
ICC 2006 SUBMISSION 1

On the Impact of Low-Rate Attacks
MINA GUIRGUIS AZER BESTAVROS IBRAHIM MATTA

{msg, best, matta}@cs.bu.edu
Computer Science Department

Boston University
Boston, MA 02215, USA

Abstract— Recent research have exposed new breeds of attacks
that are capable of denying service or inflicting significant
damage for TCP flows, without sustaining the attack traffic.
Such attacks are often referred to as “low-rate” attacks and
they stand in sharp contrast against traditional Denial of Service
(DoS) attacks that can completely shut off TCP flows by flooding
an Internet link. In this paper, we study the impact of these new
breeds of attacks and the extent to which defense mechanisms
are capable of mitigating the attack’s impact. Through adopting
a simple discrete-time model with a single TCP flow and a non-
oblivious adversary, we were able to expose new variants of these
low-rate attacks that could potentially have high attack potency
per attack burst. Our analysis is focused towards worst-case
scenarios, thus our results should be regarded as upper bounds
on the impact of low-rate attacks rather than a real assessment
under a specific attack scenario.

Index Terms— Security; TCP; Denial of Service; Low-Rate
Attacks;

I. INTRODUCTION

Denial of Service (DoS) attacks and Distributed Denial of
Service (DDoS) attacks present an ongoing threat to almost ev-
ery Internet Service. An adversary bent on limiting access to a
network can bring down an Internet service by subjecting it to
sustained levels of demand that far exceed its capacity, making
that service incapable of adequately responding to legitimate
requests. Although DoS attacks can inflict significant damage,
preparing a DoS attack requires some additional work. In par-
ticular, it requires recruiting enough zombie clients to launch
the attack. These zombie clients are typically compromised
computers scattered all over the Internet. Moreover, just by
their brute force nature, these attacks are easily exposed,
making it possible for appropriate countermeasures to be taken
once attacks are detected.1

Only recently, new breeds of attacks have been exposed
that could deny service or degrade the quality without
sustaining attack traffic [1], [2], [3], [4]. These new attacks
are often referred to as “low-rate” attacks and they require
relatively lower number of zombie clients in comparison to
the brute force nature of traditional DoS attacks. In addition,
by their nature, they are harder to detect. Thus, low-rate
attacks present new challenges for defense mechanisms in
terms of detection, protection and taking the appropriate
countermeasures. And indeed, recent research started to
address and to develop new defense mechanisms against
low-rate attacks [5], [6].

1Since sometimes DoS attacks could be anticipated, countermeasures can
be taken before attacks are launched.

Motivation: While detection and taking countermeasures are
important problems worth tackling, a more important problem
is to assess the damage that could be inflicted by those new
breeds of attacks and the extent to which defense mechanisms
are capable of mitigating the attack’s impact. To that end,
this paper focuses on quantifying the damage that could be
inflicted by previously exposed low-rate attacks, in addition to
exposing new variants of such attacks. Towards constructive
goals of our findings, we study the extent to which different
defense mechanisms would be capable of mitigating the at-
tack’s impact. We also propose a new defense mechanism that
would lessen the impact of low-rate attacks.

Currently, most of the Internet traffic is carried by TCP [7].
TCP relies on feedback mechanisms to adapt its sending rate to
match its “fair share” of network resources. When a resource
gets congested, it drops packets. These drops are regarded by
TCP as a congestion signal and it reacts to them by halving its
sending rate. If no packets are being dropped by the network,
TCP increases its window by one packet every Round Trip
Time (RTT). Such Additive Increase Multiplicative Decrease
(AIMD) mechanism serves to utilize available bandwidth
when present and to alleviate congestion when it does happen.
When a TCP flow is faced with high packet loss, it could
potentially incur a timeout, due to either the lack of enough
duplicate acknowledgments to trigger packet retransmission or
a loss of a whole window of packets.

While the mechanisms employed in TCP are essential
for convergence to fairness and efficiency [8], they make
TCP vulnerable to the presence of packet loss that are not
directly attributed to legitimate congestion. In particular, it
has been shown that an adversary mounting a shrew attack
can exploit the TCP timeout mechanism, causing TCP flows
to continually timeout [1]. Also, an adversary mounting RoQ
attacks can exploit the adaptive AIMD mechanism in TCP,
causing significant degradation of quality [2].

