan-
tiation.

This last phase is based on the observation that all virtual
link embedding schemes have two commonalities: information
known at each physical node about physical paths, and the
algorithm for determining the best physical path(s) to allocate
a virtual link. We hence define three CAD policies for virtual
link embedding: (i) the type of information known at each
physical node, for example the routing table or the available
paths for any source-destination, (ii) the update frequency of
such information, for example every hour or every time a new
VNET is requested, and (iii) the selection of physical path(s)
over which a virtual link is mapped. One example of such
virtual link embedding scheme is a simple SP assisted auction,
where, similarly to [40] and [23], an SP elicits bids from each
InP, computes the “cheapest” loop-free physical path according
to the bids, and then allocates the virtual link on that path. As
shown in [39], another effective example is a k-shortest path
algorithm with path splitting [12].

In our experiments we let physical nodes know the routing
table, computed only once at the beginning of our experiments
using Dijkstra’s algorithm, and we also use the k-shortest (hop
distance) path algorithm with k = 3. This virtual link (path)
embedding policy has the limitation of expecting intermediate
physical nodes on a path to accept the allocation of a virtual
link if they have capacity. Internet Service Providers (ISPs)
today often have to rely on other ISPs to relay traffic in order to
reach some of their customers (see, e.g. [31]). In Section V-C,
we describe another (path auction) embedding policy that let
InPs avoid the drawback of relaying external traffic, at a cost
of a lower physical network utilization.

IV. CONVERGENCE AND PERFORMANCE GUARANTEES

In this section we show results on the convergence proper-
ties of CAD. By convergence we mean that a valid mapping
(Section III) is found in a finite number of steps (Definition 1).
Moreover, leveraging well-known results on sub-modular
functions [16], [33], we show that under the assumption of
pseudo sub-modularity (Section III-D) of the utility function,
CAD guarantees a (1 − 1

e) optimal approximation, that is, a
better approximation does not exist unless P = NP . 9

9Note that in this paper we use utility functions that optimize the allocation
of virtual nodes and their first-hop links, but not virtual path allocations.

Convergence Analysis. All physical nodes need to be aware
of the mapping, by exchanging their bids with only their first-
hop neighbors, therefore a change of bid information needs
to traverse all the physical network, which we assume has
diameter D. The following proposition (Proposistion IV.1)
states that a propagation time of D hops is also a necessary
and sufficient condition to reach max-consensus on a single
virtual node allocation. Another interesting observation that
follows from the result is that the number of steps for CAD to
converge on the embedding of a VNET of |VH | virtual nodes
is always D · |VH | in the worst case, regardless of the size
of the bundle vector. This means that the same worst-case
convergence bound is achieved if CAD runs on a single or
on multiple virtual nodes simultaneously. These claims are a
corollary of Theorem 1 in [6], which deals with a distributed
task allocation problem for a fleet of robots.

Let the tasks allocated by a robot represent the virtual nodes
to be hosted by a physical node. Therefore, by induction on
the size of the bundle the following result holds as a corollary
of Theorem 1 in Choi et al. [6]:

Proposition IV.1. (Convergence of CAD). Given a virtual net-
work H with |VH | virtual nodes to be embedded on a physical
network with diameter D, the utility function of each physical
node is pseudo sub-modular, and the communications occur
over reliable channels, then the CAD mechanism converges in
a number of iterations bounded above by D · |VH |.

Proof. We useWij(Uij ,bi) as a bid function (sub-modular by
definition). From [6] we know that a consensus-based auction
run by a fleet of Nu agents, each assigned at most Lt tasks,
so as to allocate Nt tasks, converges in at most Nmin · D
where Nmin = min{Nt, Nu · Lt}. Note that the proof of
Theorem 1 in [6] is independent of the utility function used
by the agents as long as they are sub-modular, and of the
constraints that need to be enforced on the tasks. Since for
CAD to converge, every virtual node needs to be assigned,
in the distributed VNET embedding problem, Nmin is always
equal to Nt ≡ |VH |, and therefore we prove the claim.

As a direct corollary of Proposition IV.1, we compute a
bound on the number of messages that physical nodes have
to exchange in order to reach an agreement on a VNET
embedding. Because we only need to traverse the physical
network once, the following result holds:

Corollary IV.1. (Communication overhead) The number of
messages exchanged to reach an agreement on the node as-
signment using the CAD mechanisms is at most D ·|EG|·|VH |,
where D is the diameter of the physical network, |EG| is the
number of directed edges in the physical network, and |VH |
is the virtual network size.

Performance Guarantees. It is known that distributed auc-
tions converge to a solution if the bidding function has a
property called Diminishing Marginal Gain (DMG), that is,
the gain in adding another item to the auction bundle cannot
marginally increase [6]. We improve such bound by relaxing
the DMG assumption of [6], and assuming that our bids
on virtual nodes are obtained using a pseudo sub-modular
function [26].

9

Theorem IV.1. (CAD Approximation). The CAD node consen-
sus algorithm yields an (1 − 1

e)-approximation with respect
to the optimal node assignment solution. If we restrict the
embedding of virtual links to physical paths of length at most
one hop, the same approximation holds for the entire VNET
(both node and link embedding).

Proof. The CAD node consensus algorithm assumes that each
physical node i does not bid on a virtual node j unless it
brings a positive utility, therefore Uij and soWij are positive.
Moreover, if we append to the bid vector bi an additional set
of virtual nodes v resulting in bid vector b′i, we have:

Wij(Uij ,b
′
i) ≤ Wij(Uij ,bi) ∀ v 6= ∅ (6)

which means that Wij is monotonically non-increasing.
Since the sum of the utilities of each physical node, and

since the bid warping function Wij(Uij ,bi) of CAD is a pos-
itive, monotone (non-increasing) and sub-modular function, all
the axioms of Theorem 3.1 in Nemhauser et al. [33] on sub-
modular functions are satisfied. Therefore the claim holds.

Moreover, the following approximation bound holds:

Theorem IV.2. (Approximation Bound). The CAD VNET
embedding strategy cannot be approximated in polynomial
time within a ratio of (1− 1

e − ε) ∀ ε > 0, unless P = NP.

