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1 Introduction

The Internet has grown very large. No one knows exactly how large, but rough
estimates indicate billions of users (around 1.8B in 2009, according to eTFore-
casts [4]), hundreds of millions of web sites (over 200M in February 2009, ac-
cording to Netcraft [19]), and hundreds of billions of web pages (over 240B,
according to the Internet archive [1]). The Internet is also very dynamic —
users log in and out, new services get added, routing policies change, normal
traffic gets mixed with denial-of-service (DoS) attack traffic, etc.

An important question is: How do we manage such a huge and highly dy-
namic structure like the Internet? As a corollary, how can we build a network
of the future unless we understand the steady-state and dynamics of what we
build?

In this chapter, we resort to two mathematical frameworks: optimization
theory to study optimal steady states of networks, and control theory to study
the dynamic behavior of networks as they evolve toward steady state. Our
emphasis will be on congestion control using the notion of prices to model the
level of congestion, such as delays and losses, observed by users or traffic sources.

Expected Background: We assume basic background in calculus and alge-
bra. We also assume basic knowledge of systems modeling, optimization theory,
Laplace transforms, and control theory — Keshav’s textbook [13] provides an
excellent source for these mathematical foundations, in particular, chapters 4, 5,
and 8. Basic knowledge of Internet’s Transmission Control Protocol (TCP) [11],
namely Reno and Vegas [15] versions, as well as queue management schemes,
namely Random Early Drop (RED) [6], should be helpful. This chapter briefly
covers needed background material to serve as a refresher or quick reference.
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The material of this chapter has been used at Boston University in a second
(advanced) networking course taken by senior undergraduate and graduate stu-
dents.

Contribution and Outline: The purpose of this chapter is to make the
application of optimization and control theory to congestion control more ac-
cessible through intuitive explanations and simple control applications, using
examples from Internet’s protocols. This chapter has been largely influenced
by the work of Frank Kelly [12], which introduces the notion of “prices” and
“user utility”, the work by R. Srikant [24], which discusses the dynamics of user
(traffic source) and network adaptations, and control theory texts and notes
(e.g., [20, 16]). The exposition here attempts to tie these various mathemati-
cal models and techniques through simple running examples and illustrations,
modeling the dynamics of both flow control and routing.

We start by motivating the network control problem using analogy to the
problem of producing, pricing, and consuming gas/oil (Section 2). We intro-
duce several examples of optimally allocating resources (link bandwidth) to
users (traffic sources), resulting in different notions of fairness. We then in-
troduce dynamic equations that model source and link adaptation algorithms
(Section 3). Since these are generally non-linear equations, we review the tech-
nique of linearization and how classical (linear) control theory can be used to
study stability and transient performance (Section 4). We use as a running
example, a Vegas-like system controlled using different types of well-established
controllers. Using linear approximation around a certain operating point, we
can only study so-called local stability.

To study general (global) stability of non-linear models, we introduce the
control-theoretic Lyapunov method (Section 5). We also show how the control-
theoretic Nyquist stability method can be applied to the linearized model to
study the impact of delay in feedback (i.e., measurements of the current state
of the system). The material on the Nyquist method is a bit more advanced
and can be skipped on a first reading. We generalize the notion of stability by
introducing the concept of contractive mapping, and extend its application to
routing dynamics (Section 6).

Finally, we provide two case studies that apply control-theoretic techniques
introduced in this chapter: the first study investigates stability under class-
based scheduling of rate-adaptive traffic flows (Section 7), and the second study
investigates stability of data transfer over a dynamic number of rate-adaptive
transport connections (Section 8). These case studies can be skipped on a first
reading.

The chapter concludes with a set of exercises (Section 9) and their solutions
(Section 10).
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2 Network Control as an Optimization Problem

In this section, we describe Frank Kelly’s optimization framework [12], which
models users’ expectations (requirements) with utility functions, and network
congestion signals (e.g., loss, delay) as prices. The network is shown to allocate
transmission rates (throughputs) to users (flows) in such a way as to meet some
fairness objective.

The objective of a user, or what makes the user happy, can be mathemati-
cally modeled as a utility function. For example, drivers observe the“price” of
transportation and make one of many possible decisions: drive, take the subway
instead, walk, bike, or stay home. The decision may involve several factors like
the price of gas, convenience, travel time, etc. For example, if it rains, you might
decide to drive to work, or you might decide to walk to work to save money and
can then afford to go to the movies later in the week. Of course, how much
driving a person does, is affected by all sorts of factors and user priorities are
unknown to the system of gas stations and oil companies. But, each driver has
her own utility!

Figure 1 illustrates with a block diagram the closed-loop relationship between
drivers (users), gas stations (where gas is sold to and consumed by users), and
the market (which represents OPEC1, the government, and oil companies that
collectively produce gas and set market prices based on user demand). Drivers
set the total demand by observing gas prices. Notice that the gas price includes
at-the-pump gas price, and possibly other “exogenous” prices like tips for full
service, fees for credit card payment, or additional local taxes. Observe also that
prices observed by users are delayed and do not typically represent the exact
current state of the market given inherent delays in gas production, refinement,
transportation, etc.

Figure 1: The gas control loop

This kind of block diagram is typical of many closed-loop (feedback) control
systems where the system is said to reach equilibrium if the demand (for gas
by drivers) matches the supply (of gas in the market). In data networks, users
drive the demand on the network and have different utilities (expectations)

1OPEC is the Organization of the Petroleum Exporting Countries.
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when downloading music, playing games, making skype (voice/video) calls, or
denying others service by launching a denial-of-service (DoS) attack! In turn,
the network observes that user demand and sets “prices”, where the price could
be real money, or it could be some measure (indication) of congestion (e.g.,
delay, loss), or it could represent additional resources that need to be allocated
to avoid congestion.

An important question is: What is the goal of network design? Is it to make
users happy? You hope so! Then, mathematically, we say the goal of the network
is to maximize the sum of utilities for all its users [23].2 Figure 2 illustrates
the data network equivalent of the gas control loop shown in Figure 1. We next
consider the modeling of user utility and network behavior (resource allocation),
before introducing the optimization framework to study the (optimal) steady
state for the users and network.

Figure 2: The network control loop

2.1 Modeling the User

Users typically have different utilities, i.e. different applications may perform
differently based on the level of service (e.g., loss, delay) they get from the
network. But, generally speaking, an application should perform better, the
higher the rate (throughput) it is able to send at over the network. It is also
generally the case that the gain (level of “happiness”) from higher throughput
(i.e., marginal utility) diminishes as the throughput increases.

Figure 3 shows such a utility function that is typical of what is called elastic
traffic [23]. Formally, user r has utility Ur(xr) when allocated rate xr > 0.
Ur(xr) is an increasing, strictly concave function of xr (see Figure 4). And the

2We note that maximizing the sum of utilities involves interpersonal utility comparison,
which needs to be ameliorated by linking to a common good, such as money.
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derivative U̇r(xr) → ∞ as xr → 0, and U̇r(xr) → 0 as xr → ∞. Throughout
this chapter we assume strictly concave utilities.

Figure 3: Concave utility function

Figure 4: Concave function. A function f(.) is said to be concave if f(αx1 +(1−
α)x2) ≥ αf(x1) + (1− α)f(x2), i.e., for any two points x1 and x2, the straight
line that connects f(x1) and f(x2) is always below or equal to the function f(.)
itself. Note that a differentiable concave function has a maximum value at some
point xmax, and that the derivative ḟ(xmax) = 0. A strictly concave function
would have a strict inequality, whereas a convex function has a cup-like shape
and has a minimum instead.

2.2 Modeling the Network

We consider a network of J resources, e.g., transmission links as they are typi-
cally considered the bottleneck. We denote by R the set of all possible routes,
and we assume that each user (source-destination traffic flow) is assigned to ex-
actly one route r (i.e., static single-path routing)3. We then define a 0-1 routing
matrix A such that:

ajr =
{

1 if resource j is on route r
0 otherwise

3Given each user has one flow over a single path, we use the terms “user”, “flow”, and
“route” interchangeably.
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Figure 5 shows an example with three users over a network of seven links: the
first user (“blue” flow) uses the route made of links 1, 4, and 6; the second user
(“red” flow) uses the route made of links 2, 5, and 7; and the third user (“green”
flow) uses the route made of links 1, 4, and 7. So the routing matrix has seven
rows and three columns.

Figure 5: A network model

2.3 The Optimization Problem

Now we are ready to formulate a (centralized) optimization problem that allows
the network to allocate rates to users so that the sum of their utilities is max-
imized [12]. We refer to this problem as SY STEM(U,A,C) where the inputs
are the user utility functions Ur(.), the routing matrix A, and the (column)
vector of link capacities C, and the output is the (column) vector of allocated
rates x.

SY STEM(U,A,C) :

max
∑
r∈R

Ur(xr)

subject to Ax ≤ C
over x ≥ 0

For such an optimization problem, it is known that there exists a unique
solution. This is the case because the function to optimize is strictly concave
and the link capacity inequality constraints Ax ≤ C form a so-called convex set
(see Figure 6.)

The practical challenge in solving this problem however is that the network
does not know the utilities of its users, let alone its centralized nature makes it
computationally expensive to solve!

To address these challenges, we start by decomposing the problem into R
problems, one for each user r ∈ R, and one problem for the network (we will
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Figure 6: A convex set. A convex set intuitively means that any linear combi-
nation of any two points located on the boundary of the region, which is formed
by the linear inequalities, lies within the region itself.

later decompose this network problem further into individual resource prob-
lems). The network will present each user with a “price” λr ($/bit). Through
these prices, the network attempts to infer user utilities. Specifically, observing
λr, user r will then choose an amount to pay wr ($/second) for the service
(that maximizes the user’s utility), which in turn determines how much rate xr
(bits/second) the user would get (xr = wr/λr). The network sets its prices λr
based on the load xr, ∀r.

2.4 Introducing Prices

The decomposed optimization problem can then be stated in terms of the fol-
lowing user optimization problem, and network optimization problem.

USERr(Ur, λr) :

max Ur(
wr
λr

)

over wr ≥ 0

where wr

λr
= xr. Given the network price λr and its own private utility function

Ur, user r determines how much it is willing to pay wr so as to maximize her
own utility.

Knowing the vector W = {wr,∀r}, its routing and capacity matrices, the
network allocates user rates xr by optimizing some network function f(x,W ).
Once xr’s are obtained, prices are obtained as λr = wr

xr
.

NETWORK(A,C,W ) :

max
∑
r∈R

f(xr, wr)

subject to Ax ≤ C
over x ≥ 0
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2.5 Network Optimization

The choice of the network function f(x,W ) determines how the capacity of the
network gets allocated to users, and so how fair we might consider this allocation
to be! For example, consider the following function:

f =
∑
r∈R

wr xr

Maximizing this function results in maximizing the total weighted through-
put for all users. As a special case, for unit weights, the network optimization
problem maximizes the total throughput through the network. This might seem
to fly in the face of what we think is fair! Consider the following simple example
(see Figure 7): given both links have capacities of 6 units, the total throughput

Figure 7: Greedy network allocation

allocated to all users is the total network capacity of 12 units. This can be
achieved by allocating 6 units of capacity to each of the 1-link flows (users):
the “red” user and the “blue” user, leaving the 2-link (“green”) flow with no
capacity allocated to its user. That does not seem “fair”! A different function
f would allocate rates to users differently and so it would provide a different
notion of fairness.

But, the big question is: how do (should) we define fairness? The research
literature introduces many notions of fairness, most notably the so-called max-
min fairness.

2.5.1 Max-min Fairness

Intuitively, max-min fairness means that resources (link capacities) are allocated
to users (flows) so that the allocation is:

1. fair: all users get equal share of a link, as long as users have demand that
would fully consume their share, and

2. efficient: each link is utilized to the maximum load possible.

In other words, if a user cannot consume its equal share of a link, then the
excess capacity must be (recursively) allocated equally among high-demanding
users. So, the final outcome is that low-demanding users get exactly what they
need, while high-demanding users get equal allocations. Consider the following
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Figure 8: Max-min fair capacity allocation

multi-link network example (see Figure 8): all links have capacities of 150 units
and we assume elastic traffic sources, i.e., sources that would consume all what
they can get. We start with the first (left-most) link since it is used by most
users so it is the most loaded one. Each flow using that link gets allocated
an equal share of 150/3 = 50 units. Proceeding to the next loaded link, the
middle one, each of its two flows should get an equal share of 75, however flow
F3 is limited by its first link to 50 units of throughput. Thus, flow F4 gets the
left-over from F3 to a total allocation of 75 + 25 = 100. The right-most link, at
capacity of 150, does not limit the throughput of F4, which ends up using only
100 units of that link, leaving 50 unused. At the end of this process, we say
that the max-min fair allocation vector is xT = (50, 50, 50, 100).

Mathematically, max-min fairness is achieved when the network maximizes
the following function:

f = minr∈R xr

Intuitively, maximizing the minimum of allocated rates results in equalizing
these rates, as long as users have enough demand that will consume these rates
over the network.