A complete assessment of the impact of low-rate attack
would be difficult to achieve in practice, due to the high
number of parameters involved, such as link capacity, buffer
size, round-trip time, among others. That is, in addition to
other factors such as the TCP implementation used (Tahoe
[7], Reno [9], NewReno [10] and SACK [11]) and the
queue management implementation used (RED [12], and
all other AQM schemes). The capabilities of the attacker
should also be taken into account, such as the availability
of any probing techniques for bandwidth and queuing delay
estimation. Other non-deterministic factors are typically



ICC 2006 SUBMISSION 2

involved, due to timing the attack traffic, synchronization and
the use of randomization. Fortunately, to derive worst-case
analysis, some of the above factors could be abstracted away.
For example, by assuming that lost packets belong to the
victim as opposed to the attacker, one can abstract away the
buffering implementation. Clearly, this doesn’t usually happen
in practice, but it enables us to derive close to worst-case
analysis. 2 So in general, our results in this paper should
be regarded as close to upper bounds rather than a real
assessment of the impact of low-rate attacks. Also, our results
give a relative comparison for different variants of low-rate
attacks.

Paper Outline: Section II presents our discrete-time model,
where we study the behavior of a single TCP flow traversing
a bottleneck link. In Section III, we quantify the maximum
damage inflicted by different low-rate attacks, in addition to
exposing new variants of such attacks. In Section IV, we assess
the capability of different defense mechanisms in mitigating
the ill effect of low-rate attacks, in addition to proposing new
defense mechanisms. In Section V, we briefly discuss related
work, noting that throughout this paper, we point to various
pieces of research work as appropriate. We conclude in Section
VI with a summary and future directions.

II. MODEL

A. Model Derivation

We will start with a simple model that represents a single
TCP connection, traversing a single bottleneck link with a
fixed capacity C and a buffer size B. Our model is a modified
version of those presented in [14] and [15]. In particular,
we assume the link capacity is fixed over time and we
introduce the buffering process. We model the slow-start, the
Additive Increase Multiplicative Decrease (AIMD) and the
retransmission timeout mechanism of TCP. We summarize our
proposed model next.

Let time be divided into slots, where each slot is indexed
by the variable i. All slots have the same time duration
which we chose to be equal to the connection’s round-trip
time R. Let wi represents the window size chosen by the
algorithm to be sent during time slot i.3 Typically, wi follows
the AIMD mechanism of TCP, except for the beginning of
the TCP connection or following a timeout, where wi evolves
according to the slow-start mechanism. If the algorithm sends
less packets than C (given in packets per time slot), all of them
will be transmitted during the same time slot. If however, wi

exceeds C, some of the extra packets will be buffered to be
transmitted during the next time slot, if buffer space permits.

We let bi denote the buffer occupancy at time slot i. The
buffer at any time instant is equal to the buffer occupancy
during the previous time slot, plus the difference between
the input and the output during that time slot, thus it can be
described by the following equation:

2As a matter of fact, this could happen in practice, if the router is employing
a DiffServ architecture [13], where the attack traffic has a higher priority.

3Throughout this paper, wi should be regarded as the congestion window
dictated by the bottleneck link and not constrained by the receiver’s window
size.

bi+1 = bi + wi+1 − C (1)

Equation (1) is bounded by 0 from below and by B from
above.

Once a TCP connection starts or following a time-out, the
window typically starts with 1 packet and grows exponentially
as dictated by the slow-start mechanism. Once the congestion
window size reaches the slow start threshold, s, the TCP
connection switches to the AIMD mechanism.

According to the AIMD mechanism, the window size is
incremented by 1 packet on successful packet transmission
during the previous time slot (round-trip time) and is halved on
a packet loss, thus can be described by the following equation:

wi+1 =
{

wi + 1 bi ≤ B
wi

2ni

(2)

where ni is the number of packets lost during time slot i.
This equation assumes that every packet lost results in halving
the window once. 4

Since the behavior of a single TCP connection is typically
dictated by the AIMD mechanism, we ignore, for now, the ef-
fect of the single slow-start that happens when the connection
starts and we focus on its steady-state behavior. We assume
that at time step i, the window size wi equals C and the buffer
size bi equals 0. Thus, the additive increase component will
keep filling the buffer until a packet loss occurs. Let l denotes
the time slot when a loss happens. Since the buffer is acting
as an integrator5, l can be simply derived to be:6

l ≈
√

2B + 1 (3)

Thus, at time slot l, wl is equal to C + l−1 and bl is equal
to B.