Proof. See Appendix B.

V. PERFORMANCE EVALUATION

To test the proposed distributed auction algorithms, we
developed our own event-driven simulator, whose code and
traces are publicly available at [1].
Physical Network Model: Using the BRITE topology
generator [32], we obtain a physical topology. We use the
generation model of BRITE to build a flat topology using
either the Waxman model, or the Barabasi-Albert model
with incremental growth and preferential connectivity. We
tested our algorithms with physical network sizes varying
n physical nodes with about 5n physical links (as in [39]).
Our simulations do not consider delay constraints, while
link capacity constraints are discussed later in this section.
The results are similar regardless of the topology generation
model and the physical network size. In this paper we only
show the results obtained for n = 50 and a Barabasi-Albert
physical topology.

Virtual Network Model: we use a real dataset of 8 years
of Emulab [38] VNET requests [36]. For each simulation
run we process 61968 requests; the average size of a request
is 14 with standard deviation of 36 virtual nodes; 99% of
the requests have less than 100 virtual nodes, and 85%
have at most 20 virtual nodes. Excluding the 10% long-
lived requests that cause the standard deviation of VNET
lifetime to exceed 4-million seconds, the duration of the
requests is on average 561 with 414 seconds of standard
deviation (Figure 3a). As the dataset does not contain neither
the number of virtual links nor the virtual network topology,
we connect each pair of virtual nodes at random with different

average node degree (Figures 3b, c, g, and h). Moreover, we
extend our evaluation comparing linear, star, tree, and fully
connected virtual topologies (Figure 3f). All our simulation
results show 95% confidence intervals; the randomness comes
from both the virtual network topology to be embedded, and
the virtual constraints, that is, virtual node and link capacity
requirements. Similarly to previous work [39], we randomly
assign physical link capacities between 1 and 100, then we
assign the physical node capacity to be the sum of its outgoing
physical link capacities. Then we assume the virtual link
capacity to be randomly chosen between 1/R and 100/R,
where R = {50, 100, 500}, and the virtual node capacity is
then assigned to be the sum of its outgoing virtual links. The
results are similar and we only show plots for R = 100.
Compared Algorithms: we compare our CAD mechanism,
instantiated with the SAD and MAD configuration, with
another policy based distributed virtual network embedding al-
gorithm, PolyViNE [7], and with the first published distributed
virtual network embedding algorithm [21], that we call Hub
and Spoke due to the adopted heuristic.
Evaluation Metrics: our evaluation results quantify the ben-
efits of our approach along two dimensions: embedding effi-
ciency and time to find a solution. In particular, we evaluate
the time to find a solution using two metrics: 1) response
time: the number of steps measured in one-hop communi-
cation delays needed to realize a VNET can or cannot be
embedded, and 2) convergence time: the number of steps until
a valid embedding is found. The efficiency of an embedding
is evaluated using three metrics: 3) VNET allocation ratio:
the ratio between the number of virtual networks successfully
embedded and requested, 4) resource utilization: the physical
node and link capacity utilized to embed the VNET requests,
and 5) endurance of the algorithm: the number of successfully
allocated requests before the first VNET request is rejected.
We also evaluate the effect of different utility functions.

A. Allocation-based and Time-based Tradeoffs

We present here our event-driven simulation results summa-
rizing the key observations.
(1) MAD leads to larger VNET allocation ratio, as long as
multiple physical paths are available for each virtual link.
When the virtual link allocation policy allows a virtual link
to be allocated only on a single physical shortest path, SAD
has a higher VNET allocation ratio (Figure 3b). This is
because SAD, allowing a single virtual node allocation for
each auction round, balances the load over physical resources
more efficiently. When instead a physical node i is allowed
to simultaneously win a bundle of virtual nodes mi as in
MAD, the physical links adjacent to i quickly exhaust their
capacity due to the VNET topology; all the outgoing virtual
links adjacent to the virtual nodes in mi that are not mapped
on i are in fact mapped onto a small set of physical paths
emanating from physical node i. However, if the virtual link
embedding policy uses a k-shortest path (with k ≥ 3), MAD
is able to allocate more VNETs (Figure 3c). From this result
we conclude that when fewer physical paths are available, InPs
should consider (switching to) a SAD setting, otherwise MAD
is more efficient. In the considered physical topologies, there

10

10
0

10
2

10
4

0

0.2

0.4

0.6

0.8

1

Emulab VN size [# nodes] and Duration [s]

C
u

m
u

la
ti

v
e
 D

is
tr

ib
u

ti
o

n
 F

u
n

c
ti

o
n

!0.5 0 0.5 1 1.5
!1

!0.8

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

0.8

1

VN Size

VN Duration

10
0

10
2

10
4

0

0.2

0.4

0.6

0.8

1

Emulab VN size [# nodes] and Duration [s]

C
u

m
u

la
ti

v
e
 D

is
tr

ib
u

ti
o

n
 F

u
n

c
ti

o
n

!0.5 0 0.5 1 1.5
!1

!0.8

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

0.8

1

VN Size

VN Duration

10
0

10
2

10
4

0

0.2

0.4

0.6

0.8

1

Emulab VN size [# nodes] and Duration [s]

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti

o
n
 F

u
n
c
ti

o
n

!0.5 0 0.5 1 1.5
!1

!0.8

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

0.8

1

VN Size

VN Duration

10
0

10
2

10
4

0

0.2

0.4

0.6

0.8

1

Emulab VN size [# nodes] and Duration [s]

C
u

m
u

la
ti

v
e
 D

is
tr

ib
u

ti
o

n
 F

u
n

c
ti

o
n

!0.5 0 0.5 1 1.5
!1

!0.8

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

0.8

1

VN Size

VN Duration

10
0

10
2

10
4

0

0.2

0.4

0.6

0.8

1

Emulab VN size [# nodes] and Duration [s]

