A Geometric Approach to Slot Alignment in
Wireless Sensor Networks

Niky Riga

Ibrahim Matta

Azer Bestavros

Computer Science
Boston University
Email: {inki, matta, best} @cs.bu.edu

Abstract—

Traditionally, slotted communication protocols have employed
guard times to delineate and align slots. These guard times may
expand the slot duration significantly, especially when clocks are
allowed to drift for longer time to reduce clock synchronization
overhead. Recently, a new class of lightweight protocols for statis-
tical estimation in wireless sensor networks have been proposed.
This new class requires very short transmission durations (jam
signals), thus the traditional approach of using guard times would
impose significant overhead. We propose a new, more efficient
algorithm to align slots. Based on geometrical properties of space,
we prove that our approach bounds the slot duration by only
a constant factor of what is needed. Furthermore, we show by
simulation that this bound is loose and an even smaller slot
duration is required, making our approach even more efficient.

I. INTRODUCTION

Motivation: Over the past few years, sensor networks have
received much attention as they are envisioned to support
a wide range of important applications, e.g. surveillance
systems, biological monitoring systems, environment control
systems, equipment supervision systems, etc. A large number
of such sensor applications are based on small, inexpensive,
battery operated, electronic microsensor devices (e.g. Berke-
ley/Crossbow Motes [1], MIT 4 AMPS nodes [2]) with radio,
sensing and processing components. Due to the size and
cost restrictions, these wireless sensor devices have limited
storage and computation capabilities. Furthermore, access to
the sensors may be difficult, or even impossible, after their
initial deployment, which implies that the energy expended
must be minimized to increase the lifetime of the system.

In order to minimize energy expenditure in such systems,
sensors are periodically allowed to shut down their radio
and CPU to save energy, which led many researchers to
propose slotted protocols [3]-[8]. The nodes in a Wireless
Sensor Network (WSN), as in any other distributed system,
do not have synchronized clocks. However, the nature of the
applications built on top of WSNs, requires some kind of
synchronization between the nodes [9], for example, a node
should send in a slot during which a neighboring node is
scheduled to be awake. How tight or loose, global or local
the synchronization is, varies from application to application.
In most slotted protocols for WSNs, the nodes run some kind
of local synchronization protocol. Slot duration is expanded
using guard times in the beginning and end of each slot to
ensure alignment. For most protocols, such an expansion is

just a small overhead. However, in lightweight protocols, such
as those in which nodes transmit for very short durations (jam
signals) for the sole purpose of statistical estimation [7], [8],
and where the protocol needs to run over multiple contiguous
slots, such an expansion might be an overkill. The authors
in [7] compute that the necessary slot duration for their
protocol is 18us for an IEEE 802.11a compliant radio.! If a
more suitable radio for wireless sensors, such as the CC1100,
is considered, the same calculation yields a slot size of 39.5us.
At a maximum clock drift of 40ppm and, assuming a clock
synchronization protocol that runs every 100s, we would
require a total guard time of 2 X 4ms, which results in a
slot duration 200 times larger than necessary.>

Our Contributions: We summarize our contributions as fol-
lows:

o We propose a new slot alignment algorithm (Section V)
that requires a slot expansion of only constant factor of
the needed slot duration. The key idea of our algorithm,
is having the sensors synchronize their clocks with one
of their neighbors before executing the actual slotted
protocol. Given the distributed nature of a WSN and the
need to minimize message exchange, neighboring nodes
might end up synchronizing with different nodes. Using
geometrical properties of space, we bound the number of
such independent alignments to 22. This constant factor
of 22 is in contrast to the traditional slot alignment
based on guard times (Section IV), which may require
a much longer slot duration that is dependent on drifts
in the clocks. Furthermore, our approach uses only short
transmissions to achieve slot alignment, thus minimizing
the energy expenditure overhead.

e Through simulations (Section VI), we show that the
theoretic constant-factor bound on slot duration, is in
fact too loose for the average case scenario and a much
smaller value can be used in practice, thus making our
approach even more efficient.

'This minimum slot duration is computed as the sum:
slot_time = mam(trx/tx’ ttm/rac) +2x tchannel_delay + tcarrier_senses
where ¢, /¢, and ty, /5 is the time the radio needs to switch from receive
mode to transmit and vice versa.