After a packet loss and halving the window size and
depending on the buffer size, B, the input may not be able
to sustain the full link capacity C. According to equation (1),
the buffer size at time l + 1 is equal to:

bl+1 = B +
C + l − 1

2
− C (4)

If the input rate cannot sustain the link capacity, the buffer
will start draining until it hits 0. To derive the number of time
steps it takes to drain the buffer, we solve for d, such that,
bl+d is 0:7

d ≈ 2B

C − l
(5)

The window size at time slot l + d, is equal to :

4Notice that the window size cannot go below 1, thus log2 wi is an upper
bound on the effective number of lost packets.

5According to (1), the buffer occupancy grows by 1,2,3,... packets at
successive time slots until the buffer becomes full.

6This is a solution of a second-order equation under the assumption that
2B � 1, which holds true for any reasonably chosen buffer size.

7We assume that the buffer drains before the window exceeds the capacity,
and during this short interval, the window size remains a constant.



ICC 2006 SUBMISSION 3

wl+d =
C + l − 1

2
+ d − 1 (6)

Let the time steps it takes for the window to reach from
wl+d back to C be denoted by k, and is given by:

k = C − wl+d (7)

10 20 30 40 50
0

20

40

60

80

100

Time

B
uf

fe
r/

W
in

do
w

 S
iz

e

Buffer
Window

l kd

Fig. 1. Buffer process and window evolution via the AIMD mechanism; The
buffer size, B, is 64 packets and the capacity, C is 64 packets.

Thus to summarize, the window and buffer behaviors can
be described into three main regions. The first region starts
with the connection’s throughput equal to the C and the buffer
is empty and ends with a packet loss and a full buffer. The
second region is the period of time until the buffer drains, thus
it ends with an empty buffer size. The third region, is similar
to the first one, except that the buffer size will remain empty
during which and it ends with the window size equal to C−1
and the three regions repeat. Figure 1 depicts the buffering
process and the window evolution, obtained from a numerical
solution. We chose B and C to be 64 packets.

B. Model Assumptions

The simple model outlined above makes the following
assumptions:

(1) The connection’s round-trip time, R, is a constant and
doesn’t change with the queuing delay at the bottleneck.
In reality, the round-trip time is the sum of the propa-
gation delay and queuing delay. This assumption has
two related implications; First, the queue size behaves
as a parabolic integrator rather than linear or sub-linear
[16]. Second, the rule-of-thumb of the buffer size being
the bandwidth-delay product of the network would not
prevent buffer draining as shown in Figure 1.

(2) The effect of self-clocking is not pronounced between
time slots, so the TCP connection receives its feedback
over a specific slot and not across multiple slots, for the
same window of packets sent.

As we argued before, these assumptions will not typically hold
in practice, however, they tend to give a tractable model to
work with for close to worst-case analysis.

C. No Attack Case

In order to study the impact of low-rate attacks, we define
the following two performance metrics that would be our
indicators for assessment:

Gain: The gain, G, of a TCP algorithm is defined as the
amount of packets transmitted successfully over the link.

Loss: The loss, L, of a TCP algorithm is defined as the amount
of packets that could have been sent successfully, but where
not transmitted. For example the loss in slot i is the difference
between wi and C when wi is less than C.8

When there is no attack underway, and ignoring the effect
of the first slow start, TCP’s gain over its congestion epoch,
is given by:

G =
l+d+k∑

i=1

wi

=
l + d + k

2
(2l + d + k + C) (8)

As Figure 1 suggests, the only period when the link is under
utilized occurs throughout the third region, when the buffer
is 0. If we consider the time slot, l + d + k, the window
size at this time slot is equal to C − 1. Thus a waste of 1
packet exists. Carrying our computation backwards, at time
slot (l + d + k) − 1, the waste was 2 packets and so on. The
total loss is given by:

L =
l+d+k∑

i=l+d+1

(C − wi) =
k

2
(k + 1) (9)

Notice that this loss is attributed directly to the TCP’s AIMD
mechanism as opposed to the presence of any attack traffic.