C
u

m
u

la
ti

v
e
 D

is
tr

ib
u

ti
o

n
 F

u
n

c
ti

o
n

!0.5 0 0.5 1 1.5
!1

!0.8

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

0.8

1

VN Size

VN Duration

10
0

10
2

10
4

0

0.2

0.4

0.6

0.8

1

Emulab VN size [# nodes] and Duration [s]

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti

o
n
 F

u
n
c
ti

o
n

!0.5 0 0.5 1 1.5
!1

!0.8

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

0.8

1

VN Size

VN Duration

Emulab VNET

(a)

2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

Average Virtual Node Degree

S
li

ce
 A

ll
o
ca

ti
o
n
 R

at
io

SAD

MAD

Hub & Spoke

PolyVINE

2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

Average Virtual Node Degree

S
li

ce
 A

ll
o
ca

ti
o
n
 R

at
io

SAD

MAD

Hub & Spoke

PolyVINE

(b)

2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

Average Virtual Node Degree

S
li

ce
 A

ll
o
ca

ti
o
n
 R

at
io

SAD

MAD

Hub & Spoke

PolyVINE

2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

Average Virtual Node Degree

S
li

ce
 A

ll
o
ca

ti
o
n
 R

at
io

SAD

MAD

Hub & Spoke

PolyVINE

(c)

0 20 40 60 80 100
0

50

100

150

Virtual Network size [# of nodes]

R
es

p
o
n
se

 T
im

e

SAD

MAD

0 20 40 60 80 100
10

0

10
1

10
2

10
3

10
4

Virtual Network size [# of nodes]

C
o

n
v

er
g

en
ce

 T
im

e

CAD upper bound

SAD

MAD

Hub & Spoke

PolyVINE

0 20 40 60 80 100
10

0

10
1

10
2

10
3

10
4

Virtual Network size [# of nodes]

C
o
n
v
er

g
en

ce
 T

im
e

CAD upper bound

SAD

MAD

Hub & Spoke

PolyVINE

(d)

0 20 40 60 80 100
0

50

100

150

Virtual Network size [# of nodes]

R
es

p
o

n
se

 T
im

e

SAD

MAD

0 20 40 60 80 100
0

50

100

150

Virtual Network size [# of nodes]

R
es

p
o

n
se

 T
im

e

SAD

MAD

0 20 40 60 80 100
0

50

100

150

Virtual Network size [# of nodes]

R
es

p
o
n
se

 T
im

e

SAD

MAD

(e)

S M H P S M H P S M H P S M H P

0.02

0.04

0.06

0.08

V
ar

ia
n
ce

 o
f

P
.N

o
d
e

U
ti

li
za

ti
o
n

Distributed Slice Embedding Algorithm

Linear Star Tree Full

S M H P S M H P S M H P S M H P

0.02

0.04

0.06

0.08

V
ar

ia
n

ce
 o

f
P

.N
o

d
e

U
ti

li
za

ti
o

n

Distributed Slice Embedding Algorithm

Linear Star Tree Full

S M H P S M H P S M H P S M H P

0.02

0.04

0.06

0.08

V
ar

ia
n

ce
 o

f
P

.N
o

d
e

U
ti

li
za

ti
o

n

Distributed Slice Embedding Algorithm

Linear Star Tree FullLinear Star Tree Full

VN
S M H P S M H P S M H P S M H P

0.02

0.04

0.06

0.08

V
ar

ia
n

ce
 o

f
P

.N
o

d
e

U
ti

li
za

ti
o

n

Distributed Slice Embedding Algorithm

Linear Star Tree Full

S M H P S M H P S M H P S M H P

0.02

0.04

0.06

0.08

V
ar

ia
n
ce

 o
f

P
.N

o
d
e

U
ti

li
za

ti
o
n

Distributed Slice Embedding Algorithm

Linear Star Tree Full

S M H P S M H P S M H P S M H P

0.02

0.04

0.06

0.08

V
ar

ia
n
ce

 o
f

P
.N

o
d
e

U
ti

li
za

ti
o
n

Distributed Slice Embedding Algorithm

Linear Star Tree FullLinear Star Tree Full

S M H P S M H P S M H P S M H P

0.02

0.04

0.06

0.08

V
ar

ia
n
ce

 o
f

P
.N

o
d
e

U
ti

li
za

ti
o
n

Distributed Slice Embedding Algorithm

Linear Star Tree Full

S M H P S M H P S M H P S M H P

0.02

0.04

0.06

0.08

V
ar

ia
n

ce
 o

f
P

.N
o

d
e

U
ti

li
za

ti
o

n

Distributed Slice Embedding Algorithm

Linear Star Tree Full

S M H P S M H P S M H P S M H P

0.02

0.04

0.06

0.08

V
ar

ia
n

ce
 o

f
P

.N
o

d
e

U
ti

li
za

ti
o

n

Distributed Slice Embedding Algorithm

Linear Star Tree FullLinear Star Tree Full

VN
S M H P S M H P S M H P S M H P

0.02

0.04

0.06

0.08

V
ar

ia
n

ce
 o

f
P

.N
o

d
e

U
ti

li
za

ti
o

n

Distributed Slice Embedding Algorithm

Linear Star Tree Full

S M H P S M H P S M H P S M H P

0.02

0.04

0.06

0.08

V
ar

ia
n
ce

 o
f

P
.N

o
d
e

U
ti

li
za

ti
o
n

Distributed Slice Embedding Algorithm

Linear Star Tree Full

S M H P S M H P S M H P S M H P

0.02

0.04

0.06

0.08

V
ar

ia
n
ce

 o
f

P
.N

o
d
e

U
ti

li
za

ti
o
n

Distributed Slice Embedding Algorithm

Linear Star Tree FullLinear Star Tree Full

Distributed VNET

(f)

2 3 4 5 6 7
0

2

4

6

x 10
4

Average Virtual Node Degree

C
o

n
se

cu
ti

v
el

y
 A

ll
o

ca
te

d
 S

li
ce

s

SAD

MAD

Hub & Spoke

PolyVINE

(g)