2.5.2 Proportional Fairness

Another equally popular fairness definition is the so-called (weighted) propor-
tional fairness. This notion of fairness is achieved when the network maximizes
the following function:

f =
∑
r∈R

wr log(xr)

Note that the log function is a concave, and strictly increasing function. Thus,
given optimal rate allocation solution x∗, that is feasible, i.e., x∗ ≥ 0 and
A x∗ ≤ C, any other feasible solution x will cause the aggregate proportional
change

∑
r∈R wr

xr−x∗r
x∗r

to be less than or equal zero. To show this, for simplicity,
assume one user and unit weight, so f(x) = log(x). Expanding f(x) into its
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first-order (linear) Taylor’s approximation around x∗, we obtain:

f(x) ≈ f(x∗) + (x− x∗)ḟ(x∗)

Given the derivative ḟ(x∗) = 1
x∗ , we have:

f(x) ≈ f(x∗) +
(x− x∗)
x∗

Since f is maximized at x∗, f(x∗) ≥ f(x) and so the proportional fairness
condition must hold:

x− x∗

x∗
≤ 0

Note that the presence of weight wr intuitively means that user (flow) r is
equivalent to wr users with unit weight each.

2.5.3 General Parameterized Utility

If the network function f(x) is a function of the utilities of its users U(x), then
the network is in fact maximizing a function of user utilities. Assuming each
user r has unit weight wr, Ur(xr) can be generalized as [18]:

Ur(xr) =
x1−α
r

1− α

where α is a parameter that determines the fairness criterion of the network.
More specifically, if α→ 0, then a user’s utility is linear in its allocated rate and
the network is effectively maximizing the sum of user utilities

∑
r∈R Ur(xr) =∑

r∈R xr, which in turn yields a greedy allocation that maximizes the total
throughput over the network.

On the other hand, if α→ 1, then this is equivalent to a log utility, yielding
proportional fair allocation. To see this, let’s take the derivative of Ur(xr):

U̇r(xr) =
(1− α)x−αr

1− α
→ 1

xr
as α→ 1

By integrating U̇r(xr), we get back Ur(xr) = log(xr).
Similarly, it can be shown that α → ∞ corresponds to a minimum utility,

yielding a max-min fair allocation.

2.6 Solution to Optimization Problem

Consider the case where the network is maximizing the weighted sum of the
log of user rates, i.e., the network is trying to solve the following optimization
problem that would yield a weighted proportional fairness allocation:
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NETWORK(A,C,W ) :

max
∑
r∈R

wr log(xr)

subject to Ax ≤ C
over x ≥ 0

We can solve this problem using the theory of constrained convex optimiza-
tion using the Lagrangian technique. Specifically, we move the constraints into
the objective function that we want to optimize, thus making the optimiza-
tion problem effectively unconstrained. We do so by introducing so-called “La-
grangian multipliers” into the new objective (Lagrangian) function L:

max L =
∑
r∈R

wr log(xr) + λT (C −Ax)

The (row) vector λT is a Lagrangian vector with a variable λj for each link j in
the network. Note that L is a strictly concave function, thus a solution exists
at which the derivatives of L with respect to each xr and each λj are equal to
zero:

∂L

∂xr
=

wr
xr
−
∑
j∈r

λj (1)

∂L

∂λj
= (Cj −

∑
r∈j

xr) (2)

The notation j ∈ r indicates all links j used by user (flow/route) r, whereas
r ∈ j denotes all flows r using link j, i.e. the total load on link j.

By equating the first set of equations (1) to zero, we obtain the (weighted
proportionally fair) solution:

xr =
wr∑
j∈r λj

(3)

We obtain λj by also equating the second set of equations (2) to zero. Note
that λj and (Cj−

∑
r∈j xr) must be greater than or equal to zero since negative

values do not maximize the objective function L! Furthermore, (Cj−
∑
r∈j xr) ≥

0 ensures that the link capacity constraints
∑
r∈j xr ≤ Cj are automatically

satisfied. If (Cj −
∑
r∈j xr) = 0 then λj can be greater than zero. On the

other hand, if λj = 0, then the associated link may not be fully utilized, i.e.∑
r∈j xr < Cj . Intuitively, λj represents the “cost” associated with link j, so

it is zero if the link is under-utilized, and positive if the link is allocated to
capacity.
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Example: Consider the example in Figure 7 but now assume the network’s
objective of proportionally allocating its capacity, i.e.,

max f = log(x0) + log(x1) + log(x2)

subject to:

x0 + x1 ≤ 6
x0 + x2 ≤ 6

x0, x1, x2 ≥ 0

where x0, x1, and x2 are the rates allocated to the two-link flow (user), the
first-link flow, and the second-link flow, respectively. 4

Using the Lagrangian’s solution method, we obtain:

max L = log(x0) + log(x1) + log(x2) + λ1(6− (x0 + x1)) + λ2(6− (x0 + x2))

Taking derivatives, we obtain:

∂L
∂x0

= 1
x0
− (λ1 + λ2)

∂L
∂x1

= 1
x1
− λ1

∂L
∂x2

= 1
x2
− λ2

∂L
∂λ1

= 6− (x0 + x1)

∂L
∂λ2

= 6− (x0 + x2)

Equating these derivatives to zero, the last two equations show full utilization
of the link capacities and that x1 = x2, while the first three equations give the
following values of xi’s:

x1 = x2 =
1
λ1

=
1
λ2

=
1
λ

x0 =
1

2λ

Substituting in the capacity equations, we obtain the price of each link λ:

1
2λ

+
1
λ

= 6

Thus, λ = 1
4 , and so x0 = 2, and x1 = x2 = 4. Note that in this optimal case,

each link is fully utilized to capacity, and the flow that traverses two links is
4Note that since the objective (log) function is strictly increasing, then the xi’s should be

as large as possible to consume the total capacity of the links, so the two inequalities on link
capacities could be turned into equalities.
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charged twice for each link it traverses and so it gets allocated a lower rate.5

End Example.

If the utility of each user r is a log function in its allocated rate xr, then
the (weighted proportionally fair) network solution xr = wr∑

j∈r
λj

is in fact, a

solution to the whole system optimization problem that includes the network, as
well as all users possibly trying to independently (in a distributed way) maximize
their own log utilities. However, in a distributed setting, as noted earlier, even
if the network knows the user utility functions, the network allocates user rates
based on their willingness to pay, wr, which might be unknown to the network.
This lack of knowledge can be overcome by observing the demand behavior of
the user xr and the price λr =

∑
j∈r λj , and so wr is computed as wr = xr λr.

Otherwise, the network can just assign some weights wr to users based on some
preference policy.

The moral of the story is that in practice, there is no central network con-
troller that knows W and can then allocate rates to users. Each user and each
resource (link) might have its own individual controller that will operate inde-
pendently and so we need to study the collective behavior of such composite
system and answer questions such as: Would the system converge (stabilize) to
a solution in the long term (i.e., reaching steady state)? If so, is this solution
unique and how far is it from the target (optimal) operating point? In general,
if the system gets perturbed, is it stable, i.e. does it converge back to steady
state, and how long does it take to converge and how smooth or rough was that?
In control-theoretic terminology, we refer to the response to such perturbation
until steady state is reached as the transient response of the system. We refer
to how far the system is from being unstable, or the magnitude of perturbation
that renders the system unstable, as stability margin.

To formally address these questions, we will resort to the modeling of user
and network dynamic behaviors, in the form of differential (or difference) equa-
tions, then use well-known control-theoretic techniques to study the overall tran-
sient and steady-state behavior of the system.

3 The Control Problem

The basic control problem is to control the output of a system given a certain
input. For example, we want to control the user demand (sending rate) given
the observed network price (e.g., packet loss or delay). Similarly, we want to
control the price advertised by a network resource given the demand (rates) of
its users.

There is basically two kinds of control: open-loop control, and closed-loop
(feedback) control. In open-loop control systems, there is no feedback about
the state of the system and the output of the system is controlled directly by
the input signal. This type of control is thus simple, but not as common as

5As we will later see, this proportional rate allocation is what TCP Vegas [15] provides.

14



closed-loop control. An example of open-loop control system is a microwave
that heats food for the input (specified) duration.

Feedback (closed-loop) control is more interesting and multiple controllers
may be present in the same control loop. See Figure 2 where a user controller
is present to control demand based on price, and a resource controller is also
present to control price based on demand. Feedback control makes it possible
to control the system well even if we can’t observe or know everything, or if we
make errors in our estimation (modeling) of the current state of the system, or if
things change. This is because we can continually measure and correct (adapt)
to what we observe (i.e., feedback signal). For example, in a congestion control
system, we do not need to exactly know the number of users, the arrival rate
of connections, or the service rate of the bottleneck resource, since each user
would adapt its demand based on its own observed (measured, fed back) price,
which reflects the current overall congestion of the bottleneck resource.

Associated with feedback control is a delay to observe the feedback (mea-
sured) signal, which is referred to as feedback delay. More precisely, feedback
delay refers to the time taken from the generation of a control signal (e.g., up-
dated user demand) until the process/system reacts to it (e.g., demand is routed
over the network), this reaction takes effect at each resource (e.g., load is ob-
served on each link), and this effect is fed back to the controller (e.g., price is
observed by the user).

3.1 System Models

Models of controlled systems can be classified along four dimensions:

• Deterministic versus stochastic models. The latter models capture stochas-
tic effects like noise and uncertainties.

• Time-invariant versus time-varying models. The latter models contain
system parameters that change over time.

• Continuous-time versus discrete-time models. In the latter models, time
is divided into discrete-time steps.

• Linear versus non-linear models. The latter models contain non-linear
dynamics.

In most of our treatment, we consider the simplest kind of models that are
deterministic, time-invariant, continuous-time, and linear. In modeling a con-
trolled system, we characterize the relationships among system variables as a
function of time, i.e., dynamic equations. See Figure 9 where functions f and
h are generally non-linear functions. The function f models the evolution of
the state of the system x as a function of the current state and system’s input
u. The function h yields system’s output y as a function of the current state
and input values. As we will see later, for mathematical tractability, we often
linearize dynamic non-linear models or we only consider operation in a linear
regime, for example, we ignore non-linearity when the buffer goes empty or hits
full capacity.
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Figure 9: Typical system model

3.2 Modeling Source and Network Dynamics

Consider a source r with log utility, i.e. Ur(t) = wr log(xr), and a network
that allocates rates in a weighted proportional fashion. We saw earlier (cf.
Section 2.6) that in steady state, the (optimal) solution (Equation 3) is:

xr =
wr
λr

(4)

This can be re-written as wr−xrλr = 0. Also, we saw that the optimal solution
ensures that each link l is fully utilized, i.e. the load (total input rate) on link
l, denoted by yl =

∑
s:l∈s xs, equals the link capacity cl.

The dynamics of the sources and links can then be modeled such that these
steady-state user rates and link loads are achieved. Specifically, we can write
the dynamic (time-dependent) source algorithm as:

ẋr(t) = k[wr − xr(t)λr(t)] (5)

where k is a proportionality factor. Note that wr represents how much user
r is willing to pay, whereas xr(t)λr(t) represents the cost (price) of sending
at that rate. Intuitively, the user sending rate increases (decreases) when the
difference between these two quantities is positive (negative). And in steady
state, ẋr(∞) → 0, and so we obtain the steady-state solution xr = wr

λr
(as

expected).
Given that the derivative of Ur(t), U̇r(t) = wr

xr
, the source rate adaptation

algorithm can be re-written as:

ẋr(t) = kxr(t)[U̇r(t)− λr(t)]

ẋr(t) = K(t)[U̇r(t)− λr(t)] (6)

Intuitively, the user increases its sending rate if the marginal utility (satisfaction)
is higher than the price that the user will pay, otherwise the user decreases its
sending rate.
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We can also write a dynamic equation for the adaptation in the link price
λl(t), called the link pricing algorithm:

λ̇l(t) = h(yl(t)− cl) (7)

where h is a proportionality factor, and the total price, λr(t), for user r, is
the sum of the link prices along the user’s route, i.e. λr(t) =

∑
l:l∈r λ

l(t).
Intuitively, the link price increases if the link is over-utilized (i.e. yl(t) > cl),
otherwise the link price decreases. Note that at steady state, λ̇l(∞) → 0, and
we obtain the steady-state optimal solution yl = cl (as expected).

It turns out that the source and link algorithms, Equations 6 and 7, represent
general user and resource adaptation algorithms that collectively determine the
transient and steady behavior of the whole system. In what follows, we use the
form of Equation 6 to reserve engineer different versions of TCP and deduce the
utility function that the TCP source tries to maximize.

3.3 TCP and RED

Many analytical studies considered the network system composed of TCP sources
over a network of queues that employ a certain queue management policy. Ex-
amples of TCP variants include Reno, SACK [5], NewReno, Vegas [15], FAST
[25], etc. Examples of queue management policies include Drop Tail, RED [6],
REM [2], PI [10], etc. One of the most widely studied instantiation is that
of TCP sources over a RED bottleneck queue — see Figure 10. We start by
modeling the dynamic behavior of a TCP source, i.e., the time-dependent re-
lationship between its transmission window (or sending rate) and its observed
loss rate or delay (price). We do so for both TCP Reno and Vegas versions,
and also deduce their utilities. Then, we model the buffering process inside the
network (more precisely, the bottleneck queue), assuming a linear regime (i.e.,
ignoring non-linearities due to the buffer becoming empty or full). Using the
average buffer length, we model the dynamic behavior of RED and how it gener-
ates packet losses (or markings) as indication of congestion (price). This overall
model represents the closed-loop feedback system shown in the block diagram
of Figure 10, which can then be analyzed using control-theoretic techniques.