III. LOW-RATE ATTACKS

In this section, we study the impact of low-rate attacks on
a single TCP flow. We assume the attacker is non-oblivious,
i.e. it knows when and how much traffic to send in order to
cause the maximum damage or the maximum damage per
attack byte. We also assume that the lost packets belong to
the legitimate connection as opposed to the attacker. Such
pessimistic assumptions enable us to drive close to upper
bounds on the impact of low-rate attacks.

To assess the vulnerability of low-rate exploits, we follow
the definition of attack potency, π, we proposed in [2],
whereby the potency of an attack is the ratio of the damage
caused by the attack to the attacker’s cost for mounting the
attack.9

π =
Damage

Cost
(10)

8Throughout this paper, the loss computed would include the inefficiencies
resulting from the TCP AIMD mechanism.

9The definitions in [2] allow for an aggressiveness index Ω, which we take
to be 1.



ICC 2006 SUBMISSION 4

A. Shrew Attacks

The “Shrew” attack, proposed in [1], is an example of a low-
rate attack that targets a subset of connections going through a
bottleneck link, with the intention of shutting them off, through
exploiting the timeout mechanism. The timeout mechanism is
employed in TCP to alleviate severe congestion, by preventing
the connection from sending any packets for longer periods of
time. In particular, if TCP fails to receive enough duplicate
acknowledgments to trigger packet transmission, it will incur
a timeout. During timeout, TCP reduces its window to 1 packet
and does not send any packets for a period of time known as
the Retransmission Time Out (RTO). It is recommended to
have a base RTO of 1 second [17]. The shrew attack exploits
the homogeneity in the timeout mechanism in TCP through
synchronizing the attack traffic with the recommended base
RTO, causing connections to continually timeout.

To account for timeout in our model, we let α denote
the number of slots that represents the base RTO, i.e.,
base RTO = αR We ignore the effect of exponential back-off
of the RTO on successive failures of a timeout triggered loss.
We refer the reader to [18] for additional information on the
timeout mechanism. We also assume that timeout occurs due
to the loss of a whole window of packets as opposed to lack
of enough duplicate acknowledgments. Following a timeout,
the TCP connection would do slow start until the slow-start
threshold, s, is reached and then the TCP AIMD mechanism
is used.

The attack traffic is synchronized in such a way that it hits
the connection whenever it is about to exit from timeout, i.e.,
when its window size is 1 packet. In order to cause the loss of
this packet, the attacker has to send enough attack traffic, that
would both, fill the buffer and saturate the link capacity, in a
single round-trip time. Thus the total attack traffic is simply
C + B. The damage caused by such a burst is total waste of
bandwidth of C for the duration of the timeout α. Thus the
connection was unable to send any packet.

If we instantiate the attack potency, π, as defined in [2] as
the damage in packets per unit attack packet, we get an upper
bound on the impact of a classic shrew attack:

πshrew =
αC

C + B
(11)

Notice that the attack here is repeated every α time slots and
in the worst case, it causes a complete denial of service since
the connection couldn’t send any packet across the bottleneck.
Thus, Gshrew = 0 and Lshrew = αC.

B. More Potent Shrew Attacks

While the above shrew attack can completely shut off
TCP connections, causing the maximum absolute damage, it
doesn’t maximize the damage per unit attack byte for each
attack burst. To illustrate this point, we expose two variants
of the shrew attack.

Shrew Attack at Saturation (shrew†): Following a timeout,
the attacker would wait until the window ramps up again
to reach C, as opposed to attacking when the window is 1

packet. Such wait has the advantage of keeping the connection
paying the price of under-utilization until it reaches C. The
total under-utilization before reaching a window of size C is
composed of two parts; the first part is due to slow-start and
the second part is due to the AIMD mechanism. Assuming
that the slow-start threshold, s, is set to C+

√
2B

2 , it would take
log s for the window to grow from 1 to s. Once the window
reaches the slow-start threshold, the AIMD mechanism will
be used until the window reaches C. Thus, the gain is given
by:

Gshrew† =

log s∑
i=0

2i + (C − s + 1)(
C − s + 2

2
+ s) (12)

The total under-utilization from such attack is given by:

Lshrew† = (C log s) −
log s∑
i=0

2i

+ (C − s + 1)
C − s + 2

2
+ αC (13)

The attack here is repeated every log s + (C − s + 1) + α
time slots. Figure 2 represents the the under-utilization due to
a single attack burst.