2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

Average Virtual Node Degree

S
li

ce
 A

ll
o

ca
ti

o
n

 R
at

io

SAD

MAD

Hub & Spoke

PolyVINE

2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

Average Virtual Node Degree

S
li

ce
 A

ll
o

ca
ti

o
n

 R
at

io

SAD

MAD

SAD node stress only

MAD node stress only

(h)

Fig. 3. (a) CDF of the size and lifetime of 8 years of Emulab VNET requests. (b) SAD allocates more VNETs when a single shortest path is available. (c)
MAD allocates more VNETs when a k-shortest path link allocation policy (where k = 3) is used. (d) MAD has shorter convergence time. (e) SAD has
shorter response time. (f) SAD better balances the load on physical nodes (k = 3). S, M, H and P indicate SAD, MAD, Hub and Spoke and PolyViNE,
respectively. (g) MAD allocates more VNETs consecutively (k = 3). (h) Considering simultaneously node and link stress in the utility improves the VNET
allocation ratio.

are no more than 3 physical paths between any pair of physical
nodes, and the confidence intervals overlap for SAD and MAD
with k = 2.
(2) MAD has faster convergence time. Although we showed
that MAD has the same worst-case convergence bound as
SAD, simulation results show how MAD can in practice be
faster (Figure 3d). In the best case, a single physical node has
highest bids for all virtual nodes, and all the other bidders will
converge on a VNET allocation in a single auction round.
(3) SAD has faster response time. Due to the VNET partition-
ing policy, that is, due to the fact that the SP releases only two
virtual nodes at a time, SAD has a quicker response time as
physical nodes immediately know if a virtual node or a link
(and so the entire VNET) cannot be allocated (Figure 3e).
We do not show the response time for the other algorithms in
Figure 3e as they are similar to their convergence time.
(4) SAD better balances the load independent of the VNET
topology. To verify our findings, we average over time the
variance of the utilization across all nodes with 25% and
75% percentiles for each of the algorithms, and we repeat
the experiment for linear, star, tree, and full virtual network
topologies (Figure 3f). Note how SAD better balances the
load, independent of the VNET topology. One exception is
PolyViNE, that has lowest load variance for tree topologies,
but at the expense of lowest VNET allocation ratio.
(5) SAD allocates more VNETs before the first one is rejected.
As a direct consequence of a better VNET allocation ratio, we
verify that SAD yields a larger number of VNETs allocated
before the first one gets rejected in case the virtual link
allocation policy allows only a single physical shortest path,
while MAD allocates more requests if multiple physical loop-
free paths are available (Figure 3g).
(6) Considering link stress in the utility function improves

the VNET allocation ratio. In this last experiment we show
how different utility functions may lead to different VNET
allocation efficiency. In particular, by comparing two different
utilities, i.e. U ′ij = (Ti−S′ij) where S′ is only the stress on the
physical nodes, and Uij where the stress also includes adjacent
physical links, we confirm the premise that considering nodes
and links simultaneously in the VNET embedding problem
leads to higher VNET allocation rate (Figure 3h). We leave
the investigation of the best utility function given the goals of
providers as an interesting research direction.

B. Physical Node Utilization: SAD to Balance the Load,
MAD to Save Energy

In this set of experiments we aim to show the impact
that different CAD policies have on the physical network
load. In particular, by measuring the physical node utilization,
we show how (7) different CAD policies may result in a
physical network with balanced load, confirming observation
#4 described in Section V-A, or with multiple virtual nodes
collocated on a small set of physical nodes. The latter virtual
node packing allows InPs to keep idle a higher number of
physical nodes, therefore reducing the InP energy costs.

We compute the physical node utilization for two different
CAD policies —MAD and SAD— as well as for our im-
plementation of the PolyViNE and Hub&Spoke embedding
heuristics, after embedding 100 virtual networks. Each virtual
network has 50 virtual nodes and 0.5 probability of having an
edge between any two virtual nodes; the physical network has
500 nodes, following a Barabasi-Albert connectivity model.
When applying the SAD node embedding policy, all physical
nodes have utilization lower than 35%, with over half of
the physical nodes less than 20% utilized. When instead we
instantiate CAD with the MAD node embedding policy, we

11

0 0.2 0.4 0.6 0.8

0.001
0.003
0.01
0.02
0.05
0.10

0.25

0.50

0.75

0.90
0.95
0.98
0.99
0.997
0.999

Physical Node Utilization

P
ro

b
ab

il
it

y

SAD

MAD

Hub & Spoke

PolyVINE

Fr
ac

tio
n

of
 P

hy
si

ca
l N

od
es

Fig. 4. Fraction of physical nodes utilization after embedding 100 virtual
networks with 50 nodes and randomly connected topology, on a physical
network with 500 nodes and a Barabasi-Albert connectivity model. Different
CAD policies may be instantiated to balance the load on physical nodes, or
to collocate multiple virtual nodes on a small set of physical nodes (allowing
more physical nodes to remain idle).

obtained a higher physical node utilization: some physical
nodes reached a 75% utilization (Figure 4). In this experiment,
the available physical node and link capacities are enough to
embed all the requested virtual networks. This means that a
higher physical node utilization is a consequence of a higher
number of idle physical nodes, since the (node and link)
physical capacity necessary to embed the requests is equivalent
across all embedding algorithms.

We were able to replicate this result across several physical
network sizes and connectivity models. We only report a
significant set of histograms that compare the smallest and
the largest tested physical network sizes: 50 versus 500
nodes, with Barabasi-Albert and Waxman connectivity model
(Figure 5). Independently from the physical network size and
connectivity model, the SAD policy results in more physical
nodes less utilized, and the MAD policy results in a few
physical nodes hosting the majority of virtual nodes.

Note that our case study of load balancing versus bin
packing behavior resulting from SAD and MAD, respectively,
is an illustration of CAD’s flexibility, and a consequence of the
monotone and sub-modular utility function used: the residual
capacity. We do not exclude the existence of CAD settings
that would enable bids on multiple resources (MAD-style),
but with a utility function that rewards load balancing (to get
the effect seen with SAD).
C. Path Auctions

In this subsection we analyze the performance of a Path
Auction for Distributed embedding (PAD), another CAD pol-
icy in which physical nodes attempt to host contiguous virtual
paths. By contiguous virtual path we mean that neighboring
virtual nodes are allocated to neighboring physical nodes. In
other words, each virtual link is allocated on a single physical
link, as opposed to being allocated on any (generally longer)
loop-free physical path.