2Given that the clock might drift at most 40us in every 1s, after 100s the
maximum clock drift is 40 x 1076 % 100 = 4ms. This means that two clocks
that started synchronized might have a maximum difference of 2 x 4ms; the
clock drift might be either positive or negative.

II. PROBLEM STATEMENT

For the rest of the paper, we assume that sensors run a
generic slotted protocol. Time is divided into slots, and a
node can transmit in any of the slots. Whether the slot-
based protocol is used for communication, e.g. [3]-[6], or
for statistical estimation [7], [8], it is essential that no single
transmission spans two slots in order to either avoid collisions
or obtain accurate statistics.

Collision
N
S ‘ ‘/ ‘ ‘ ‘\’ ‘ ‘ ‘ ‘ ‘ | Transmission
i P2 vectors

\

Fig. 1. Effect of clock skewness on a slotted protocol.

Figure 1 depicts the effect of clock skewness on a slotted
protocol. In this example, the slot duration is equal to the
transmission time. It is obvious how the misalignment of slots
can induce collisions.

Definition 1 (Slot alignment): A network achieves slot
alignment when no single transmission spans two slots for
any of the receiving nodes.

Figure 2 shows an example of a network that achieves slot
alignment. The dotted vertical lines denote the slot boundaries
according to sensor s;. In this case, every transmission (shown
as shaded areas) falls within the boundaries of a slot.

s1 LT \ [T 1 \ [T]
s2 \ [T 1T [\
s3 \ \ [1] [TT] \
s4 LI \ [TT¢] \ [TT]

ti
Fig. 2. Example of slot alignment. The timeline is with respect to sensor

s;. The dotted vertical lines denote the slot boundaries for sensor s;.

In this paper, we present an efficient algorithm to achieve
network-wide slot alignment.

III. DEFINITIONS

Let d;, denote the duration of one transmission, and dj.¢
denote the duration of a slot. Let S = {s1, ..., sy }, be the set
of all the sensor nodes in the network, where N is the network
size.

Definition 2 (Neighborhood S;): The neighborhood S; of
sensor node s; is the set of nodes that node s; can directly
communicate with.

Definition 3 (Clock Skew 0;5): The clock skew between
two nodes ¢ and j, denoted by J;;, is defined to be the

difference between the clocks of the two sensors. If ¢; is the
current time according to sensor s;, and t; according to sensor
s;, then

0ij = |ti — 1] (1)

Henceforth, we assume that any kind of WSN requires that
the nodes be at least locally synchronized. However, there is
no assumption on how loose or tight, this synchronization must
be. There have been significant work in the area of clock
synchronization for wireless sensor networks [9]-[11]. Each
one of these approaches provides an upper bound § on the
clock skew which is a parameter of the system.

Definition 4 (Maximum Local Clock Skew §): Let § denote
the maximum local clock skew. V neighborhoods S;, d;; < 9,
Vs; € S;, at any point in time.

For the remainder of the paper we assume that the time is
measured in multiples of the system’s clock tick.

IV. SLOT ALIGNMENT USING GUARD TIMES

In this section, we present a straightforward way to achieve
slot alignment, given 6. Let dgo = di + 29. In each slot, a
node waits for § time period before it transmits. For any sensor
s;, this ensures that its slot has started when nodes with more
advanced clocks might transmit, and that the slot is extended
enough to include transmissions of nodes with slower clocks.

sk . '
. |
sj | ! | |
SI
1 ; >
t0-0 t0 t0+0 10+20+dtx
Fig. 3. This is how the slots of sensors s; and s, are aligned with sensor

s;. The timeline in the bottom of the figure represents the time according to
Sensor s;.

Let’s consider Figure 3. Let s;,s, € S; and let 6;; =
di,. = 0. In this example, the clock of s; is faster than s,
while the clock of s is slower; s; and s; are not within
communication range. The shaded area within each slot is the
transmission period. The slot for s; starts at time Zy. For s, the
slot has started 0 before ¢g. At g, the transmission period for
s; starts, while at time ¢y + 29 + dy,, the transmission period
for node s ends. The transmission period of any other sensor
that has a clock skew less than ¢ starts after the transmission
of s;, and finishes before the transmission of s, so all the
transmissions of nodes from the neighborhood of s; start and
finish within a slot. The generalization for the rest of the slots
is straightforward. Using this method the network achieves slot
alignment.