Time
Time

C

Window Loss

log s C-s+1

Fig. 2. Shrew attack at saturation; shaded area represents the under-utilization
due to a single attack burst. The attack is repeated every log s+(C−s+1)+α
time slots.

In order to cause a loss of C packets, that attacker has to
saturate the link and fill the buffer, injecting C + B packets
in one time slot. Thus the potency of such attack is given by:

πshrew† =
Lshrew†

C + B
(14)

Shrew Attack at Full Buffer (shrew‡): In this exposed attack
and following a timeout, the attacker would wait until the
buffer is full. This has the advantage of reducing the cost of
the attack. In particular, the attacker now only needs to send
C packets to cause the loss of the current window of packets.
Thus the gain from this attack is:



ICC 2006 SUBMISSION 5

Gshrew‡ =

log s∑
i=0

2i + (C − s + 1)(
C − s + 2

2
+ s)

+

√
2B

2
(
√

2B + 1) + C
√

2B (15)

and the loss is:

Lshrew‡ = (C log s) −
log s∑
i=0

2i

+ (C − s + 1)
C − s + 2

2
+ αC (16)

and the potency is:

πshrew‡ =
Lshrew‡

C
(17)

This attack extends the attack period to be repeated every
log s + (C − s + 1) + l + α time slots. Figure 3 represents
the the under-utilization due to a single attack burst. Similar
to the Shrew† case, extending the attack period, reduces the
attacker’s rate since it waits for a longer period between two
successive attack bursts.

Time
Time

C

Window Loss

log s C-s+1 l

Fig. 3. Shrew attack at full buffer; shaded area represents the under-utilization
due to a single attack burst. The attack is repeated every log s + (C − s +
1) + l + α time slots.

Notice that per attack burst, it is easy to see that πshrew‡ >
πshrew† > πshrew. However, since each attack has a different
period, over longer time scales (multiples of attack periods),
such ordering of different potencies could be different based
on the parameters.

Figure 4 illustrates this point. We plot the normalized po-
tency (calculated as the potency divided by the attack period)
on the Y-axis. We fixed the capacity to 500 packets per slot
and we vary the buffer size from 100 packets to 3000 packets,
on the X-axis. One can see that the shrew is always more
potent than shrew†. However, shrew‡ can be more potent
once the buffer exceeds a certain threshold (around 700, in
our example). Once the buffer size is large, it gets harder for
the attacker to fill the buffer and since shrew‡ doesn’t try to
fill the buffer, since it relies on the TCP mechanism to achieve
this task, it becomes more potent at large buffer sizes.

500 1000 1500 2000
0

0.5

1

1.5

2

2.5

Buffer Size

N
or

m
al

iz
ed

 P
ot

en
cy

Classic Shrew
Shrew @ Link Saturation
Shrew @ Full Buffer
RoQ @ Link Saturation

Fig. 4. Normalized Potency represented on the Y-axis versus the buffer size
represented on the X-axis, for different attack variants.

C. Reduction of Quality Attacks

RoQ attacks [2] exploit the AIMD adaptation mechanism
to maximize the damage per unit attack traffic, i.e., the attack
potency. A worst-case RoQ attack would force multiple
losses causing the window to drop from its current value to 1
packet. Since the connection did not timeout, the window will
ramp up again through the AIMD mechanism, i.e., without
the slow-start mechanism. We illustrate the following two
variants of RoQ exploits.

RoQ Attack at Saturation (RoQ†): A worst-case RoQ attack,
carried when the window is C packets, would cause multiple
losses causing the window to drop from C to 1 packet. To
cause such a damage, the attacker must fill the buffer and
inject additional log2 C packets, that would cause the window
to drop from C to 1 packet. The attack is repeated every C
time slots. The TCP gain achieved under this attack is:

GRoQ† =
C

2
(C + 1) (18)

and the maximum loss is given by:

LRoQ† =
C

2
(C − 1) (19)

Thus the RoQ attack potency is upper bounded by:

πRoQ† =
LRoQ†

B + log2 C
(20)

Figure 5 represents the the under-utilization due to a single
attack burst.