Figure 10: TCP Reno over RED feedback control system
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Modeling TCP Reno: First, consider the modeling of TCP Reno, where the
congestion window cwnd is increased by 1/cwnd for every acknowledged TCP
segment / non-loss, i.e., it is (roughly) increased by 1 every round-trip time,
and cwnd is decreased by half for every loss. Thus, we can write the following
equation for changes in the congestion window of a single TCP flow, where p is
the segment loss probability:

∆cwnd =
1

cwnd
(1− p)− cwnd

2
p

Let x denote the sending rate, and T the round-trip time, thus x = cwnd
T .

Assuming acknowledgments (ACKs) come equally spaced, the time between
ACKs (or lack thereof) is given by T

cwnd . Thus, we can re-write the above
equation in terms of change in rate as:

d

dt
cwnd(t) =

1
cwnd(t) (1− p(t))− cwnd(t)

2 p(t)
T

cwnd(t)

Dividing both sides by T , we get:

d

dt
x(t) =

1
x(t)T 2 (1− p(t))− x(t)

2 p(t)
1
x(t)

d

dt
x(t) =

1
T 2

(1− p(t))− x(t)2

2
p(t) (8)

Let’s denote the loss probability p(t) of TCP connection r as pr(t). pr(t)
depends on the current load on path r, and can be approximated by the sum of
loss probabilities experienced on individual links j ∈ r along the connection’s
path. More specifically,

pr(t) =
∑
j∈r

pj(
∑
s:j∈s

xs(t))

Assuming small p such that (1 − p) ≈ 1, we can re-write Equation 8 as
follows:

d

dt
x(t) =

1
T 2
− x(t)2

2
p(t)

d

dt
x(t) =

x(t)2

2
[

2
T 2x(t)2

− p(t)] (9)

Comparing Equation 9 with Equation 6, we can deduce the utility function
of a TCP Reno source:

U̇(x) =
2

T 2x2
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Integrating U̇(x) we get:

U(x) =
−2
T 2x

Observe that maximizing Reno’s utility results in minimizing the quantity 1
x ,

which can be viewed as the “potential delay” as it is inversely proportional to
the allocated rate x. Thus, a network allocation based on such utility is referred
to as minimum potential delay fair allocation.

Example: Revisting the example in Figure 7 but now assume the network’s
objective is to allocate its capacity according to the minimum potential delay
fair allocation, i.e.,

max f =
−1
x0

+
−1
x1

+
−1
x2

subject to:

x0 + x1 ≤ 6
x0 + x2 ≤ 6

x0, x1, x2 ≥ 0

where x0, x1, and x2 are the rates allocated to the two-link flow (user), the
first-link flow, and the second-link flow, respectively.

Using the Lagrangian’s solution method, we obtain:

max L =
−1
x0

+
−1
x1

+
−1
x2

+ λ1(6− (x0 + x1)) + λ2(6− (x0 + x2))

Taking derivatives, we obtain:
∂L
∂x0

= 1
x2
0
− (λ1 + λ2)

∂L
∂x1

= 1
x2
1
− λ1

∂L
∂x2

= 1
x2
2
− λ2

∂L
∂λ1

= 6− (x0 + x1)

∂L
∂λ2

= 6− (x0 + x2)

Equating these derivatives to zero, the last two equations show full utilization
of the link capacities and that x1 = x2, while the first three equations give the
following values of xi’s:

x1 = x2 =
1√
λ1

=
1√
λ2

=
1√
λ

x0 =
1√
2λ
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Substituting in the capacity equations, we obtain the price of each link λ = 0.08,
and so x0 ≈ 2.5, and x1 = x2 ≈ 3.5.

Note that in this optimal case, each link is fully utilized to capacity, and the
rate allocated to a flow is inversely proportional to the square-root of the price
it observes along its path.

Note also that this captures the well-known steady-state relationship between
the throughput of a TCP Reno source and the inverse of the square-root of the
loss probability observed by the TCP source [21]. A TCP Reno source adapt-
ing based on Equation 8 would converge to such steady-state throughput value.
End Example.

Modeling TCP Vegas: Now, let us consider the modeling of another version
of TCP — TCP Vegas [15]. This version, unlike Reno, tries to avoid conges-
tion, rather than induce loss and and then adapt the transmission (congestion)
window to it. The basic idea behind Vegas is to calculate the actual throughput
of the connection as w(t)

T (t) , where w(t) is the current window size, and T (t) is
the measured round-trip time (RTT) over the connection’s path. This RTT
includes queueing delay, as well as propagation delay D. Ideally, with no con-
gestion, the ideal throughput can be computed by the source as w(t)

D , where
D is estimated using the minimum RTT recently observed by the source. To
ensure high utilization of the network, we want some queueing, i.e. the actual
throughput is lower than the ideal one, but not too low to start causing conges-
tion (i.e. buffer overflow at the bottleneck link resulting in losses). Vegas then
adapts w(t) based on some target difference, α, between the actual throughput
and the ideal one. More specifically, the window increases if (w(t)

D − w(t)
T (t) ) < α,

decreases if (w(t)
D − w(t)

T (t) ) > α, and stays the same otherwise. This dynamic
source behavior, i.e. change in window over time, can be modeled as:

dw(t)
dt

= k[α− (
w(t)
D
− w(t)
T (t)

)]

This can be re-written as:

dw(t)
dt

=
k

D
[αD − (w(t)− w(t)

T (t)
D)]

Denoting the sending rate (throughput) by x(t) = w(t)
T (t) , and γ = k

D , we have:

dw(t)
dt

= γ[αD − (w(t)− x(t)D)]

At steady state, as ẇ(∞)→ 0, we have:

w − xD = αD

Observe that the left-hand side represents the difference between the window
size of packets injected by the source, and the number of packets in flight /
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propagating along the path (represented by the product of throughput and
propagation delay). Thus, the left-hand side represents the number of packets
in the bottleneck queue, and αD denotes the target queue occupancy of the
bottleneck link. Intuitively, Vegas tries to maintain a small number of αD
packets (i.e., 1-2 packets) in the bottleneck queue to maintain both small delay
and high (100%) utilization. Section 4 uses control theory to analyze a Vegas-
like transmission model.

Given that x = w/T , we get:

xT − xD = αD

Denoting the queueing delay by Q, we have T = Q+D, and so:

xQ = αD

x =
αD

Q

Comparing with Equation 4, we can deduce that the willingness to pay wr for a
Vegas user r is αD and that the price λr experienced by the user is the queueing
delay Q.

Now, to deduce the utility function that a Vegas user tries to maximize, let
us write its rate adaptation equation following Equation 5:

ẋr(t) = k[αD − xr(t)Q(t)]

ẋr(t) = K(t)[
αD

xr(t)
−Q(t)]

Thus, comparing with Equation 6, we deduce:

U̇r(t) =
αD

xr(t)

Integrating, we obtain:

Ur(t) = αD log(xr(t))

Recall that maximizing such user utilities results in a weighted proportional fair
allocation.

Modeling RED: Let us now consider the modeling of the buffer and asso-
ciated RED queue management algorithm [6]. Figure 11 shows how RED tries
to avoid congestion by dropping (or marking) packets with probability pc as a
(non-linear) function of the average queue length v. First, we model the evolu-
tion of the queue length b(t) as a function of the total input rate, y(t) =

∑
xs(t),

and (bottleneck) link capacity, C:

ḃ(t) = y(t)− C
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Figure 11: RED dropping (or marking) function

Denoting by v(t), the Exponential Weighted Moving Average (EWMA) of the
queue length:

v(t+ δ) = (1− α)v(t) + αb(t)

v(t+ δ)− v(t) = α(b(t)− v(t))

Given v(t) gets updated at the link rate, i.e. δ = 1
C , and v̇(t) ≈ v(t+δ)−v(t)

δ , we
have:

v̇(t) = αC (b(t)− v(t))

This last equation represents the dynamic model of RED averaging, which in
turn determines the price pc(t) that users experience.

To simplify the model and gain insight, let us ignore the (hard) non-linearities
of the RED function and consider only the linear region:

pc(t) = σv(t) + η = σ

∫
v̇(t)dt+ η = σ

∫
αC(b(t)− v(t))dt+ η

where σ = pm/(Bmax −Bmin), and η = −pm Bmin/(Bmax −Bmin).
To gain more insight, let us further ignore the RED averaging, assuming

that the price is set in proportion to the actual queue length, Bmin = 0 and
pm = 1, then we have:

pc(t) =
1

Bmax
b(t)

Differentiating both sides, we obtain:

ṗc(t) = h ḃ(t) = h(y(t)− C)

where h = 1
Bmax

. Comparing with Equation 7, the packet dropping (congestion
marking) probability, pc(t), represents the “price”, i.e. Lagrangian multiplier,
observed by users of this buffer. Note that at steady state, ṗc(∞) → 0, and so
y = C, i.e. the link is fully utilized at steady state.
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3.4 Solving the Feedback Control System

We have developed dynamic (time-dependent) models for users (sources), e.g.
TCP, and the network (links), e.g. RED, and the interaction between them
through prices. The next step is to solve for the transient and steady-state
performance of such system. Solving such systems is challenging because of
inherent non-linearilities, e.g. the “hard” non-linearities (discontinuities) in the
RED pricing function, or the “soft” non-linearity of TCP where the sending rate
changes quadratically in the current rate. Non-linear control theory becomes
a useful tool as it deals directly with non-linear differential equations. Specifi-
cally, a method called Lyapunov [20] allows one to study convergence (stability)
by showing that the value of some positive function of the state of the system
continuously decreases as the system evolves over time. Finding such a Lya-
punov function can be challenging, and transient performance can often only be
obtained by solving the system equations numerically.

To this end, a technique called linearization can prove more tractable where
the non-linear system is approximated by a set of linear equations around a
single operating point (state). See Figure 12. With linearization, we become

Figure 12: Linearization

concerned with local stability and study perturbations around the operating
point using standard (linear) control theory. By local stability, we mean that if
the system is perturbed within a small region around the operating point then
the system will converge and stabilize back to that point. This is in contrast
to global stability where the original (non-linear) system is shown to converge
from any starting state. To linearize the non-linear system around an operating
point, the basic idea is to expand the non-linear differential equation into a
Taylor series around that point and then ignore high-order terms.

In what follows, we briefly review some basics of classical control theory
for linear systems, then we introduce non-linear control theory. We also show
examples of control theoretic analysis for the dynamic models introduced above.
For more detailed background on control theory, we refer the reader to [20, 13,
16].

4 Linear Control Theory

In linear control theory, we transform differential equations in the time domain
to algebraic equations in the so-called frequency or Laplace domains. Once this
Laplace transformation is done, we use simple algebra to study the performance
of the system without the need for going back to the (complicated) time domain.
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Specifically, we can transform a function f(t) to an algebraic function F (s),
referred to as the Laplace transform of f(t), as follows:

F (s) =
∫ ∞

0

f(t)e−stdt

where s is a complex variable: s = σ + jω, σ is the real part of s, denoted by
Re(s), and ω is the imaginary part of s, denoted by Im(s).

Example (Unit step function): The Laplace transform of a unit step func-
tion u(t), where u(t) = 1 if t > 0, and u(t) = 0 otherwise, is given by:

U(s) =
∫ ∞

0

1.e−stdt =
1
s

Example (Impulse function): The Laplace transform of a unit impulse
function δ(t), where δ(t) = 1 if t = 0, and δ(t) = 0 otherwise, is given by:

U(s) =
∫ ∞

0

1.e−stdt = e0 = 1

Table 1 lists basic Laplace transforms.

Table 1: Basic Laplace transforms

Impulse input: f(t) = δ(t) F (s) = 1

Step input: f(t) = a.1(t) F (s) = a/s

Ramp input: f(t) = a.t F (s) = a/s2

Exponential: f(t) = eat F (s) = 1/(s− a)

Sinusoid input: f(t) = sin(at) F (s) = a/(s2 + a2)

Table 2 lists basic composition rules, where L[f(t)] denotes the Laplace
transform of f(t), i.e. F (s).

Example: Consider the following second-order linear, time-invariant differen-
tial equation, where y(t) represents the output of a system, and u(t) represents
the input:

a2ÿ(t) + a1ẏ(t) + a0y(t) = b1u̇(t) + b0u(t)

In the time domain, if we represent the system by g(t), then y(t) can be obtained
by convolving u(t) with g(t), i.e. y(t) = g(t)∗u(t). This involves a complicated
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Table 2: Composition rules

Linearity: L[a f(t) + b g(t)] = aF (s) + bG(s)

Differentiation: L[df(t)/dt] = sF (s)− f(0) = sF (s) if f(0) = 0

Integration: L[
∫
f(τ)dτ ] = F (s)/s

Convolution: y(t) = g(t)∗u(t) =
∫ t

0
g(t− τ)u(τ)dτ ⇒ Y (s) = G(s)U(s)

integration over the system responses, g(t− τ), to impulse inputs of magnitude
u(τ), for all 0 < τ < t.