When the path auction policy is not applied, e.g., for
both SAD and MAD node allocation policies, virtual links
may be established between non neighboring physical nodes,
expecting intermediate physical nodes to relay data traffic.
During the bidding phase, physical nodes applying the PAD

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Virtual Network size [# of nodes]

A
llo

ca
tio

n
Ra

tio

SAD
MAD
PAD
Hub & Spoke
PolyVINE

(a)

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Virtual Network size [# of nodes]

A
llo

ca
tio

n
Ra

tio

SAD
MAD
PAD
Hub & Spoke
PolyVINE

(b)

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Virtual Network size [# of nodes]

A
llo

ca
tio

n
Ra

tio

SAD
MAD
PAD
Hub & Spoke
PolyVINE

(c)

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Virtual Network size [# of nodes]

A
llo

ca
tio

n
Ra

tio

SAD
MAD
PAD
Hub & Spoke
PolyVINE

(d)

Fig. 6. Allocation ratio on a physical network of 100 nodes following a
Barabasi-Albert connectivity model. (a− d) Virtual network allocation ratio
with VNET topology: (a) linear, (b) hub & spoke, (c) random, and (d) full.
The PAD policy performs better than the MAD policy but its performance
degrades as we increase the number of virtual nodes and links.

embedding policy are allowed to attempt hosting a virtual
node j only if the virtual nodes adjacent to j are currently
won by the node itself, or by an adjacent physical node. By
enforcing the PAD policy, a virtual path of length L > 0 will
be embedded on loop-free physical path of length at most L,
hence avoiding physical node relays.

After implementing support for the PAD policy, we tested
it against the other CAD embedding policies, as well as the
other two heuristics —PolyViNE and Hub & Spoke. We found
that (8) the PAD policy has a higher VNET allocation ratio
than the MAD policy but lower than the SAD policy, until
there are “too many” virtual links to embed. The advantage
over the MAD policy vanishes as the number of virtual links
grows, i.e. as we move from embedding a linear to a full
virtual network topology (Figures 6a− d).

PAD limits the space of possible physical nodes that can
participate in an embedding: during a PAD’s bidding phase,
less physical nodes are permitted to bid, hence less physical
node and link capacity is available to host the VNET. The
PAD policy leads to an average physical path length in the
range [0, 1] hops for embedding a virtual link (Figure 7a−d);
a loop-free physical path has length 0 when the two end virtual
nodes of a virtual link are both hosted by the same physical
node, and length 1 when the two end virtual nodes of a virtual
link are hosted by two neighboring physical nodes. Comparing
Figure 6 and Figure 7 we observe how (9) the physical link
capacity provided by relay physical nodes helps improve the
allocation ratio when embedding VNETs with higher number
of virtual links, e.g. for a full VNET topology (Figure 7d).
Intuitively, the PAD policy is similar to the MAD policy except
that fewer physical nodes are allowed to bid; when a smaller

12

0 0.2 0.4 0.6 0.8
0

5

10

15

Average Physical Node Utilization

N
um

be
r o

f P
hy

sis
ca

l N
od

es

SAD
MAD
H&S
POLY

(a)

0 0.2 0.4 0.6 0.8
0

5

10

15

20

Average Physical Node Utilization

N
um

be
r o

f P
hy

sis
ca

l N
od

es

SAD
MAD
H&S
POLY

(b)

0 0.2 0.4 0.6 0.8
0

50

100

150

Physical Node Utilization

N
um

be
r o

f P
hy

sis
ca

l N
od

es

SAD
MAD
H&S
POLY

0 0.2 0.4 0.6 0.8
0

5

10

15

20

Average Physical Node Utilization

N
um

be
r o

f P
hy

sis
ca

l N
od

es

SAD
MAD
H&S
POLY

(c)

0 0.2 0.4 0.6 0.8
0

20

40

60

80

100

120

140

Average Physical Node Utilization

N
um

be
r o

f P
hy

sis
ca

l N
od

es

SAD
MAD
H&S
POLY

(d)

Fig. 5. Physical node utilization of a physical network. In (a) and (b) the network size is 50 physical nodes while in (c) and (d) 500 physical nodes. The
physical network topology was obtained with the BRITE topology generator following a Waxman model (a) and (c) while the network topology follows a
Barabasi-Albert connectivity model in (b) and (d). Independently from the physical network size and connectivity model, the SAD policy results in more
physical nodes less utilized, and the MAD policy results in a few physical nodes hosting the majority of virtual nodes.

5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

Virtual Network Size [# of nodes]

P
h
y
si

ca
l

P
at

h
 L

en
g
th

SAD MAD PAD H&S PolyVINE

(a)

5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

Virtual Network Size [# of nodes]

P
h
y
si

ca
l

P
at

h
 L

en
g
th

SAD MAD PAD H&S PolyVINE

(b)

5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

Virtual Network Size [# of nodes]

P
h
y
si

ca
l

P
at

h
 L

en
g
th

SAD MAD PAD H&S PolyVINE

(c)

5 10 15 200

0.5

1

1.5

2

2.5

3

3.5

4

Virtual Network Size [# of nodes]

Ph
ys

ic
al

 P
at

h
Le

ng
th

SAD MAD PAD H&S PolyVINE

(d)

Fig. 7. Length of the physical loop-free paths hosting at least a virtual link for
experiment described in Figure 6. The physical network has 100 nodes and
follows a Barabasi-Albert connectivity model. The VNET topologies are: (a)
linear, (b) hub & spoke, (c) random with 0.5 probability of having an edge
between any two virtual nodes, and (d) full. The absent points correspond to
zero allocation ratios in Figure 6.