The overhead, Hyyqrq, introduced by the above approach is
measured in terms of the extra time introduced in the running
time due to slot alignment. Let n be the total number of slots.
Let § = ¢ X dg, for ¢ > 1. Under perfect synchronization, i.e.
¢ = 0, the running time is T},,;, = n X d;, while using the

guard-time approach for ¢ > 0, the running time is

Tguard n X (dm + 25)
n X (diz +2 X ¢ X diy)

Thus the overhead Hgyard = Tguard — Tmin = 21 X € X diz.

V. GEOMETRIC APPROACH TO SLOT ALIGNMENT

If 6 > d;, then the overhead introduced by the above
approach is significant. To reduce this overhead, we propose a
new method for slot alignment among nodes. In our approach,
nodes first try to locally synchronize their clocks. To this
end, our approach uses only one transmission per node. The
slot duration is expanded enough to accommodate different
schedules from different nodes.

Let the duration of each slot be dg;,; = X d;,, where a'is a
network-wide constant. We compute a bound on the value of «
later in this section. Each slot is divided into «v minislots of d;,,
duration each. A node can transmit in only one minislot called
the transmission minislot. In order to achieve slot alignment,
the transmission minislot should not span two different slots
of a neighbor.

The Geometric Slot Alignment (GSA) algorithm (Algo-
rithm 1) achieves slot alignment among the nodes of a wireless
network. After all the nodes have executed this algorithm, each
node:

¢ has aligned its minislots, i.e. it has computed the start

time of each minislot,

o has computed its transmission minislots, and

¢ has determined the boundaries of each slot, i.e. which

minislots are the first minislot of each slot.

Algorithm 1 GeometricSlot Alignment (9, dis, dsior)

Input: ¢ the maximum local clock skew, d;, the duration of
one minislot, dg,; the duration of one slot

1ty = —1;

2: tstart = tnow = get_local time();

3: while tnow < tstart + 6 do

4 tnow = get_local _time();

5. if (channel_is_busy == TRUFE) then
6: tie = tstart + 0+ [dslot - (tstart +0— tnow)%dslot];
7: break;

8: end if

9: end while

10: if t;, == —1 then

11: t, = get_local time();

12: end if

13: transmit(ty,); //Transmit at time ¢;,, for one minislot
14: tfirst minisiot = monitor_channel(tsiars+2 % 0+dsior +
diy — get_local time())

The function that is called in line 14 of the algorithm,
monitors the channel for the duration that is provided as input,

A N N) -
Transmission
2 [[[[[[[] [ransmss
st [B [[[T [T]
s @ [[[[[[]
| | | | | | | | | | -
Py T ol TalsT el 7T gl gl o
si | [[BT T [] Monitored
vector
Tfirst minislot
Fig. 4. An example of how node s; is choosing its first minislot, after

executing Algorithm 1. a = 9, and s; has 4 neighbors. In this example, s;
will choose the minislot number 5 as its first minislot.

and returns the time that the first slot starts, i.e. the time when
the first minislot of the first slot starts. The first minislot is
chosen carefully to ensure that the transmission minislots of
neighboring nodes are fully contained within only one slot.
As we prove later, if « is large enough, such minislot always
exists. Consider the case of Figure 4. In this example, node
s; has only 4 neighbors and a@ = 9. As we prove later in
this section, when s; finishes Algorithm 1, it has heard one
transmission from every neighbor. Let’s say that the nodes
have aligned as shown in Figure 4. In this case, node s; will
choose minislot number 5 as the start of the slot, since this
minislot is the first whose beginning is idle, and as we show
later, this guarantees that no transmission will span two slots of
node s;. The transmission minislot is chosen at the end of the
algorithm based on the value of t;,, the first transmission time
assigned by Algorithm 1, and the fact that the transmission
minislot is periodic and is repeated every o minislots. In this
example, t;, = 1.