Assuming y(0) = u(0) = 0, taking the Laplace transform of both sides, we
obtain:

a2s
2Y (s) + a1sY (s) + a0Y (s) = b1sU(s) + b0U(s)

Y (s) =
(b1s+ b0)

(a2s2 + a1s+ a0)
U(s) = G(s)U(s)

Thus, in the Laplace domain, the output Y (s) can be obtained by simply mul-
tiplying G(s), called the transfer function of the system, with U(s). We can
then take the inverse Laplace transform, L−1[Y (s)], to obtain y(t), or as we will
later see, we can simply analyze the stability of the system by examining the
roots of the denominator of the transfer function G(s) and their location in the
complex s-domain.

Note that because Y (s) = G(s) for an impulse input, i.e. U(s) = 1, the
transfer function G(s) is also called impulse response function.

4.1 Modeling a Vegas-like System

Consider the system in Figure 13 where a controller Gc is used to match the
queue length b(t) to a target Br by controlling the input window or sending
rate x(t). The output rate from the queue is denoted by c(t). The goal is to
first write down the differential equations that model the different components
of the system, then instead of solving the equations in the time domain, we will
transform them to the Laplace domain and analyze the stability of the system
algebraically.

We start by describing the buffer evolution as:

d

dt
b(t) = x(t)− c(t)

Then, x(t) is the output of convolving the error e(t) = Br − b(t) with the
controller function Gc(t), i.e.

x(t) = Gc(t)∗ e(t)
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Figure 13: Vegas-like system

Now, taking the Laplace transforms, we obtain:

sB(s) = X(s)− C(s)⇒ B(s) =
X(s)− C(s)

s

X(s) = Gc(s)E(s) = Gc(s)(Br(s)−B(s))

Figure 14 shows the system using its transfer functions and their input/output
flows, where G0 = 1

s . This is called the block diagram and provides a powerful
pictorial tool. From the block diagram, one can write the algebraic equation of

Figure 14: Block diagram of Vegas-like system

the output in terms of the input(s). Dropping the “s” parameter for convenience:

(Br −B)Gc − C
s

= B

Rearranging, we get:

B =
Gc

s+Gc
Br −

1
s+Gc

C (10)

Note that the system has two inputs: Br(s) and C(s), subjected to two trans-
fer functions, Gc(s)

s+Gc(s) and −1
s+Gc(s) , respectively, and adding their responses we

obtain the output B(s).
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4.2 Proportional Control and Stability of Vegas-like Sys-
tem

One basic controller Gc is referred to as Proportional (P) controller, where
the controlled variable x(t) is simply set in proportion to the error signal, i.e.
x(t) = Kp e(t). In this case, Gc(s) is simply the constant Kp.

Substituting in Equation 10, we have:

B(s) =
Kp

s+Kp
Br(s)−

1
s+Kp

C(s) (11)

An important question is: does the P-controller make the system stable?
More precisely, if we subject the system to impulse input(s), does the system
converge back to a quiescent state? Control theory gives a systematic way to
answer such stability question by examining the roots of the denominator of the
system’s transfer function, called the characteristic equation. In this case, the
characteristic equation is:

s+Kp = 0⇒ s = −Kp

The system is stable if the roots (also called poles) lie in the left-hand side of
the complex s-plane. Thus this system is stable if −Kp < 0⇒ Kp > 0.

Note that we did not need to go back to the time domain to analyze the
stability of the system. But let’s do that here to understand why poles on the
left-hand side of the s-plane makes the system stable. Taking the inverse Laplace
transform of Equation 11, and assuming impulse inputs, i.e. Br(s) = C(s) = 1,
we get:

b(t) = Kpe
−Kpt − e−Kpt

We can then see that b(t) decays exponentially over time, starting from b(0) =
(Kp − 1). We say that the system is stable or exhibits overdamped response.

We can also analyze transient performance by noting that b(0) = (Kp − 1)
represents an overshoot response to the impulse input, and that this overshoot
is lower for lower Kp. See Figure 15. So by controlling Kp, referred to as the
controller gain, we can also control the system’s transient response.

Figure 15: Overdamped response
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4.3 Proportional Integral Control and Stability of Vegas-
like System

Another type of controller is known as Proportional Integral (PI) controller
where the controlled variable x(t) is set in proportion to the integral of the
error signal, i.e. x(t) = Ki

∫
e(t) dt. In this case, taking the Laplace transform,

Gc(s) = Ki

s . Note that the integration means that the history of the error is
used to control x(t).

Substituting in Equation 10, we have:

B(s) =
Ki

s2 +Ki
Br(s)−

s

s2 +Ki
C(s) (12)

To analyze stability, we again examine the poles of the characteristic equa-
tion:

s2 +Ki = 0⇒ s =
+
− j
√
Ki

Given Ki > 0, the two imaginary conjugate poles lie in the left-hand side of
the complex s-plane, and so the system is stable, though critically stable as we
explain next.

To convince ourselves, let us go back to the time domain by taking the
inverse Laplace transform:

L−1[
Ki

s2 +Ki
] = L−1[

Ki

(s− j
√
Ki)(s+ j

√
Ki)

] = L−1[
A

(s− j
√
Ki)

+
B

(s+ j
√
Ki)

]

And for some values of A and B, this yields:

Aej
√
Kit +Be−j

√
Kit

Given the fact that ejθ = cos θ + j sin θ, the function in the time domain
oscillates in a sinusoidal fashion. Although the time function does not decay
over time, it does not diverge, i.e. it is not unstable! So, we consider such a
system to have bounded oscillations in response to impulse input and we say that
it is critically (or marginally) stable or the system exhibits undamped oscillatory
response. Note that a higher value of Ki results in more oscillatory behavior.
See Figure 16.

4.4 Stability and Pole Placement

More formally, a linear time-invariant system is stable if all poles of its transfer
function are in the left-hand side of the s-plane, i.e. the real part of all poles is
negative. Figure 17 shows the time response given the location of the poles.

Note that if the poles are complex conjugates and strictly in the left-hand
side of the s-plane, the system is stable as oscillations in response to impulse in-
put decay over time, and we say that the system exhibits underdamped response.
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Figure 16: Undamped response

Figure 17: Time response depending on pole location
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4.5 Transient Performance and Steady-state Error

Besides stability, there are other performance metrics of interest that character-
ize the transient performance of the system and the quality of the steady state.
Figure 18 shows several of these metrics, including the time for the controlled
variable to reach its peak (maximum) value, the time to reach the target, the
maximum overshoot over the steady-state value, and the error that remains at
steady state when the system stabilizes away from the desired target value.

Figure 18: Performance Metrics

For our Vegas-like system, the controlled variable is the window size, i.e.
number of packets allowed into the system. The response is the queue length,
which we measure and compare to the target buffer size. A “good” system is
one that converges quickly to the desired target with minimum oscillations (i.e.,
overshoots and undershoots) and with almost zero steady-state error.

4.6 Steady-state Error

In control theory, the steady-state error of a stable system is defined as:

ess = limt→∞ e(t) = limt→∞ (r(t)− b(t))

where r(t) is the reference input, and b(t) is the system output (response). This
error reflects how accurately the system can achieve the desired target, which
is chosen to be a step input.

We state without proof the Final Value Theorem [20]:

ess = limt→∞ e(t) = lims→0 s E(s)

This theorem allows us to calculate ess algebraically in the Laplace domain.
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Example (P-control of Vegas-like system):

E(s) = Br(s)−B(s)

Substituting for B(s) from Equation 11 and using the Final Value Theorem, we
obtain:

ess = lims→0 s [Br(s)−
Kp

s+Kp
Br(s) +

1
s+Kp

C(s)]

Assuming step inputs, i.e. Br(s) = Br

s and D(s) = D
s , we have:

ess = lims→0 [Br −
Kp

s+Kp
Br +

1
s+Kp

C] =
C

Kp

Recall that under the P-controller, the system is (overdamped) stable, i.e. b(t)
approaches the target Br without oscillations, however, at steady state, b(t)
misses the target by C

Kp
and stabilizes at a value lower than Br. Notice that

the higher the service capacity C is, the larger the steady-state error. So, to
decrease the steady-state error, the controller gain Kp could be increased. How-
ever, increasing Kp increases the overshoot. A tradeoff clearly exists between
transient performance and steady-state performance, and one has to choose Kp

to balance the two and meet desired operation goals. End Example.

Example (PI-control of Vegas-like system):

E(s) = Br(s)−B(s)

Substituting for B(s) from Equation 12 and using the Final Value Theorem, we
obtain:

ess = lims→0 s [Br(s)−
Ki

s2 +Ki
Br(s) +

s

s2 +Ki
C(s)]

Assuming step inputs, i.e. Br(s) = Br

s and C(s) = C
s , we have:

ess = lims→0 [Br −
Ki

s2 +Ki
Br +

s

s2 +Ki
C] = 0

Although the steady-state error is zero under the PI-controller, recall that the
system is critically stable, i.e. it converges to the target while oscillating. De-
creasing the controller gain Ki decreases these oscillations, however at the ex-
pense of longer time to reach steady state. This illustrates again the inherent
tradeoff between transient performance and the quality of the steady state.

5 Analyzing the Stability of Non-linear Systems

As we have seen, linear control theory can be applied to non-linear systems if we
assume a small range of operation around which the system behavior is linear

31



or approximately linear. This linear analysis is simple to use, and the system,
if stable, has a unique equilibrium point.

On the other hand, most control systems are non-linear, and operate over
a wide range of parameters, and multiple equilibrium points may exist. In this
case, non-linear control theory could be more complex to use.

In what follows, we first consider a non-linear model of the adaptation of
sources and network, and use a non-linear control-theoretic stability analysis
method, called Lyapunov method [20]. Then, we linearize the system and illus-
trate the application of linear control-theoretic analysis.

5.1 Solving Non-linear Differential Equations

Recall Vegas-like source adaptations from Equation 5:

dxr(t)
dt

= k[wr − xr(t)pr(t)]

where pr(t) represents the total price observed by user r along its path. Note
that this differential equation is non-linear since pr(t) is a function of the rates
xs(t):

pr(t) =
∑

link l∈route r

pl(t) =
∑
l∈r

pl(
∑
s:l∈s

xs(t))

We assume that the pricing function pl(y) is monotonically increasing in the
load y.

At steady state, if the system stabilizes, setting the derivatives to 0, we
obtain the steady-state solution:

k[wr − xr pr] = 0⇒ xr =
wr
pr

=
wr∑
l∈r pl

To prove stability, we use the non-linear method of Lyapunov. The basic
idea is to find a positive scalar function V (x(t)), we call the Lyapunov function,
and show that the function monotonically increases (or decreases) over time,
approaching the steady-state solution.

Define V (x) as follows:

V (x) =
∑
r∈R

wr log(xr)−
∑
j∈J

∫ ∑
s:j∈s

xs

0

pj(y)dy

Finding a suitable Lyapunov function that shows stability is tricky and more of
an art! If you can’t find one, it does not mean that the system is not stable.
Note that this V (x) has some special meaning: the first term represents the
utility gain from making users happy, while the second term represents the cost
in terms of price. So V (x) represents the net gain. Also, note that since the first
term is concave because of the log function, and the second term is assumed to
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be monotonically increasing, then the resulting V (x) is concave, i.e. it has a
maximum value.

To show that V (x(t)) is strictly convergent, we want to show that dV (x(t))
dt >

0, which implies that V (x(t)) strictly increases (i.e. the net gain keeps increasing
over time), until the system stabilizes and reaches steady state when dV (x(t))

dt = 0
(i.e. the net gain V (x) reaches its maximum value).

First, we note:

∂V (x)
∂xr

=
wr
xr
−
∑
j∈r

pj(
∑
s:j∈s

xs)

Then:
V (x(t))
dt

=
∑
r∈R

∂V (x(t))
∂xr

dxr(t)
dt

V (x(t))
dt

=
∑
r∈R

[
wr
xr
−
∑
j∈r

pj(
∑
s:j∈s

xs(t))] k[wr − xr(t)pr(t)]

V (x(t))
dt

=
∑
r∈R

k xr(t)[
wr
xr
−
∑
j∈r

pj(
∑
s:j∈s

xs(t))]2 > 0

Observe that this non-linear stability analysis shows that the system is sta-
ble, no matter what the initial state x(0) is. This property is referred to as
global stability, which is in contract to local stability that we prove when the
system is linearized locally around a certain operating point as we will see next.

5.2 Linearizing and Solving Linear Differential Equations

As noted earlier, finding Lyapunov functions to prove global stability of non-
linear control systems, even for simple models, is challenging. For example,
consider more sophisticated models with feedback delay, different regions of
TCP operation (e.g., timeouts, slow-start), queue management with different
operating regions (e.g., RED), and challenging or adversarial environments (e.g.,
exogenous losses over wireless links or due to DoS attacks).