set of physical nodes is allowed to embed a larger set of virtual
(nodes and) links, the missing contribution of physical nodes
that are not allowed to bid negatively impacts the allocation
ratio. Note also that PAD falls under the category of multiple-
item embedding policies, and so it has the same convergence
time of MAD (results not shown).
D. Centralized Optimal versus Distributed Embedding

The VNET embedding problem has a history of centralized
solutions, and a deep analysis of how CAD compares with
such solutions is out of the scope of this work and it is
outlined in our survey paper [15]. Even though our focus
is on embedding involving multiple InPs that cooperate to
provide a wide-area VNET service, we compare the impact
of SAD and MAD with a centralized optimal virtual network
embedding solution, solved with a CPLEX simulator using a
Branch and Bound algorithm (Figure 8). We found that the

0 5 10 15 20 25
80

100

120

140

160

180

200

Virtual Nodes

G
lo

ba
l U

til
ity

Centralized Optimal SAD MAD

Fig. 8. In practice the values of Pareto (global) utility obtained with MAD and
SAD are close to the centralized virtual network embedding optimal solution
computed with Branch and Bound.

akj for k is aij for i is Receiver’s action (default leave)

k

i if bkj > bij → update
k update

m /∈ {i, k} if skm > sim or bkj > bij → update
none update

i

i leave
k reset

m /∈ {i, k} if skm > sim → reset
none leave

m /∈ {i, k}

i if skm > sim & bkj > bij → update

k
skm > sim → update
else → reset

n /∈ {i, k,m}
if skm > sim & skn > sin → update
if skm > sim & bkj > bij → update
if skn > sin & sim > skm → reset

none if skm > sim → update

none

i leave
k update

m /∈ {i, k} if skm > sim → update
none leave

TABLE II
RULES TABLE FOR CADE SYNCHRONOUS CONFLICT RESOLUTION. THE

SENDER PHYSICAL NODE IS DENOTED WITH k, AND THE RECEIVER
PHYSICAL NODE WITH i. THE TIME VECTOR s REPRESENTS THE TIME

STAMP OF THE LAST INFORMATION UPDATE FROM EACH OF THE OTHER
PHYSICAL NODES.

Pareto optimality for a centralized embedding is not too far
from the values obtained when applying the SAD or MAD
policies in distributed settings. For larger scale, the separation
between virtual node embedding and virtual link embedding
into two phases may lead to suboptimal solutions. We study
the problem of a distributed holistic VNET embedding using
decomposition theory in [14].

13

VI. CONCLUSIONS AND ONGOING WORK

In this work we proposed CAD, a general distributed
approach to solve the virtual network embedding problem,
consisting of three tightly coupled phases: discovery, virtual
network mapping and allocation [15]. By leveraging the dis-
tributed task assignment literature, and well-known results
on sub-modular function properties, we show how CAD has
bounds on both convergence and performance. Using exten-
sive event-driven simulations, we compare the performance
of existing solutions with our mechanism, instantiated with
different sets of policies, following different providers’ goals.

To establish the practicality of our approach, we are
currently augmenting a prototype of a policy-based virtual
network embedding architecture that uses an asynchronous
version of the CAD mechanism [13].

ACKNOWLEDGMENT

This work is supported in part by the National Science
Foundation under grant CNS-0963974.

REFERENCES

[1] CAD source code. http://csr.bu.edu/cad.
[2] The GENI initiative http://www.geni.net.
[3] M. Alicherry and T. Lakshman. Network Aware Resource Allocation in

Distributed Clouds. In INFOCOM, 2012 Proceedings IEEE, pages 963
–971, March 2012.

[4] AuYoung, Chun, Snoeren, and Vahdat. Resource Allocation in Federated
Distributed Computing Infrastructures. In Proc. of Workshop on OS and
Arch. Support for the On demand IT Infrastr., October 2004.

[5] D. P. Bertsekas. Auction Algorithms. In Encyclopedia of Optimization,
Dec 2001.

[6] H.-L. Choi, L. Brunet, and J. P. How. Consensus-based Decentralized
Auctions for Robust Task Allocation. IEEE Transactions on Robotics,
25(4):912–926, 2009.

[7] Chowdhury, M. et.al. PolyViNE: Policy-Based Virtual Network Em-
bedding Across Multiple Domains. SIGCOMM VISA, 2010.

[8] B. N. Chun, P. Buonadonna, A. AuYoung, C. Ng, D. C. Parkes,
J. Shneidman, A. C. Snoeren, and A. Vahdat. Mirage: A microeconomic
resource allocation system for sensornet testbeds. In Proceedings of the
2nd IEEE Workshop on Embedded Networked Sensors, 2005.

[9] B. N. Chun, C. Ng, J. Albrecht, D. C. Parkes, and A. Vahdat. Computa-
tional resource exchanges for distributed resource allocation. Technical
report, Intel Research Berkeley (Unpublished Report), 2004.

[10] J. Considine, J. W. Byers, and K. Meyer-Patel. A Constraint Satisfaction
Approach to Testbed Embedding Services. SIGCOMM Computer
Communication Review, 34(1):137–142, 2004.

[11] N. R. Devanur and S. M. Kakade. The Price of Truthfulness for Pay-
Per-Click Auctions. In Proceedings of the 10th ACM conference on
Electronic commerce, EC, pages 99–106, New York, NY, USA, 2009.

[12] D. Eppstein. Finding the k Shortest Paths. SIAM Journal of Computing,
28(2):652–673, 1999.

[13] F. Esposito. A Policy-based Architecture for Virtual Network Embedding.
PhD thesis, Boston University, College of Arts and Sciences. Computer
Science Department. Technical Report CS-TR-2013-012, Sept. 2013.

[14] F. Esposito and I. Matta. A decomposition-based architecture for
distributed virtual network embedding. In Proceedings of the 2014 ACM
SIGCOMM Workshop on Distributed Cloud Computing, DCC ’14, pages
53–58, New York, NY, USA, 2014. ACM.

[15] F. Esposito, I. Matta, and V. Ishakian. Slice Embedding Solutions for
Distributed Service Architectures. ACM Computing Surveys, Volume 46,
Issue 1, March 2014).