Claim 1: After all the nodes have executed Algorithm 1,
and for o > 23, the network is slot aligned.

In order to prove the above claim, we first prove some
other helpful claims. Only for the sake of analysis, we assume
that there is a global clock according to which we timestamp
the events. Let t?,,,., denote the time at which node s; starts
executing the algorithm. Given that the maximum local clock
skew in the network is §, we know that

Vs; €5, ‘ti

start —

titart| S 67 vsj € SZ (2)

According to Algorithm 1, every node s; will either choose
its schedule independent of everyone else (line 11), or it
will synchronize its transmission minislots according to the
first neighbor that transmits (line 6). Let ti,, be the time
that node s; transmits. Since the nodes synchronize their
schedules based on their first transmission, it is essential that
tim 2 titart’vsj € Si.))

Claim 2: For all nodes s;, ti, >t),..., Vs; € S;.

Proof: The transmission time is set in either line 6
or line 11. If node s; chooses its schedule independent of
everyone else (line 11), the first transmission starts exactly at
time ¢%,,., + &, which ensures that all nodes in S; have started
executing Algorithm 1. If node s; synchronizes its schedule

sk
°

sk | \ \ \ [|

Sj \ \ \ \ |

si \ \ [[[|
Fig. 5. The schedule of the minislots for nodes s;, s; and s are

shown. Nodes s and s; are not neighbors. The shaded minislots denote
the transmission minislots of each node.

based on the transmission of another node sj, then the first
transmission is scheduled in line 6 of the algorithm. Obviously,
the term [dgior — (4474 +0 — tnow) %odsiot] is positive and thus
trl‘:r > t.istart +4> titarﬂv‘sj € S;. u

In order for any node s; to be able to determine the slot
boundaries, all the nodes in its neighborhood should transmit
once denoting the alignment of their minislots.

Claim 3: For every node s;, at time t%,,., +2 X § +dsjot +
dgz, all nodes in S; have transmitted at least once.

Proof: ACC(_)rding to claim 2, for every node sj, it is
true that 7, > t),,,., + 06 > t.,,.,. Moreover, since dgo; —
(titart + 0 — tnow)%dslot < dslot < dslot + dtzs then from
Algorithm 1, ¢, < t},,,4 + 0 + dgot + diz. According to
Equati(_)n (), tjstart - ?:start < titart - mink,SkESjtlgtart <
§ <ty < thure + 0. Combining all the above equations,

we get:
itart < t%w < titart +2xd+ dslot + dtw

|

Based on Algorithm 1, at most one node s; in every
neighborhood S; can choose its schedule independently. The
rest of the nodes in this neighborhood will either synchronize
with this node or with another node sj, of their neighborhood
such that sy ¢ S;.

Let’s assume that node s; chooses its schedule indepen-
dently, and another node s; has already been synchronized
with node s;, ¢ S;. Since node si ¢ S; and s; ¢ Si, we say
these two schedules are independent. In the worse case, the
minislots’ schedules of nodes s; and s; are not aligned and the
two transmission minislots can not be separated into different
slots—see Figure 5. In this case, dg;o¢ > 2% dy, ensures that no
transmission minislot spans two slots of another neighboring
node.

If in S;, there are « independent schedules, then dg ¢ >
a X dy, ensures that the nodes can achieve loose slot synchro-
nization. If the maximum number of independent schedules in
a neighborhood is computed, a lower bound on the slot size
can also be computed.

Claim 4: In any neighborhood S; there can be at most 22
independent schedules.

Before proving this claim (restated in claim 7 below), we
first prove other helpful claims.

Every node in S;, will synchronize with the schedule of a
node in the two-hop neighborhood of s;. Hence, only nodes

in the two-hop neighborhood, i.e. nodes within a radius of
2r from s;—r denotes the communication range—can affect
the schedule of nodes in S;.> As mentioned earlier, only one
node per neighborhood can choose its schedule independently,
which means that if two nodes chose their schedule indepen-
dently, the distance between them is at least r, i.e. they are
out of communication range. Based on this observation our
problem becomes that of computing the maximum number
of nodes in a two-hop neighborhood of any node so that the
pairwise distance between any two of them is at least . More
formally we want to prove the following:

Claim 5: In any circle of radius 2r there can be at most 22
points, so that the pairwise distance between any two of them
is at least r.