Using linearization, we can separately study simpler linear models around
the different points (regions) of operation. More specifically, we linearize the
system around a single operating point x∗ and study perturbations around x∗,
i.e. if we perturb the system away from x∗ to a point x(0) such that the initial
perturbation δx(0) = x(0) − x∗, we want to show that δx(t) diminishes over
time and the system returns to its original state x∗, i.e. δx(t)→ 0. In this case,
we say that the system is locally stable around x∗.

Let’s consider again the Vegas-like source adaptation and assume, for sim-
plicity, a single user over a single resource:

dx(t)
dt

= k[w − x(t)p(x(t))]
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Define the perturbation δx(t) = x(t)− x∗. Then we can write:

d(δx(t) + x∗)
dt

= k[w − (δx(t) + x∗)p((δx(t) + x∗))]

Expanding the non-linear term p((δx(t) + x∗)) into its first-order Taylor
series:

p((δx(t) + x∗)) ≈ p(x∗) + ṗ(x∗)δx(t)

Substituting with this linear approximation, we get:

dδx(t)
dt

= k[w − (δx(t) + x∗){p(x∗) + ṗ(x∗)δx(t)}]

dδx(t)
dt

= k[w − δx(t)p(x∗)− x∗p(x∗)− ṗ(x∗)δ2x(t)− ṗ(x∗)x∗δx(t)]

If x∗ is the optimal steady-state point, we know that w − x∗p(x∗) = 0 (cf.
Equation 4). Also, given small perturbation δx(t), δ2x(t) ≈ 0. Then, we have:

dδx(t)
dt

= k[−δx(t)p(x∗)− ṗ(x∗)x∗δx(t)]

dδx(t)
dt

= −k[p(x∗) + x∗ṗ(x∗)] δx(t)

Let k[p(x∗) + x∗ṗ(x∗)] = γ, we have:

dδx(t)
dt

= −γ δx(t) (13)

This is now a linear differential equation, which unlike the original non-
linear differential equation, we can easily study using linear control-theoretic
techniques, or in this simple case, solve by straightforward integration:∫ t

0

d δx(t)
δx(t)

= −γ
∫ t

0

dt

log(δx(t))− log(δx(0)) = −γt

log(
δx(t)
δx(0)

) = −γt

δx(t) = δx(0) e−γt
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Note that from this time-domain analysis, the system is shown to be stable,
i.e. the perturbation vanishes over time and the system returns to its original
state x∗. We also observe that the system response decays exponentially from
its original perturbation δx(0), i.e. without oscillations, and so the response is
classified as overdamped.

If the linearized differential equation modeling the system were more com-
plicated, it is much easier to transform it into the Laplace domain and analyze
the system algebraically. Denoting δx(t) by u(t), the Laplace transform of δx(t)
by U(s), and taking the Laplace transform of Equation 13, we get:

s U(s)− u(0) = −γ U(s)

U(s) =
u(0)
s+ γ

For stability analysis, we examine the location of the poles (roots) of the
characteristic equation s + γ = 0, yielding the pole s = −γ. Since the pole is
strictly in the left-side of the s-plane, given γ > 0, the system is stable and its
response is overdamped.

To evaluate the steady-state error, we define the error as e(t) = u(0) −
u(t), and applying the Final Value Theorem with an impulse perturbation of
magnitude u(0), i.e. U(0) = u(0), we obtain:

ess = lims→0 sE(s) = lims→0 s[u(0)− u(0)
s+ γ

] = 0

So, there is no steady-state error.

5.2.1 Effect of Feedback Delay and Nyquist Stability Criterion

As we just noted above, the power of solving the linearized model in the Laplace
domain comes when the model is even slightly more complicated. For example,
let us consider a feedback delay T such that Equation 13 looks like:

du(t)
dt

= −γ u(t− T )

Taking the Laplace transform, and noting that the Laplace transform of a
delayed signal u(t− T ) is e−sTU(s), we obtain:

sU(s)− u(0) = −γ e−sTU(s)

U(s) =
u(0)

s+ γ e−sT

35



Then, the characteristic equation is:

s+ γ e−sT = 0 (14)

which we need to solve to locate the poles and determine the stability of the
system.

To solve such characteristic equation, we resort to another control-theoretic
method called the Nyquist stability criterion [20]. To this end, we introduce,
without proof, the Cauchy’s principle [20], which states that given F (s), and
we plot F (s) as we vary s along a certain contour (trajectory) in the s-plane —
see Figure 19 — and denote the following:

• Z: the number of zeros of F (s), i.e. the roots of the numerator of F (s),
inside the contour.

• P : the number of poles of F (s), i.e. the roots of the denominator of F (s),
inside the contour.

• N : the number of times that the plot of F (s) encircles the origin in the
F (s)-plane, such that an encirclement is negative if it is in the opposite
direction of the s-contour.6

Then the following relationship holds:

Z = P +N

Figure 19: Cauchy’s principle

The Nyquist method applies the Cauchy’s principle as follows. Let’s say
we want to analyze the stability of a closed-loop control system whose forward

6The example in Figure 19 shows that N = −3. The value of N is negative because
the s-contour that is mapped to F (s) is clockwise, whereas the resulting F (s) plot is counter-
clockwise. Moreover, the F (s) path encircles the origin in the F (s)-plane three times – drawing
a line emanating from the origin intersects the F (s) path three times.
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transfer function is G(s) and its feedback transfer function is H(s)—see Fig-
ure 20. Then, the closed-loop transfer function is given by G(s)

1+G(s)H(s) , where
G(s)H(s) is referred to as the open-loop transfer function. The characteristic
equation is given by: F (s) = 1 + G(s)H(s) = 0. Observe that the zeros of
F (s) are the closed-loop poles, and the poles of F (s) are the poles of G(s)H(s)
(so-called “open-loop” poles).

Figure 20: Typical closed-loop control system

By taking the s-contour to be around the right-side (i.e. unstable side) of
the s-plane (see Figure 21), and noting the number of unstable open-loop poles
P and the number of encirclements N around the origin in the F (s)-plane, we
determine the number of unstable zeros Z of F (s), i.e. number of unstable
closed-loop poles, using Cauchy’s relationship: Z = P + N . If P = 0 and
N = 0, then Z = 0 implies that there are no unstable closed-loop poles and so
the closed-loop system is stable.7

This process can be slightly simplified if instead of plotting F (s), we instead
plot the open-loop transfer function: G(s)H(s) and observe its encirclements
of the (−1, j0) point in the G(s)H(s)-plane, instead of the origin (0, j0) in the
F (s)-plane. Given there are no poles of G(s)H(s) in the right-side of the s-plane,
i.e. P = 0, in order for the closed-loop system to be stable, the plot of G(s)H(s)
should not encircle -1 as we vary s along the contour enclosing the right-side of
the s-plane. We are mostly interested in varying s along the imaginary axis, i.e.
s = jω where ω varies from 0 to ∞. This is because the plot for ω from −∞
to 0 is symmetric, and the plot for the semi-circle as s→∞ maps to the origin
in the G(s)H(s)-plane. Thus, we are interested in plotting G(jω)H(jω) as ω
varies from 0 to ∞.

Example: Let’s go back to the characteristic equation in Equation 14:

s+ γ e−sT = 0⇒ F (s) = 1 +
γ

s
e−sT ⇒ G(s)H(s) =

γ

s
e−sT

Note that G(s)H(s) does not have any unstable poles, i.e. P = 0. In particular,
s = 0 is considered a (critically) stable pole.

7Note that a pole on the imaginary axis is not considered unstable and the s-contour avoids
such a pole and we show it as a small circle around it.
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Figure 21: Contour around the unstable right-side of the s-plane

Ignoring the constant factor γ for now, we want to plot:

e−jωT

jω
ω : 0→∞

Noting that ejθ = cos θ + j sin θ, we have:

e−jωT = cos(ωT )− j sin(ωT )

Then,

e−jωT

jω
= −j cos(ωT )

ω
− sin(ωT )

ω

Since we are interested in determining intercepts with the real-axis ofG(jω)H(jω)
and whether they occur to the right or left of -1 (see Figure 22), we want to
determine the values of ω for which the imaginary part of G(jω)H(jω), i.e.
− cos(ωT )

ω , is zero. Such intercepts occur when ωT = π
2 ,

3π
2 , · · ·, when the cosine

value is zero.
Now, at these values of ωT , we can determine the points of interception

along the real-axis, i.e. the magnitude |G(jω)H(jω)| when the plot intercepts
the real-axis:

− sin(ωT )
ω

= − 1
π

2T

,+
1
3π
2T

, · · ·

For the system to be stable, |G(jω)H(jω)| at these intercepts must be less than
1, so the G(s)H(s) plot does not encircle -1. This is the case if after restoring
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Figure 22: Example showing the effect of feedback delay

the constant factor γ we initially ignored, the following condition holds:

γ
2T
π

< 1

End Example.
Observe that T is the feedback delay, so as T gets larger, it becomes harder

to satisfy the stability condition. Intuitively, this makes sense since a larger
feedback delay results in outdated feedback (measurements) and it becomes
impossible to stabilize the system. This is the fundamental reason why TCP
over long-delay paths does not work, and architecturally, control has to be
broken up into smaller control loops.

6 Routing Dynamics

So far, we assumed routes taken by flows to be static. In general, routes may
also be adapted based on feedback on link prices (reflecting load, delay, etc.),
albeit over a longer timescale of minutes, hours or even days compared to that
of milliseconds for sending rate adaptation. Figure 23 shows a block diagram
that includes both route and sending rate adaptation.

Figure 24 illustrates the general process of adaptation. Flow or routing
control determines the amount of load directed to a particular link based on
the link’s observed price — relative to that of other possible links on alternate
routes in the case of routing. We call this mapping from link price λ to link
load x, the response function G(λ). Given link load, a certain price is observed
for the link. We call such load-to-price mapping, the pricing (feedback) function
H(x). The process of adaptation is then an iterative process:

λ = H(x)
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Figure 23: Block diagram with both flow and routing control

x = G(λ)

Figure 24: Convergence

We can then write:

λ = H(G(λ)) = F (λ)

where F (λ) is an iterative function whose stable (fixed) point λ∗ is the inter-
section of the response function and the pricing function. Figure 25 illustrates
convergence to a fixed point. Starting from an initial λ0, we find F (λ0), then
projecting on the 45o line we obtain λ1 = F (λ0), which we use to find F (λ1),
and this iterative process continues until we reach the fixed point.

In order to converge to that fixed point, F (λ) must be a so-called contractive
mapping. Intuitively, F (λ) is contractive iff its slope is less than 1, i.e. |F (λ2)−
F (λ1)| < α|λ2 − λ1|, α < 1. Figure 26 illustrates a mapping that results in
divergence.

Intuitively, the use of Lyapunov functions to prove convergence tests whether
the iterative process describing the evolution of the system over time is a con-
tractive mapping, i.e. the distance to the fixed point keeps shrinking at every
iteration.
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Figure 25: Contractive mapping

Figure 26: Divergent mapping
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Example: Consider the adaptive routing of N > 0 unit-rate flows over two
possible paths whose prices are given by monotonically increasing functions
p1(x) and p2(N − x), where x represents the number of flows (or load) routed
on the first path. Note that x completely defines the state of the system. Also,
assume that routing to the least-loaded path is done gradually, to avoid wild
oscillations, where 0 < α < 1 of the flows are re-routed. Using a discrete-
time model where routes are adapted at discrete-time steps, we can write the
following difference equations:

x(t+ 1) =
{
x(t) + α [N − x(t)] if p1(x(t)) ≤ p2(N − x(t))

x(t)− α x(t) otherwise

At steady state, this system might converge to one of two possible stable
(fixed) points. One possibility is obtained when substituting with x(t)→ x∗ in
the first difference equation: x(t) → x∗ ⇒ x∗ = x∗ + α[N − x∗] ⇒ x∗ = N , so
all traffic will end up getting routed on the first path. A necessary condition to
reach that x∗ = N fixed point is that p1(N) ≤ p2(0), i.e. the first path is least
loaded (priced) even when all N flows are on it.

Another possibility is obtained when substituting with x(t) → x∗ in the
second difference equation: x(t)→ x∗ ⇒ x∗ = x∗ − αx∗ ⇒ x∗ = 0, so all traffic
will end up getting routed on the second path. A necessary condition to reach
that x∗ = 0 fixed point is that p1(0) > p2(N), i.e. the second path is least
loaded (priced) even when all N flows are on it.

We can show convergence to one of these fixed points depending on which
necessary condition holds: p1(N) ≤ p2(0) or p1(0) > p2(N).

Let’s assume p1(N) ≤ p2(0) holds. We want to define a Lyapunov function
V (x) ≥ 0 and show that V (x(t + 1)) ≤ V (x(t)) for some or all starting state
x(0), i.e. V (x) monotonically decreases toward the x∗ = N fixed point where
equality holds. If there are only certain values of the starting state x(0) for
which the system converges then such conditions must hold, in addition to the
necessary condition, for convergence to happen. In this case, we say that the
necessary condition by itself is not sufficient for convergence.