RoQ Attack at Full Buffer (RoQ‡): If the RoQ attack is
carried at a full buffer, then the attacker would only need to
inject enough packets to drop the window from C +

√
2B to

1 packet, that is log2 C +
√

2B. The attack is repeated every
C + l time slots. The TCP gain under this attack is:

GRoQ‡ =
C

2
(C + 1) +

√
2B

2
(
√

2B + 1) + C
√

2B (21)



ICC 2006 SUBMISSION 6

Time
Time

C

Window Loss

C

Fig. 5. RoQ attack at link saturation; shaded area represents the under-
utilization due to a single attack burst. The attack is repeated every C time
slots.

and the maximum loss is given by:

LRoQ‡ =
C

2
(C − 1) (22)

Thus the RoQ attack potency is upper bounded by:

πRoQ‡ =
LRoQ‡

log2 (C +
√

2B)
(23)

Time
Time

C

Window Loss

C l

Fig. 6. RoQ attack at full buffer; shaded area represents the under-utilization
due to a single attack burst. The attack is repeated every C + l time slots.

Figure 6 represents the the under-utilization due to a single
attack burst.

Figure 4 shows the normalized potency for RoQ†. One can
see that it has higher potency (than all shrew attacks) at lower
buffer sizes. Once the buffer size becomes large, it gets harder
for the attacker to fill the buffer and the potency would start
decreasing. RoQ‡ was able to achieve more than 10 times the
normalized potency in comparison to all other attacks, hence
we didn’t include it in Figure 4.

IV. DEFENSES AGAINST LOW-RATE ATTACKS

In this section, we evaluate the effect of defense mecha-
nisms that could mitigate the impact of low-rate attacks. RTO
randomization, proposed in [1] and studied in [6] is evaluated.
We then we propose a new defense mechanism.

A. RTO Randomization

A natural defense against the Shrew attacks [1], is to
randomize the base RTO. Such randomization would prevent
the attacker from synchronizing its attack burst at the right
time, causing a complete denial of service for the TCP flows.
The main drawback of this approach is that TCP connections
still timeout; i.e., the damage is done. Clearly, the damage
is less than that when the base RTO was fixed to 1 second,
since connections now can utilize some of the bandwidth
available between attack bursts. As we will demonstrate, the
achievable throughput depends on the round-trip time. TCP
connections with shorter round-trip time would benefit from
RTO randomization and can recover between attack bursts. On
the contrary, connections with long round-trip time would not
be able to open up their windows and will not achieve much
throughput before the next attack burst comes.

To study the effect of RTO randomization, we assume
that once a connection times out, it will choose its RTO
timeout uniformly at random between two values, RTOmin

and RTOmax, where the average RTO is preserved to 1
second. For example, it can use a random RTO value between
0.5 and 1.5 seconds.

We consider the attacker sending its attack burst every 1
second. After the first timeout, the connection, and depending
on its random RTO value, will commence in the slow start
phase and would be able to utilize the time until the next
attack burst when this cycle repeats. If we let RTOr denotes
the random value chosen, then we have the following three
cases:
(1) RTOr falls in the same attacked time slot: In this case,
the connection will timeout again and the gain is 0.
(2) RTOr less than 1 second: In this case, the number of
RTTs that can be utilized by the connection is ≈ 1−RTOr

R .
(3) RTOr is larger than 1 second: In this case, the number
of RTTs that can be utilized by the connection is ≈ 2−RTOr

R .

One can easily observe that if R is small, short RTT
connections would have many slots to ramp up. However, if
R is large, long RTT connections would have a few number
of slots to ramp up and may not even leave slow start before
they got hit again.