In order to prove the above claim, we first prove the
following:

Claim 6: In a circle of radius R, we can fit n points so that
the pairwise distance is at least d, if and only if we can pack
n non-intersecting circles with radius % inside the circle of
radius R + g.

= If n points with minimum pairwise distance d can fit
in a circle of radius R, then n non-intersecting circles can be
packed in a circle of radius R + %.

Proof: Place the n points within the circle of radius R, and
with each of these points as a center draw a circle of radius
%. These n circles are non-intersecting since the minimum
distance between the centers is d. It is straightforward that
these n circles will be contained in a circle of radius R + g.
|
<« If n non-intersecting circles can be packed in a circle of
radius R + %, then n points with minimum pairwise distance
d can fit in a circle of radius R.

Proof: If we pack n non-intersecting circles of radius %
in a circle of radius R + g, then we also have n points, the
centers of the circles, that are at distance at least d from each
other. It is straightforward to see that the centers of all the n
circles are at a distance of at most R from the center of the
circle with radius R + %. [|

Based on claim 6 we restate claim 4 as follows:

Claim 7: In a circle of radius 2r + g, we can pack at most
22 non-intersecting circles of radius 3.

Proof: The problem of packing circles in a 2-d plane is a
well-studied problem. Fejes Toth has proved that the maximum
density any circle packing can achieve in a 2-dimensional
plane, is % [12]. Let n be the maximum number of circles

T

of radius 5 that can be packed in a circle of radius 2r + 3.

We know that
7.9 o1 o
—)<
nxm(z)"/m(5)" <

¢
&=
IA

S
[\

& n < 22.66

Bl
[\

Now, we can prove claim 1.

3For analytical simplicity, we assume that the communication range is the
same for all nodes in the network and equal to 7. The analysis can be extended
to handle the case of heterogeneous, asymmetric communication ranges.

Proof: Given that we can have at most 22 independent
schedules, every node will hear at most 22 transmissions in
each slot. If the duration of each slot is equivalent to 23
minislots, i.e. &« = 23, there should be at least one minislot for
every node such that there is no transmission in the beginning
of that minislot. Based on claim 3, we know that a node has
heard a transmission from all its neighbors before the end of
Algorithm 1. We also know that the transmission minislots are
periodic with a period of o minislots. Given this information,
every node can compute the transmission minislots of all its
neighbors for a period of o minislots and find the minislot
during which no one is transmitting in its beginning and
make this the first minislot of each slot—which is what the
function in line 14 of Algorithm 1 does. In this way, every
node manages to delineate the transmission minislots of its
neighbors and achieve slot alignment.]

Going back to the example in Figure 4, sensor s; picks
minislot 5 as the start of the slot, its first transmission minislot
becomes 1+9 = 10, and its subsequent transmission minislots
would repeat every 9 minislots.

Algorithm 1 should be executed before the actual slotted
protocol. In order to compute the overhead of our approach,
we assume that the slotted protocol needs to run for n slots.

The execution time of Algorithm 1 is 2 X § + dgjor + dis.-

Thus, the total time required is

2 X0+ dsiot + diz + 1 X dsior
2x e Xdip+ (a+1) X diz + 1 X adyy
= (2c+a+1+an)xdy

Tgsa =

The minimum running time, under perfect no-overhead
synchronization, is Tini = 1 X dy,.

The overhead, H 4, is thus given by Tysq — Tyin:

Hyoo = (2¢+24) X digp + (a0 — 1)n X dyy

Now we compute the critical value for ¢ which determines
which type of slot alignment is more efficient to use. Our
approach is more efficient if the following is true:

Hgsa < ngard
a+l+4+(a—1)n
2n — 2

VI. PERFORMANCE EVALUATION

In order to experimentally evaluate the GSA algorithm, we
implemented and tested the algorithm in matlab [13]. The first
set of experiments we ran was for the purpose of testing the
effect of the parameter . We expect that as the density of the
network increases, the minimum « required to achieve slot
alignment will also increase up to the value of 23. In a field
of 100m x 100m, we created random topologies. We increased
the total number of nodes in the network while keeping the
communication radius steady at 10m. For this simulation, we
used 0 = 4ms and d;, = 40us.