Define V (x) = N−x. Note that V (x) ≥ 0 because 0 ≤ x ≤ N , and V (x) = 0
when x = N , i.e. at the fixed point. So, under convergence, we expect V (x)
to monotonically decrease toward zero. Substituting for x(t + 1) in V (x), we
obtain:

V (x(t+ 1)) = N − x(t+ 1)

Given the pricing functions are monotonically increasing with load, p1(N) ≤
p2(0)⇒ p1(x(t)) ≤ p2(N − x(t)), ∀x(t), and we can only use the first difference
equation to substitute for x(t+ 1):

V (x(t+ 1)) = N − (x(t) + α[N − x(t)]) = (1− α)(N − x(t))

V (x(t+ 1)) = (1− α)V (x(t)) ≤ V (x(t))
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So, we can conclude that the system is convergent regardless of the starting
state x(0) as long as 0 < α < 1.

Thus, 0 < α < 1, along with the necessary condition p1(N) ≤ p2(0), repre-
sent necessary and sufficient conditions for convergence.

A similar convergence proof can be obtained if on the other hand, the nec-
essary condition p1(0) > p2(N) holds. End Example.

7 Case Study: Class-based Scheduling of Elastic
Flows

In this and the following section, we consider the modeling and control-theoretic
analysis of two traffic control case studies. This first case study [17, 9] concerns
the performance of elastic flows, i.e., rate-adaptive flows similar to TCP. The
goal is to investigate the effect of class-based scheduling that isolates elastic flows
into two classes (service queues) based on different characteristics, for example
based on their lifetime (transfer size), or burstiness of their arrivals/departures
and sending rate (window) dynamics. We want to show the benefits of isolation,
in terms of better predictability and fairness, over traditional shared queueing
systems.

We formulate two control models. In the first model (Section 7.1), each
flow controls its input traffic rate based on the aggregate state of the network
due to all N flows. In the second model (Section 7.2), each flow (or class of
homogeneous flows) controls its rate based on its own individual state within
the network. We assume that the flows use PI control for adapting their sending
rate.

In the aggregate control model, the packet sending rate of flow i, denoted
by xi(t), is adapted based on the difference between a target total buffer space,
denoted by B, and the current total number of outstanding packets, denoted
by q(t). In the individual control model, xi(t) is adapted based on flow (or
class) i’s target, denoted by Bi, and its current number of outstanding packets,
denoted by qi(t). We denote by c(t) the total packet service rate, and by ci(t)
the packet service rate of flow/class i. In what follows, for each control model,
we determine conditions under which the system stabilizes. We then solve for
the values of the state variables at equilibrium, and show whether fairness (or
a form of weighted resource sharing) can be achieved. Table 3 lists all system
variables along with their meanings.

7.1 Aggregate Control or Sharing

Under aggregate PI control, the evolution of the system state is described by
the following differential equations:

ẋi(t) = αi(B − q(t))
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Table 3: Table defining system variables
Variable Meaning
N total number of flows (or classes of homogeneous flows)
xi(t) packet sending rate of flow/class i
qi(t) number of outstanding packets of flow/class i
ci(t) packet service rate of flow/class i
q(t) total number of outstanding packets
c(t) total packet service rate
B target total buffer space
Bi target buffer space allocated to flow/class i
αi parameter controlling increase and decrease rate of xi(t)

q̇(t) =
N∑
j=1

xj(t)− c(t) (15)

Stability Condition: Without loss of generality, assume a constant packet
service rate (i.e. c(t) = C for all t), all flows start with the same initial input
state (i.e. xi(0) is the same for all i), and that all flows adapt at the same rate
(i.e. αi = α for all i). Then, Equations (15) can be re-written as:

ẋi(t) = α(B − q(t))

q̇(t) =
N∑
j=1

xj(t)− C (16)

Since flows adapt their xi(t) at the same rate, then xi(t) =
∑N

j=1
xj(t)

N for all
i. Denote by e(t) the error at time t, i.e. e(t) = B − q(t), and let y(t) =∑N
j=1 xj(t)− C. Equations (16) can then be re-written as:

ẏ(t)
N

= α e(t)

q̇(t) = y(t) (17)

Taking the Laplace transform of Equations (17), and assuming the buffer is
initially empty (i.e. q(0) = 0), we get:

1
N

(sY (s)− y(0)) = α E(s)

s Q(s) = Y (s)
E(s) = B −Q(s) (18)

Solving Equations (18), we obtain the closed-loop system’s characteristic
equation (see Figure 27 for the system’s block diagram):

s2 + α N = 0⇒ s =
+
− j
√
α N (19)
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Figure 27: Block diagram of the link sharing model

For α > 0, this system is marginally stable. However, the magnitude of
oscillations increases for higher α and/or higher N .

This indicates that the existence of flows that rapidly change their sending
rates through high values of αi can cause the system to have high oscillations.
This suggests that elastic flows that aggressively change their sending rates, may
affect the stability of other flows that change their sending rates cautiously, in
a system that mixes both kinds of flows. Furthermore, in such a system, the
value of N may be high so as to cause high oscillations.

We now derive the values of the state variables at equilibrium. Denote
by xi and q the steady-state values of xi(t) and q(t), respectively. Then, at
equilibrium, we have from Equations (16):

0 = α(B − q)

0 =
N∑
j=1

xj − C

Thus, at equilibrium, q = B and
∑N
j=1 xj = C. In other words, the system

converges to a state where the total input rate matches the total service rate,
and the target total buffer space is met.

Note that if αi = α for all i, then xi(t) changes at the same rate for every
flow i. Consequently, if we start the evolution of the system with xi(0) being
the same for all flows, only then we have equal sharing of the network at steady-
state, i.e. xi = C

N , regardless of the initial value q(0). However, in general, when
xi(0) are not equal for all flows, the system converges to an unfair state, more
precisely, to a state where

xi = xi(0) +
C −

∑N
j=1 xj(0)
N

To summarize, controlling several flows by observing the resulting aggregate
state of the network may lead to high oscillations due to either the existence
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of flows which are rapidly adjusting their sending rates, or a high number of
flows competing for the same shared resource. Furthermore, the system is highly
likely to converge to an unfair state where flows receive unequal shares of the
resource.

7.2 Individual Control or Isolation

Under individual PI control, the evolution of the system state is described by
the following differential equations:

ẋi(t) = αi(Bi − qi(t))
q̇i(t) = xi(t)− ci(t) (20)

Recall that under individual control, flow/class i regulates its input, xi(t),
based on its own number of outstanding packets. For simplicity, assume a
constant packet service rate, i.e. ci(t) = Ci for all t. Following the same stability
analysis as aggregate control, it is easy to see that flow/class i stabilizes and
the poles of the closed-loop system are:8

s =
+
− j
√
αi

Observe that, unlike aggregate control, flows/classes are isolated from each
other. Therefore, the existence of flows/classes that rapidly change their send-
ing rates through high values of αi, does not affect the stability of other flows.
This isolation can be implemented using, for example, a class-based queueing
(CBQ) discipline [7]. In such CBQ system, each class of homogeneous flows can
be allocated its own buffer space and service capacity.

We now derive the values of the state variables of flow/class i at equilibrium.
Denote by xi and qi the steady-state values of xi(t) and qi(t), respectively. Then,
at equilibrium, we have from Equations (20):

0 = αi(Bi − qi)
0 = xi − Ci

Thus, at equilibrium, qi = Bi and xi = Ci. In other words, each flow/class
i converges to a state where its input rate matches its allocated service rate,
and its target buffer space is met. We note that if the allocated buffers Bi and
service capacities Ci are equal, then every flow receives an equal share of the
resources, regardless of the initial values xi(0) and qi(0). One can also achieve
a weighted resource sharing by assigning different Bi and Ci allocations. Thus,
a flow/class with higher priority (e.g., short interactive TCP flows operating
aggressively in slow start) can be allocated more resources, so as to receive
better throughput/delay service than other flows (e.g., long TCP flows operating
cautiously in congestion avoidance).

8We set N = 1 in Equation (19).
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To summarize, controlling each flow (or class of homogeneous flows) by ob-
serving its own individual state within the network provides isolation between
them. Thus, stability can be achieved for a flow/class regardless of the behavior
and number of other flows/classes. Furthermore, the system can converge to a
fair state where flows/classes receive a weighted share of the resources.

8 Case Study: Elastic Transport Tunnel

Consider n regular user connections between sending and receiving end-hosts,
all passing through two “gateways” — let’s call them a source gateway and a
destination gateway. Our main goal is to provide a “soft bandwidth-guaranteed”
tunnel [8] for these user flows over an Internet path of bottleneck capacity C,
which is also shared by another set of x flows, representing cross traffic (see Fig-
ure 28). By “soft” guarantee we mean that there is no explicit resource reser-
vation. Consider that user and cross-traffic connections are all rate-adaptive
connections (similar to TCP). These x cross-traffic connections present a chal-
lenge: as x keeps changing, the bandwidth allocation for the n user flows keeps
changing in tandem. So an important question is whether it is possible to
“counter” the change in x so as to ensure that the n user flows are able to
maintain a desirable bandwidth.

Figure 28: Soft bandwidth-guaranteed tunnel

Clearly without the intervention of the two gateways, the answer to the above
question is no. When different flows share a link, the effect of each individual
flow (or an aggregate of flows) affects the rest since all are competing for a
fixed amount of resources. However, if the gateways dynamically maintain a
number m of open rate-adaptive (e.g., TCP) connections between them, they
can increase m to provide a positive pressure that would equalize the pressure
caused by the cross-traffic connections, if the latter occurs. Since m will be
changing over time, we describe the gateway-to-gateway tunnel, made of the m
connections, as elastic. Note that the source gateway can decide to reduce m
(i.e. relieve pressure) if x goes down—the reason is that as long as the tunnel
is achieving its target bandwidth, releasing extra bandwidth should improve
the performance of cross-traffic connections, which is in the spirit of best-effort
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networking.
To illustrate this scenario and the issues involved, consider a gateway-to-

gateway tunnel going through a single bottleneck link. Assuming long-lived
TCP-like load, the behavior of the bottleneck can be approximated by Gen-
eralized Processor Sharing (GPS) [22], i.e. each connection receives the same
fair share of resources [3]. Thus, each connection ends up with C

m+x band-
width. This, in turn, gives the m gateway-to-gateway rate-adaptive flows, or
collectively the elastic gateway-to-gateway tunnel, a bandwidth of Cm

m+x . As the
source gateway increases m by opening more rate-adaptive connections to the
destination gateway, the tunnel can grab more bandwidth. If x increases, and
the gateways measure a tunnel’s bandwidth below a target value (say B∗), then
m is increased to push back cross-traffic connections. If x decreases, and the
gateways measure a tunnel’s bandwidth above B∗, then m is decreased for the
good of cross-traffic connections. It is important to note that the source gateway
should refrain from unnecessarily increasing m, thus achieving a tunnel’s band-
width above B∗, since an unnecessary increase in the total number of competing
rate-adaptive flows reduces the share of each connection and may cause flows to
timeout leading to inefficiency and unfairness. The source gateway also has the
responsibility of scheduling user packets coming on the n user connections over
the tunnel, i.e. the m gateway-to-gateway connections. In this case study, we do
not focus on scheduling but the control theoretic modeling and analysis of the
tunnel’s bandwidth adaptation. We study the effect of different types of con-
trollers employed at the source gateway. Such controller determines the degree
of elasticity of the gateway-to-gateway rate-adaptive tunnel, thus it determines
the transient and steady-state behavior of the soft bandwidth-guaranteed ser-
vice.