[16] U. Feige. A Threshold of ln n for Approximating Set Cover. J. ACM,
45(4):634–652, July 1998.

[17] Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat. SHARP: an
Architecture for Secure Resource Peering. SIGOPS Operating System
Review, 37(5):133–148, 2003.

[18] GENI Planning Group. GENI Facility Design Document,
http://www.geni.net/GDD/GDD-07-44.pdf, March 2007.

[19] D. S. Hochbaum. Approximation Algorithms for NP-hard Problems.
pages 94–143. PWS Publishing Co., Boston, MA, USA, 1997.

[20] I. Houidi, W. Louati, W. Ben Ameur, and D. Zeghlache. Virtual Network
Provisioning across Multiple Substrate Networks. Computer Networks,
55(4):1011–1023, Mar. 2011.

[21] I. Houidi, W. Louati, and D. Zeghlache. A Distributed Virtual Network
Mapping Algorithm. In IEEE International Conference on Communi-
cation (ICC) ’08.

[22] A.-C. Huang and P. Steenkiste. Network-Sensitive Service Discovery.
USITS: USENIX Symposium on Internet Technologies and Systems,
2003.

[23] N. Immorlica, D. Karger, E. Nikolova, and R. Sami. First-price Path
Auctions. In Proceedings of the 6th ACM conference on Electronic
commerce, EC ’05, pages 203–212, New York, NY, USA, 2005. ACM.

[24] L. B. Johnson, H.-L. Choi, S. S. Ponda, and J. P. How. Allowing Non-
Submodular Score Functions in Distributed Task Allocation. In IEEE
Conference on Decision and Control (CDC), 2012.

[25] L. Jorge and B. Azer. NETEMBED: A Network Resource Mapping
Service for Distributed Applications. Parallel and Distributed Process-
ing, 2008. IPDPS 2008. IEEE International Symposium on, pages 1 –8,
April 2008.

[26] A. Kulik, H. Shachnai, and T. Tamir. Maximizing Submodular Set Func-
tions Subject to Multiple Linear Constraints. SODA ’09, Philadelphia,
PA, USA.

[27] K. Lai, L. Rasmusson, E. Adar, L. Zhang, and B. A. Huberman. Tycoon:
An implementation of a distributed, market-based resource allocation
system. Multiagent Grid Syst., 1(3):169–182, 2005.

[28] R. P. Leme, V. Syrgkanis, and E. Tardos. Sequential auctions and
externalities. In Proceedings of the Twenty-Third Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA, pages 869–886, 2012.

[29] J. Lu and J. Turner. Efficient mapping of virtual networks onto a shared
substrate. Technical report, Washington University in St. Louis, 2006.

[30] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1st edition,
Mar. 1996.

[31] Ma, Richard T. B. and Chiu, Dah-Ming and Lui, John Chi-Shing and
Misra, Vishal and Rubenstein, Dan. Internet Economics: The Use of
Shapley Value for ISP Settlement. IEEE/ACM Trans. Netw., 18(3):775–
787, 2010.

[32] A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE: An Ap-
proach to Universal Topology Generation. In Proceedings of the
Ninth International Symposium in Modeling, Analysis and Simulation
of Computer and Telecommunication Systems, MASCOTS ’01, pages
346–, Washington, DC, USA, 2001. IEEE Computer Society.

[33] G. Nemhauser, L. Wolsey, and M. Fisher. An Analysis of Approx-
imations for Maximizing Submodular Set Functions. Math. Prog.,
14(1):265–294, 1978.

[34] E. Nygren, R. K. Sitaraman, and J. Sun. The Akamai Network: a
Platform for High-Performance Internet Applications. SIGOPS Oper.
Syst. Rev., 44(3):2–19, Aug. 2010.

[35] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat. Design and
Implementation Tradeoffs for Wide-Area Resource Discovery. HPDC,
High Performance Distributed Computing, 2005.

[36] R. Ricci. Personal communication. 8 years of Emulab VN requests.
https://sites.google.com/site/emulabtraces/, 2014.

[37] R. Ricci, D. Oppenheimer, J. Lepreau, and A. Vahdat. Lessons from
resource allocators for large-scale multiuser testbeds. ACM SIGOPS
Operating Systems Review, 40(1), January 2006.

[38] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar. An Integrated Experimental
Environment for Distributed Systems and Networks. SIGOPS Operating
System Review ’02.

[39] M. Yu, Y. Yi, J. Rexford, and M. Chiang. Rethinking Virtual Network
Embedding: Substrate Support for Path Splitting and Migration. SIG-
COMM Comput. Commun. Rev., 38(2):17–29, 2008.

[40] F. Zaheer, J. Xiao, and R. Boutaba. Multi-provider Service Negotiation
and Contracting in Network Virtualization. In IEEE Network Oper. and
Management Symposium (NOMS), 2010, pages 471 –478, April 2010.

[41] Y. Zhu and M. Ammar. Algorithms for Assigning Substrate Network
Resources to Virtual Network Components. INFOCOM, April 2006.

[42] Y. Zhu, R. Zhang-Shen, S. Rangarajan, and J. Rexford. Cabernet:
Connectivity Architecture for Better Network Services. In Proceedings
of the 2008 ACM CoNEXT Conference, CoNEXT, 2008.

APPENDIX

A. CAD Synchronous Agreement Rules
In this appendix we present the conflict resolution rules used

in the agreement phase of the CAD protocol (Table II).
As defined in Section III, a virtual network is denoted

by the graph H = (VH , EH) and a physical network by
G = (VG, EG), where V is a set of (physical or virtual) nodes,
and E the set of (physical or virtual) edges. bi ∈ R|VH |

+ is the
a vector of utility values. Each entry bij ∈ bi is a positive
real number representing the highest utility value known so
far on virtual node j ∈ VH . ai ∈ V |VH |

G is the winner vector

14

Procedure 3 Physical Capacity Assignment
1: while there are PNs with unassigned capacity do
2: consider subset i of the max k-coverage problem with the highest

cardinality, and assign its cardinality as capacity of physical node i.
3: Remove subset i from the k subsets.
4: Remove i from set of PNs with unassigned capacity.
5: end while

—a vector containing the latest information on the current
assignment of all virtual nodes, for a distributed auction winner
determination. aij ∈ ai is the identity of the winner of virtual
node j, as currently known by physical node i. si ∈ R|VG|

+
is a vector of timestamps of the last information update from
each of the other physical nodes, i.e., the message generation
times. There are three possible actions when a physical node
i receives a bid message from a sender physical node k:
(i) update, where both the utility vector and the allocation
vector are updated according to the sender information; (ii)
reset, where the utility value is set to zero, and the allocation
vector to null, and (iii) leave, where both the utility vector
and the allocation vector are left unchanged by the receiver
physical node.