Figure 6 shows the average number of nodes that failed
to align their minislots—i.e. after the execution of our GSA
algorithm, they could not choose a minislot to separate all the

20
2000

1500 ..

1000

#not aligned slots
=

#not aligned nodes

5001 ™

minimum

Fig. 6. (a) Average number of nodes that failed to align for increasing value
of o and for varying network sizes; (b) a zoomed in version of (a) to show
detail.

transmission minislots in separate slots—for increasing values
of . Each line represents a different network size. The results
shown are the average of 20 runs along with 95% confidence
intervals. From this figure, it is obvious that the minimum « for
which all the nodes achieved slot alignment—a value of 9—
is well below the theoretical value of 23, even for extremely
dense networks. The neighborhood sizes for each network are
presented in Table 1.

TABLE I
AVERAGE NEIGHBORHOOD SIZES OVER 20 NETWORKS

Net_Size | mean(Neigh_Size) min(Neigh_Size) max(Neigh_Size)
100 3.8 1.0 7.9
500 15.4 3.9 27.2
1000 29.7 8.0 48.3
1500 44.1 13.0 67.7
2000 58.6 16.3 87.8
2500 73.1 20.2 106.2
3000 87.5 23.8 125.5

Figure 7 shows the time overhead in the execution time of
a protocol that needs to run for 100 slots, for varying §. We
observe that the overhead when using guard times grows really
fast (note that the y-axis is in logarithmic scale). The different
GS A plots correspond to different d, values of 40,200 and
500us, with « set to 10—the value of o was set empirically
based on the results of Figure 6. For the guard-times approach,
diz = 40us.

Next, we wanted to evaluate the effect of the overhead on a
protocol with small d;,. We used DIP [8], a statistical protocol
that estimates the local density for each node. We kept the
total execution time of DIP constant, and we varied the value
of §. Figure 8 shows the average error in DIP’s estimation
of the local density over 10 runs along with 95% confidence
intervals. We observe that the low overhead of our GSA-
based slot alignment affords DIP enough time to collect much
more reliable statistics, compared to the traditional approach
of using guard times.

10 ; . !
—guard times
- --gsa_40
4 gsa_200
10

- - -gsa_500

Overhead (msec)
=

2‘0 46 Gb éO 100

8 (msec)
Fig. 7. The time overhead in the protocol’s execution for different values of
§. The protocol needs to run for n=100 slots. The different plots for the GSA

algorithm correspond to varying d:, for the protocol (40, 200 and 500us)
with a = 10.

0.25¢

——guard times
02r ~-~--gsa

error

Fig. 8. The average error in computing the local density using DIP, when
guard times and gsa are used for slot alignment for varying 6. The total
running time of DIP is constant at 1s, d¢z is set to 40us and o = 10.

VII. RELATED WORK AND CONCLUSION

Prior research on slot synchronization in WSNs has focused
on reducing the “guard times” around a slot. However, this
reduction in overhead usually comes at the expense of running
the clock synchronization protocol more frequently to reduce
clock drifts. Local synchronization protocols require extra
coordination to achieve network-wide slot alignment [14], and
may be slow to converge [15]. On the other hand, network-
wide approaches require building spanning trees to achieve
clock synchronization [16]. These latter approaches vary in
their tradeoff between the speed and the optimality of tree
construction [17]—a rapid tree construction may sacrifice
delay and efficiency in propagating synchronization traffic.

Motivated by lightweight slotted protocols, such as those in
which nodes transmit for very short durations (jam signals)
for the sole purpose of statistical estimation [7], [8], we take
a radically different approach to slot alignment. We show that
a slot duration of a (practically small) constant-factor of the
(short) transmission time suffices for nodes to align their slots
by overhearing other nodes, so no transmission spans more
than one slot.

ACKNOWLEDGMENT

This work was supported in part by NSF CNS Cybertrust
Award 0524477, CNS ITR Award 0205294, and EIA RI Award
0202067.