Näıve Control: This näıve controller measures the bandwidth b′ grabbed by
the current m′ gateway-rate-adaptive connections. Then, it directly computes
the quiescent number m̂ of gateway-rate-adaptive connections that should be
open as:

m̂ =
B∗

b′
m′

Clearly, this controller näıvely relies on the previously measured bandwidth b′

and adapts without regard to delays in measurements and possible changes in
network conditions, e.g. changes in the amount of cross traffic. We thus investi-
gate general well-known controllers which judiciously zoom-in toward the target
bandwidth value. To that end, let us develop a flow-level model of the system
dynamics. The change in the bandwidth grabbed b(t) by the m(t) gateway-
rate-adaptive flows (constituting the elastic gateway-to-gateway tunnel) can be
described as:

ḃ(t) = α[(C −B∗)m(t)−B∗x(t)]

This dynamic equation captures what we want to model: b(t) increases with
m(t), and decreases as the number of cross-connections x(t) increases. α is a
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constant that represents the degree of multiplexing of flows and we choose it here
to be the steady-state connection’s fair share ratio of the bottleneck capacity.
At steady-state, ḃ(t) equals zero, which yields (as expected):

B∗ =
Cm̂

(x̂+ m̂)

where m̂ and x̂ represent the steady-state values for the number of gateway-
rate-adaptive flows and cross-traffic flows, respectively. Based of the current
bandwidth allocation b(t) and the target bandwidth B∗, an error signal e(t) can
be obtained as:

e(t) = B∗ − b(t)

P and PI Control: A controller would adjust m(t) based on the value of e(t).
For a simple Proportional controller (P-type), such adjustment is described by:

m(t) = Kpe(t) (21)

Recall that P-type controllers are known to result in a non-zero steady-state
error. To exactly achieve the target B∗ (i.e. with zero steady-state error), a
Proportional-Integral (PI-type) controller can be used:

m(t) = Kpe(t) +Ki

∫
e(t) dt (22)

Figure 29 shows the block diagram of this elastic-tunnel model. In the Laplace
domain, denoting the controller transfer function by Gc(s), the output B(s) is
given by:

B(s) =
Gc(s)G1(s)

1 + Gc(s)G1(s)
B∗(s) +

G2(s)

1 + Gc(s)G1(s)
X(s) (23)

where G1(s) is given by:

G1(s) =
β

s

where β = α(C −B∗). G2(s) is given by:

G2(s) =
γ

s

where γ = −αB∗. For the P-controller, from Equation (21), Gc(s) is simply
Kp. For the PI-controller, from Equation (22), C(s) equals Kp + Ki

s . Thus, the
transfer function B(s)

B∗ in the presence of a P-controller is given by:

B(s)
B∗

=
Kpβ

s+Kpβ

The system with P-controller is always stable since the root of the characteristic
equation (i.e. the denominator of the transfer function) is negative, given by
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−Kpβ for β > 0 and B∗ < C. In the presence of a PI-controller, the transfer
function B(s)

B∗ is given by:

B(s)
B∗

=
Kpβs+Kiβ

s2 +Kpβs+Kiβ

One can choose the PI-controller parameters Kp and Ki to achieve a certain
convergence behavior to the target bandwidth B∗. We next define transient
performance measures to assess such convergence behavior.

Figure 29: Block diagram of the elastic-tunnel model

8.1 Transient Performance

Transient behavior represents the system’s response which decays with time.
In the design of reliable systems, it is extremely important that transient re-
sponse meets certain requirements, e.g. reasonable settling time and overshoot
(cf. Section 4.5). Often times, the transient response is obtained by subjecting
the system to an impulse or a step input and observing the output(s). One has
to guarantee that the response of the system to specific inputs does not render
the system unstable or pushes it away from its intended target.

Figure 30 shows the step response of the transfer function given in Equa-
tion (23). The left column shows the response to a unit step change in the target
bandwidth, while the right column shows the response to a unit step change in
the cross-traffic. Figure 30(a), for the P-controller, shows that while the re-
sponse could be acceptable due to a step change in the reference bandwidth
(i.e., the response b(t) achieves the unit target), it fails to remove the steady-
state error (i.e., non-zero b(t)) obtained from the step change in the cross-traffic.
Figures 30(b) and (c) show the response due to the PI-controller. One can see
that through a careful choice of Kp and Ki, the transient response can be ad-
justed. Notice that with a PI-controller, the elastic-tunneling system can reach
the target bandwidth with zero steady-state error in response to a step change
in cross-traffic.

8.2 Effect of Feedback Delay

So far in our analysis, we have ignored the feedback delay which is inherent in
the design of any control system that tries to adjust its signal through a delayed
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Figure 30: Transient analysis of the elastic-tunnel model
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Figure 31: Elastic-tunnel model (with feedback delay)

feedback loop.
Figure 31 augments the block diagram of Figure 29 with feedback delay

denoted by H(s). This feedback delay arises either due to delayed mesurements
of bandwidth and/or delayed response of the system as a result of applying new
control. For example, when a new gateway-rate-adaptive connection is opened,
it doesn’t get its steady-state throughput instantaneously, rather after some
delay (say τ). Thus, H(s) is given by:

H(s) = e−τs

where τ represents the feedback time delay. For small τ , the above equation
can be approximated by:

H(s) ≈ 1− τs

If we are using a PI-controller, the characteristic equation in the presence of
feedback delay becomes:

s2(1− βτKp) + s(Kpβ − βτKi) + βKi = 0

Figure 32 shows the response of the PI-controller to a unit step change in
the target bandwidth. As the feedback delay τ increases, the system may not
converge to the target bandwidth.

9 Exercises

1. Let r be a max-min fair rate vector corresponding to a given network
and set of flows. This max-min fair allocation maximizes the allocation
of each flow i subject to the constraint that an incremental increase in i’s
allocation does not cause a decrease in some other flow’s allocation that
is already as small as i’s or smaller.
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Figure 32: Transient analysis of the elastic-tunnel model (with feedback delay)

(a) Suppose that some of the flows are eliminated and let r̄ be a corre-
sponding max-min fair rate vector. Show by example that we may
have r̄p < rp for some of the remaining flows p.

(b) Suppose that some of the link capacities are increased and let r̄ be
a corresponding max-min fair rate vector. Show by example that we
may have r̄p < rp for some flows p.

2. Consider two network links in tandem (one after the other) of capacities 6
Mbps each. For two different sets of elastic flows (i.e. the utility function
of each flow/user is a log function of its allocated rate), you are asked to
write down the corresponding network optimization problem, where the
network tries to maximize the sum of flow utilities subject to link capacity
constraints. For each set of flows, described in parts (a) and (b) below,
rewrite the constrained optimization problem as an unconstrained opti-
mization problem: write down the Lagrangian function and corresponding
equations to solve for the optimal rate allocation. What are the optimal
rates allocated to different flows for each one of these two settings?

(a) Consider two flows: one flow using the first link only and another
flow using both links.

(b) Consider the same two flows from part (a), as well as a third flow
using the second link only.

3. Consider two network links in tandem (one after the other) of capacities 6
Mbps each. Assume three flows: one flow using the first link only, another
flow using the second link only, and a third flow using both links. Assume
the utility function of each flow/user is a log function of its allocated rate,
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and that the two-link flow is given a weight of 2, while the two one-link
flows are given a weight of 1.

You are asked to write down the corresponding network optimization prob-
lem, where the network tries to maximize the sum of the weighted flow
utilities subject to link capacity constraints. Rewrite the constrained opti-
mization problem as an unconstrained optimization problem: write down
the Lagrangian function and corresponding equations to solve for the op-
timal rate allocation. What are the optimal rates allocated to each flow?

4. Consider a source adapting its sending rate x(t) so the buffer size of its
path’s bottleneck b(t) stays at a certain target value T . Denote the error
signal by e(t) = T − b(t). The sending rate is adapted according to one of
the following three controllers:

(a) x(t) = Kpe(t)

(b) x(t) = Kpe(t) +Ki

∫ t
0
e(t)dt

(c) x(t) = Kpe(t) +Ki

∫ t
0
e(t)dt+Kd

d
dte(t)

where Kp,Ki,Kd are constant parameters of the rate controllers.

(a) Assume c(t) is the capacity available to the source at time t, write
down the differential equation for b(t).

(b) By transforming the system to the Laplace domain, determine the
conditions under which the system is stable for each type of controller,
i.e. does b(t) converge to a given T for certain values of Kp,Ki,Kd.
Do this by examining the roots (poles) of the characteristic equation
of the system’s transfer function. Draw the block diagram of the
system that shows the relationships between the system variables in
the (Laplace) s-domain for each type of controller.

(c) Again by examining the roots (poles) of the characteristic equation
of the system’s transfer function and using the Final Value Theorem,
compare the transient and steady-state performance under each type
of controller.

(d) Support your answers above by numerically solving the system’s
equations over time for each type of controller. Assume a small time
step ∆, say ∆ = 1, and solve the discretized version of the equations
at these time steps – you can then approximate the differentiation
d
dtb(t) by b(t)− b(t− 1).

5. Consider an adaptation of a transmission window w whose goal is to reach
a target window T as follows:

w(k+1) = wk + α(T − wk)

where 0 < α < 1.
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(a) Derive the necessary condition (if any) for convergence to the target
window size.

(b) Use the Lyapunov method to show whether the system converges
regardless of the initial window size.

6. Given a system with the following adaptation rules: x(t), representing a
sending rate, is adapted using an AIMD policy, whereas p(t), representing
the price, is adapted in proportion to how far x(t) is from a target capacity
c:

dx(t)
dt

= 1− x(t)p(x(t))

p(x(t)) = α(x(t)− c)

(a) Why is that system non-linear?

(b) Linearize the system around a certain operating point x0.

(c) By transforming the linearized system to the Laplace domain, obtain
the condition on x0 under which the linearized system is stable.

7. This question is based on the paper The Revised ARPANET Routing Met-
ric, by Zinky and Khanna [14]. A unified way to model adaptive resource
management—whether it is TCP adaptive to RED or routing adaptive to
changing link costs or other examples—is through two functions: a feed-
back (pricing) function such as that of RED or link utilization metric, and
an adaptation function such as that of TCP or utilization-based routing.
Consider a resource that generates prices p and users that adapt their load
λ based on the currently reported p. Assume the following pricing and
load adaptation functions:

λ = 1− p

p =

 0.1 if 0 ≤ λ < 0.4
0.2 if 0.4 ≤ λ ≤ 0.8
1.0 if 0.8 < λ ≤ 1.0

Show the two functions on the (λ, p) plane. Trace one trajectory showing
convergence to a fixed point, and another trajectory showing oscillations.
Hint: consider initial values of λ = 0.2 and 0.6.
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10 Solutions to Exercises

1. (a) Refer to Figure 8. Using max-min fairness the original flow assign-
ment is: (F1=50, F2=50, F3=50, F4=100). Assume F2 is removed.
The new assignment is: (F1=75, F2=0, F3=75, F4=75). F1 and F3
will share the extra capacity, while F4 will decrease its rate. This is
only possible because F4’s original assigned rate was not less than
or equal to F3’s rate, before F2 was removed, thus allowing F3 to
increase its rate.

(b) Refer to Figure 8. Using max-min fairness the original flow assign-
ment is: (F1=50, F2=50, F3=50, F4=100). If the capacity of link
1 is increased to 225 then the new allocated rates will be: (F1=75,
F2=75, F3=75, F4=75). The extra capacity on link 1 will be shared
by F1, F2 and F3. Again, this is only possible because F4’s original
assigned rate is not less than or equal to F3’s rate, before the capacity
of link 1 was increased, thus allowing F3 to increase its rate.

2. Note that earlier in these notes, we did not explicitly cover the technique
of “slack”, which we use here to denote residual link capacity when solving
the dual Lagrangian problem. Intuitively, if the link is fully utilized, i.e.
it has zero slack, then its price (Lagrangian multiplier) is non-zero. On
the other hand, a non-bottleneck link will have a non-zero slack and so a
price of zero.

(a) Let z2
1 and z2

2 denote the (non-negative) slack on links 1 and 2, re-
spectively. Let x1 and x2 denote the rates assigned to flows 1 and 2,
respectively. Let f(x1, x2) denote the function to be maximized.

f(x1, x2) = log x1 + log x2

Constraints on links 1 and 2, respectively, are as follows:

x1 + x2 + z2
1 − c1 = 0

x2 + z2
2 − c2 = 0

Replacing c1 and c2 with their values we get:

x1 + x2 + z2
1 − 6 = 0

x2 + z2
2 − 6 = 0

The Lagrangian function to be differentiated is as follows:

F (x1, x2) = log x1 + log x2 − λ(x1 + x2 + z2
1 − 6)− µ(x2 + z2

2 − 6)
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Taking the partial derivative with respect to each variable we get the
following equations:

∂F

∂x1
=

1
x1
− λ = 0

∂F

∂x2
=

1
x2
− λ− µ = 0

∂F

∂λ
= −(x1 + x2 + z2

1 − 6) = 0

∂F

∂µ
= −(x2 + z2

2 − 6) = 0

∂F

∂z1
= −2z1λ = 0

∂F

∂z2
= −2z2µ = 0

Since F1 can utilize any left over capacity (slack) on link 1, z1 = 0,
which implies that λ 6= 0. Conversely, since F2 is limited by link 1,
z2 6= 0, which implies that µ = 0.

Replacing z1 = 0 and µ = 0 into the derived equations, we get:

1
x1
− λ = 0

1
x2
− λ− 0 = 0

x1 + x2 + 0− 6 = 0

Solving for x1 we get x1 = 1
λ

Solving for x2 we get x2 = 1
λ . Hence, x1 = x2.

Replacing x2 by x1 in the capacity equation we get:

x1 + x1 = 6

Hence, x1 = x2 = 3.
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(b) Let z2
1 and z2

2 denote the slack on links 1 and 2, respectively. Let x1,
x2 and x3 denote the rates assigned to flows 1, 2 and 3, respectively.
Let f(x1, x2, x3) denote the function to be maximized.

f(x1, x2, x3) = log x1 + log x2 + log x3

Constraints on links 1 and 2, respectively, are as follows:

x1 + x2 + z2
1 − c1 = 0

x3 + x2 + z2
2 − c2 = 0

Replacing c1 and c2 with their values we get:

x1 + x2 + z2
1 − 6 = 0

x3 + x2 + z2
2 − 6 = 0

The Lagrangian function to be differentiated is as follows:

F (x1, x2, x3) = log x1 + log x2 + log x3 − λ(x1 + x2 + z2
1 − 6)− µ(x3 + x2 + z2

2 − 6)

Taking the partial derivative with respect to each variable we get the
following equations:

∂F

∂x1
=

1
x1
− λ = 0

∂F

∂x2
=

1
x2
− λ− µ = 0

∂F

∂x3
=

1
x3
− µ = 0

∂F

∂λ
= −(x1 + x2 + z2

1 − 6) = 0

∂F

∂µ
= −(x3 + x2 + z2

2 − 6) = 0

∂F

∂z1
= −2z1λ = 0
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∂F

∂z2
= −2z2µ = 0

From the equations above we can deduce the following:

x1 =
1
λ

x2 =
1

λ+ µ

x3 =
1
µ

Since F1 and F3 can utilize any left over capacity (slack) on links 1
and 2, z1 = z2 = 0. This implies that λ 6= 0 and µ 6= 0.