B. Proof of Theorem IV.2

Proof. To prove the (1 − 1
e)-approximation, we use the fact

that physical nodes greedily add virtual nodes and links in
their bundle, using a non-negative, monotone non-increasing
and sub-modular utility function. Therefore, all the axioms
of Theorem 3.1 in Nemhauser et al. [33] on sub-modular
functions are satisfied.

To prove the bound on the approximation, we reduce
our problem from the maximum k-coverage problem. The
maximum k-coverage [19] is the problem of allocating each
set Vj to some set i, in order to maximize

k∑
i=1

Ui(
⋃
j∈Si

Vj) (7)

where Si are the indices of sets allocated to set i.
Given this instance of the maximum k-coverage, we define

an instance of the VN embedding problem considering each
virtual link forming the VN request as two virtual nodes, i.e.,
the source and the destination. We know that to embed a
VN the source and destination virtual nodes of each virtual
link need to be allocated to some physical node i, in a way
to maximize the sum of the utilities of each physical node.
The set Vj is the set of (source and destination) virtual nodes
that form the VN embedding request. In particular, we give
next a polynomial algorithm that has as input an instance of a
maximum k-coverage, and as output an instance of the virtual
network embedding problem, i.e., a tuple < H,G,U,>, where
H is the virtual network to embed, G the hosting physical
network, and U the utility function of each physical node:
The utilities Uij are unitary. The virtual network H has as
many virtual nodes as there are elements in the maximum
k-coverage instance, and H is fully connected with unitary
capacity. The physical network G has as many physical nodes
as k, and it is fully connected, and each physical link capacity
is set to |H|, i.e., each link has enough capacity to host all
virtual links. The capacities of each virtual node and link are
set to 1. The capacities of the physical nodes are constructed
as in Procedure 3.

Now, given a solution of the VN embedding, we get a
solution of the maximum k-coverage instance by merely
assigning as elements of the set Vj , the virtual nodes in the
bundle mi of the hosting physical node i.

Since we can compute a solution for maximum k-coverage
with a solution of a VN embedding, we cannot approximate
the VN embedding problem within a better ratio than the
ratio used by maximum k- coverage. It was in fact proved
by Feige [16] that ∀ε > 0 it is NP-hard to achieve an
approximation better than (1− 1

e) for the maximum k-coverage
problem.

Flavio Esposito (M’11) received his Ph.D. in com-
puter science at Boston University in 2013, and
his Master of Science in Telecommunication Engi-
neering from University of Florence, Italy in 2005.
Flavio is currently a member of the Advanced Tech-
nology Group at Exegy, Inc. His research interests
include network management; design, implementa-
tion and evaluation of algorithms and protocols for
service-based architectures, such as Software De-
fine Networks (SDN) and Delay-Tolerant Networks
(DTN); modeling and performance evaluation of

wireless, and peer-to-peer networks. Flavio worked at Alcatel-Lucent, and
he was a research intern at Bell Laboratories, Holmdel, NJ, at Raytheon BBN
Technologies, Cambridge, MA, and at EURECOM, France. He was a visiting
researcher at MediaTeam, Oulu and at Centre for Wireless Communication,
Oulu, Finland. Flavio also worked as Teaching Assistant in graduate courses,
such as Computer Networking, as well as undergraduate courses, such as
Introduction to Computer Science, and Introduction to Web Design and
Internet Technologies. He is a member of both the ACM and the IEEE.

Donato Di Paola (S’07-M’12) received the M.S.
degree (Laurea degree) in computer engineering
and the Ph.D. degree in electrical engineering from
Politecnico di Bari, Bari, Italy, in 2007 and 2011,
respectively. From 2007 to 2011, he was Research
Associate with the Institute of Intelligent Systems
for Automation (ISSIA) of the Italian National Re-
search Council (CNR), Bari, Italy. In 2012 he was
Postdoctoral Associate at Department of Informatics
and Automation, Universitá degli Studi Roma Tre,
Roma, Italy. He was Visiting Scientist at Department

of Aeronautics and Astronautics, Massachusetts Institute of Technology
(MIT), Cambridge (MA), USA, in 2010, and Visiting Researcher at the
Department of Computer Science, Boston University, Boston (MA), USA,
in 2013. He is currently Research Scientist at the ISSIA Institute, National
Research Council (CNR), Bari, Italy.

Ibrahim Matta (M’93-SM’06) received his Ph.D. in
computer science from the University of Maryland at
College Park in 1995. He is a professor of computer
science at Boston University. His research involves
transport and routing protocols for the Internet and
wireless networks; feedback-based control design
and analysis; architectures for protocol design and
large-scale traffic management; modeling and per-
formance evaluation. His current projects include
recursive network architectures and protocols, their
management and economics implications, and their

experimental evaluation. He has published over 100 peer-reviewed technical
papers. He has served as a guest co-editor of four special journal issues and
on the editorial board of the Computer Networks journal. He received the
National Science Foundation CAREER award in 1997 and won a patent (in
2011) and two best-paper awards (in 2008 and 2010) on his work on wireless
ad hoc and sensor networks. He has served as the chair or co-chair of many
technical program committees, including the 2012 IEEE Online Conference on
Green Communications, the 2011 IEEE Computer Communications Workshop
(CCW), and the 2005 International Conference on Network Protocols (ICNP).
He is a senior member of both the ACM and the IEEE.