REFERENCES

[1] J. M. Kahn, R. H. Katz, and K. S. J. Pister, “Next Century Challenges:
Mobile Networking for Smart Dust,” in Proceedings of the 5th Annual
ACM/IEEE International Conference on Mobile Computing and Net-
working. ACM Press, 1999, pp. 271-278.

[2] A. Chandrakasan, R. Min, M. Bharwaj, S.-H. Cho, and A. Wang,
“Power Aware Wireless Microsensor Systems,” in Proceedings of the
28th European Solid-State Circuits Conference (ESSCIRC), September
2002.

[3] 1. Rhee, A. Warrier, M. Aia, and J. Min, “Z-MAC: a Hybrid MAC
for Wireless Sensor Networks,” in Proceedings of the 3rd International
Conference on Embedded Networked Sensor Systems (SenSys’05).
New York, NY, USA: ACM Press, 2005, pp. 90-101. [Online].
Available: http://portal.acm.org/citation.cfm?id=1098929

[4] J. Polastre, J. Hill, and D. Culler, “Versatile Low Power Media
Access for Wireless Sensor Networks,” in Proceedings of the 2nd
International Conference on Embedded Networked Sensor Systems
(SenSys’04). New York, NY, USA: ACM Press, 2004, pp. 95-107.
[Online]. Available: http://portal.acm.org/citation.cfm?id=1031508

[5] R. Rozovsky and P. R. Kumar, “SEEDEX: a MAC Protocol for Ad Hoc
Networks,” in Proceedings of the 2nd ACM International Symposium
on Mobile Ad Hoc Networking & Computing (MobiHoc’01). New
York, NY, USA: ACM Press, 2001, pp. 67-75. [Online]. Available:
http://dx.doi.org/10.1145/501426.501427

[6] J. R. et al,, “Joint Architecture Vision for Low Energy Networking
(JAVeLEN)-DARPA-ATO Connectionless Networking Program,” 2004,
BBN Technichal Report. [Online]. Available: www.jasonredi.com

[71 A. Krohn, M. Beigl, and S. Wendhack, “SDJS: Efficient Statistics in
Wireless Networks,” in Proceedings of the 12th IEEE International
Conference on Network Protocols (ICNP’04). Washington, DC, USA:
IEEE Computer Society, 2004, pp. 262-270.

[8] N. Riga, I. Matta, and A. Bestavros, “DIP: Density Inference Protocol
for wireless sensor networks and its application to density-unbiased
statistics,” in Proceedings of the Second International Workshop on
Sensor and Actor Network Protocols and Applications (SANPA), 2004.

[9] J. Elson, L. Girod, and D. Estrin, “Fine-grained Network Time Syn-
chronization using Reference Broadcasts,” Special Interest Group on
Operating Systems (SIGOPS) Operating Systems Review, vol. 36, no. SI,
pp. 147-163, 2002.

[10] J. Elson and D. Estrin, “Time Synchronization for Wireless Sensor
Networks,” in Proceedings of the 15th International Parallel & Dis-
tributed Processing Symposium (IPDPS). Washington, DC, USA: IEEE
Computer Society, 2001, p. 186.

[11] M. Sichitiu and C. Veerarittiphan, “Simple, Accurate Time Synchroniza-
tion for Wireless Sensor Networks,” in Proceedings of the IEEE Wireless
Communications and Networking Conference (WCNC 2003), 2003.

[12] F. Toth, Regular Figures. New York: Pergamon, Macmillan, 1964.

[13] I. The MathWorks, “MATLAB,” 2000, http://www.mathworks.com/.

[14] T. Salonidis and L. Tassiulas, ‘“Performance Issues of Bluetooth Scatter-
nets and other Asynchronous TDMA Ad Hoc Networks,” in Proceedings
of MoMuC, 2003.

[15] Q. Li and D. Rus, “Global Clock Synchronization in Sensor Networks,”
in Proceedings of IEEE Infocom, 2004.

[16] S. Ganeriwal, R. Kumar, and M. Srivastava, “Timing Sync Protocol for
Sensor Networks,” in Proceedings of ACM SenSys, 2003.

[17] L. Dai, P. Basu, and J. Redi, “An Energy Efficient and Accurate Slot
Synchronization Scheme for Wireless Sensor Networks,” in Proceedings
of BROADNETS, 2006.