Replacing z1 = 0 and z2 = 0 into the derived equations we get:

x1 + x2 = 6

x2 + x3 = 6

Replacing x1 by 1
λ , x2 by 1

λ+µ and x3 by 1
µ into the equations above,

we get:

1
λ

+
1

λ+ µ
= 6

1
λ+ µ

+
1
µ

= 6

Multiplying the first equation by (-1) and adding it to second equa-
tion, results in the following:

1
µ
− 1
λ

= 0

Hence, λ = µ
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Thus, x1 = x3 = 1
λ and x2 = 1

2λ = x1
2 = x3

2

Finally we get:

x1 +
x1

2
= 6

Hence, x1 = x3 = 4 and x2 = 2.

3. The objective function we want to maximize is:

F (x) = log x1 + log x2 + 2 log x3

subject to the capacity constraints:

x1 + x3 ≤ 6
x2 + x3 ≤ 6
x1, x2, x3 ≥ 0

The Lagrangian (unconstrained) function that we want to maximize is:

L(x) = log x1 + log x2 + 2 log x3 − λ1(x1 + x3 − 6)− λ2(x2 + x3 − 6)

Note that we do not explicitly include the slacks for the link capacities
here, since both links should be fully utilized as the one-link flows are not
limited by any other link, so the slack values are zero.

Taking the partial derivatives of L(.) we obtain:
∂L
∂x1

= 1
x1
− λ1 = 0⇒ x1 = 1

λ1

∂L
∂x2

= 1
x2
− λ2 = 0⇒ x2 = 1

λ2

∂L
∂x3

= 2
x3
− (λ1 + λ2) = 0⇒ x3 = 2

λ1+λ2

∂L
∂λ1

= 0⇒ x1 + x3 − 6 = 0⇒ x1 + x3 = 6
∂L
∂λ2

= 0⇒ x2 + x3 − 6 = 0⇒ x2 + x3 = 6

The last two equations yield x1 = x2 ⇒ λ1 = λ2 = λ

From the capacity equation, we have:

x1 + x3 = 1
λ + 2

2λ = 6⇒ λ = 1
3 , thus

x1 = x2 = 3, and x3 = 6− 3 = 3.

4. We use the following notation:

In the time domain we have:
b(t), buffer size at time t
x(t), sending rate at time t
c(t), service rate at time t
T , target buffer size
e(t), error (difference between current buffer size and the target) at time
t
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In the frequency domain we have:
B(s), current buffer size
X(s), sending rate
C(s), service rate
T (s), target buffer size
E(s), error signal
D(s), controller (based on error signal computes sending rate)

We will assume that the target buffer size and the buffer’s service rate are
constant values.

(a) e(t) = T − b(t)
d
dtb(t) = x(t)− c(t)

D(s) 1/s

C(s)

 X(s)  + B(s)

-  B(s)

T(s) + E(s)
-

Figure 33: System block diagram

(b) The system’s block diagram is depicted in Figure 33. Using the block
diagram, we can formulate the following equation:

( [ (T (s)−B(s)) D(s) ]− C(s) ) ( 1
s ) = B(s)

( [T (s)D(s)−B(s)D(s)]− C(s) ) ( 1
s ) = B(s)

(T (s)D(s)−B(s)D(s)− C(s)) ( 1
s ) = B(s)

[T (s)D(s)
s − B(s)D(s))

s − C(s)
s ] = B(s)

B(s) + B(s)D(s)
s = T (s)D(s)

s − C(s)
s
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B(s)[1 + D(s)
s ] = T (s)D(s)

s − C(s)
s

B(s)[ s+D(s)
s ] = T (s)D(s)

s − C(s)
s

B(s) = T (s)D(s)
s+D(s) −

C(s)
s+D(s)

P-Controller:

x(t) = Kpe(t)

By taking the Laplace transform we get:

X(s) = KpE(s)⇒ D(s) = X(s)
E(s) = Kp

Replacing D(s) into the equation for B(s) we get:

B(s) = T (s)Kp

s+Kp
− C(s)

s+Kp

Roots of the system’s characteristic equation are:

s+Kp = 0⇒ s = −Kp < 0
Thus, system is stable for all values of Kp > 0

PI-Controller:

x(t) = Kpe(t) +Ki

∫ t
0
e(t)dt

By taking the Laplace transform we get:

X(s) = KpE(s) + Ki

s E(s)⇒ D(s) = X(s)
E(s) = Kp + Ki

s

Replacing D(s) into the equation for B(s) we get:

B(s) = (Kp+
Ki
s )T (s)

s+(Kp+
Ki
s )
− C(s)

s+(Kp+
Ki
s )

Roots of the system’s characteristic equation are:

s+Kp + Ki

s = 0
s2 +Kps+Ki = 0
a = 1, b = Kp, c = Ki

∆ = b2 − 4ac = K2
p − 4(1)(Ki) = K2

p − 4Ki

s = −b±
√

∆
2a

s =
−Kp±

√
K2

p−4Ki

2

s = − 1
2Kp ± 1

2

√
K2
p − 4Ki
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System will be stable with two real roots (i.e., overdamped) if the
following conditions are true:
Kp > 0
K2
p − 4Ki > 0⇒ K2

p > 4Ki√
K2
p − 4Ki < Kp ⇒ K2

p − 4Ki < K2
p ⇒ Ki > 0

System will be stable with two complex roots (i.e., underdamped) if
the following conditions are true:
Kp > 0
K2
p − 4Ki < 0⇒ K2

p < 4Ki

PID-Controller:

x(t) = Kpe(t) +Ki

∫ t
0
e(t)dt+Kd

d
dte(t)

By taking the Laplace transform we get:

X(s) = KpE(s)+Ki

s E(s)+KdsE(s)⇒ D(s) = X(s)
E(s) = Kp+Ki

s +Kds

Replacing D(s) into the equation for B(s) we get:

B(s) = (Kp+
Ki
s +Kds)T (s)

s+(Kp+
Ki
s +Kds)

− C(s)

s+(Kp+
Ki
s +Kds)

Roots of the system’s characteristic equation are:

s+Kp + Ki

s +Kds = 0
s2 +Kps+Ki +Kds

2 = 0
(1 +Kd)s2 +Kps+Ki = 0
a = 1 +Kd, b = Kp, c = Ki

∆ = b2 − 4ac = K2
p − 4(1 +Kd)(Ki) = K2

p − 4Ki(1 +Kd)

s = −b±
√

∆
2a

s =
−Kp±

√
K2

p−4Ki(1+Kd)

2(1+Kd)

s = − Kp

2(1+Kd) ±
1

2(1+Kd)

√
K2
p − 4Ki(1 +Kd)

System will be stable with two real roots if the following conditions
are true:
Kp

1+Kd
> 0

K2
p − 4Ki(1 +Kd) > 0⇒ K2

p > 4Ki(1 +Kd)√
K2
p − 4Ki(1 +Kd) < Kp ⇒ K2

p − 4Ki(1 + Kd) < K2
p ⇒ 4Ki(1 +

Kd) > 0
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System will be stable with two complex roots if the following condi-
tions are true:
Kp

1+Kd
> 0

K2
p − 4Ki(1 +Kd) < 0⇒ K2

p < 4Ki(1 +Kd)

(c) Final Value Theorem
limt→∞ f(t) = lims→0 sF (s)

Thus, we have:
limt→∞ b(t) = lims→0 sB(s)

Note that,
B(s) = T (s)D(s)

s+D(s) −
C(s)
s+D(s)

Let the service rate be constant and equal to C. We therefore have,
C(s) = C

s . Similarly, let the target buffer size be a constant and equal
to T . We therefore have, T (s) = T

s . Replacing these two values into
the equation for B(s), we get:
B(s) =

T
s D(s)

s+D(s) −
C
s

s+D(s)

Multiplying by s to get sB(s), we get:
sB(s) = TD(s)

s+D(s) −
C

s+D(s)

P-Controller:
D(s) = Kp

sB(s) = TKp

s+Kp
− C

s+Kp

lims→0 sB(s) = lims→0[ TKp

s+Kp
− C

s+Kp
] = T − C

Kp

PI-Controller:
D(s) = Kp + Ki

s

sB(s) = T (Kp+
Ki
s )

s+(Kp+
Ki
s )
− C

s+(Kp+
Ki
s )

= [ T (Kps+Ki)
s2+Kps+Ki

− Cs
s2+Kps+Ki

]

lims→0 sB(s) = lims→0[ T (Kps+Ki)
s2+Kps+Ki

− Cs
s2+Kps+Ki

] = T
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PID-Controller:
D(s) = Kp + Ki

s +Kds

sB(s) = T (Kp+
Ki
s +Kds)

s+(Kp+
Ki
s +Kds)

− C

s+(Kp+
Ki
s +Kds)

= T (Kps+Ki+Kds
2)

s2+Kps+Ki+Kds2
−

Cs
s2+Kps+Ki+Kds2

sB(s) = T (Kps+Ki+Kds
2)

(1+Kd)s2+Kps+Ki
− Cs

(1+Kd)s2+Kps+Ki

lims→0 sB(s) = lims→0[ T (Kps+Ki+Kds
2)

(1+Kd)s2+Kps+Ki
− Cs

(1+Kd)s2+Kps+Ki
] = T

(d) We leave it to the reader to show the plots for b(t).

5. (a) At steady state, wk → w∗. This implies that w∗ = w∗ + α(T − w∗).
Thus, w∗ = T . This means that there is no necessary condition, since
the system will always converge to the target window size.

(b) We have wk+1 = wk + α(T − wk). Re-writing this equation we get,
wk+1 = wk(1−α) +αT . Assume w0 < T , let the Lyapunov function
be L(w) = T − w > 0.

L(wk+1) = T − wk+1

L(wk+1) = T − [wk + α(T − wk)]
L(wk+1) = T − wk − αT + αwk
L(wk+1) = (1− α)T − (1− α)wk
L(wk+1) = (1− α)(T − wk)
L(wk+1) = (1− α)L(wk) < L(wk)

This is true since (1 − α) < 0. In other words, L(w) is indeed a
decreasing function.

If instead we assume that w0 > T , then let us define the Lyapunov
function as L(w) = w − T > 0. Similarly we have,

L(wk+1) = wk+1 − T
L(wk+1) = [wk(1− α) + αT ]− T
L(wk+1) = wk(1− α)− (T − αT )
L(wk+1) = wk(1− α)− T (1− α)
L(wk+1) = (1− α)(wk − T )
L(wk+1) = (1− α)L(wk) < L(wk)

This is true since (1 − α) < 0. In other words, L(w) is indeed a
decreasing function.
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6. (a) d
dtx(t) = 1− x(t)p(x(t))
p(x(t)) = α(x(t)− c)
d
dtx(t) = 1− x(t)[α(x(t)− c)]
d
dtx(t) = 1− x(t)[αx(t)− αc)]
d
dtx(t) = 1− αx2(t) + αcx(t)

The equation above is non-linear because it has an x2(t) term.

(b) Let f(x) = 1− αx2(t) + αcx(t)
f ′(x0) = −2αx0 + αc
(Note that one may choose to linearize the x2 term only. Here we
choose to linearize the whole f(x).)
∆f = f ′(x0)∆x
d
dt∆x = f ′(x0)∆x
Let y(t) = ∆x
d
dty(t) = f ′(x0)y(t)
d
dty(t) = [−2αx0 + αc]y(t)
Let β = [−2αx0 + αc]
d
dty(t) = βy(t)

(c) Transforming this equation to the s-domain, we get:

sY (s)− y(0) = βY (s)
sY (s)− βY (s) = y(0)
Y (s)[s− β] = y(0)
Y (s) = y(0)

s−β

The root of the characteristic equation s−β is s = β. For the system
to be stable, β must be less than zero. Assuming α > 0, we need the
following to be true:

β < 0
−2αx0 + αc < 0
−2αx0 < −αc
2αx0 > αc
x0 >

c
2

7. We leave it to the reader to produce the plot. Notice that the fixed point
is (λ = 0.8, p = 0.2) where the pricing curve and the load curve intersect.
Also the system diverges for starting λ = 0.2, whereas it converges for
λ = 0.6. Specifically, in the latter case, λ = 0.6 yields p = 0.2, which in
turn yields λ = 1− p = 0.8 and the system stabilizes at the fixed point.
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