Figure 7 illustrates the impact of RTO randomization for 3
different round-trip connections, where every time slot repre-
sents the round-trip time. Figure 7(left) shows the behavior of a
TCP connection with a 100 msec round-trip time, the attacker
sends its burst every one second (that is every 10 slots). Figure
7(middle) shows the behavior of a TCP connection with a 10
msec round-trip time, the attacker sends its burst every one
second (that is every 100 slots). Figure 7(right) shows the
behavior of a TCP connection with a 1 msec round-trip time,
the attacker sends its burst every one second (that is every
1000 slots). RTO randomization was fixed between 0.5 to 1.5
seconds.

We ran each experiment for 1000 seconds and Table I shows
the ratio between the gain obtained by TCP divided by the
maximum throughput that could be achieved. Connections
with R = 100 msec are able to achieve only 3% of the



ICC 2006 SUBMISSION 7

0 10 20 30 40 50
0

20

40

60

80

100

Time

B
uf

fe
r/

W
in

do
w

 S
iz

e
Buffer
Window

0 100 200 300 400 500
0

20

40

60

80

100

Time

B
uf

fe
r/

W
in

do
w

 S
iz

e

Buffer
Window

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

Time

B
uf

fe
r/

W
in

do
w

 S
iz

e

Buffer
Window

Fig. 7. Assessment of RTO randomization for connections with different round-trip times. Left, middle and right plots represent the throughput of a TCP
connection with 100 msec, 10 msec and 1 msec round-trip time, respectively.

Round-trip Time (R) Gain Ratio
R = 100 msec 0.03
R = 10 msec 0.18
R = 1 msec 0.22

TABLE I

GAIN RATIO FOR DIFFERENT ROUND-TRIP TIME TCP CONNECTIONS;

GAIN RATIO = Gain
Maximum Gain

available bandwidth. This suggests that RTO randomization
is not the right solution for long RTT connections.

0.1−1.9 0.2−1.8 0.3−1.7 0.4−1.6 0.5−1.5 0.6−1.4 0.7−1.3 0.8−1.2 0.9−1.1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

RTO Range

G
ai

n 
R

at
io

Fig. 8. Impact of different ranges of randomization, for a TCP connection
with 1 msec RTT under a periodic attack.

Figure 8 studies the impact of different ranges of randomiza-
tion, for connections with 1 msec RTT. Notice that the analysis
above is close to the one presented in [6], except that we do
not assume that the connections will utilize the full bandwidth
before the next timeout, but will follow slow-start and AIMD
subject to their RTT.

B. An Outline for a Defense Mechanism

One of the reasons that makes TCP vulnerable against low-
rate attacks is that it constantly tries to send packets. However,
if TCP can infer that an attack burst would happen at a certain
RTT slot, it can stop sending any packets during that time slot

and hence would not experience any packet loss10. Of course
such information is not available to current versions of TCP.
We are currently working on a modified version of TCP that
is capable of probing the network’s state and identifying the
attack’s periodicity by observing its own packet delays. Once
the attack’s period is identified, a TCP connection would not
send any packets when the attack traffic is expected. The exact
details of the modified TCP is outside the scope of this paper.

C. RTO Randomization vs. Randomized Attacker

The implication of the above solution is that attackers can
now randomize the time between attack bursts to hinder the
period identification process. We show that such randomization
lessens the impact of the attack, even with RTO randomization
in place.

0.1−1.9 0.2−1.8 0.3−1.7 0.4−1.6 0.5−1.5 0.6−1.4 0.7−1.3 0.8−1.2 0.9−1.1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

RTO Range

G
ai

n 
R

at
io

Fig. 9. Impact of different ranges of randomization, for a TCP connection
with 1 msec RTT under a randomized attack period.

Figure 9 shows the gain ratio over different ranges of RTO
randomization. The attacker here was not periodic with the
attack period selected uniformly at random with an average
of 1 sec. Comparing this figure to Figure 8, one can see that
randomizing the attack bursts actually hurts the attacker. When
the attacker selects the inter-burst period at random, two bursts
could be either close to each other or far from each other. In the
first case, the second burst would not cause any harm to the

10Due to error in measurements, it may not send any packets for multiple
time slots, around the one being identified.



ICC 2006 SUBMISSION 8

connections that are already in timeout. In the second case,
two attack bursts that are far from each other, would cause
TCP to utilize the time in between to ramp up its bandwidth
usage.

V. RELATED WORK

This work is inspired by the work done in [14] and [15],
where the authors studied the congestion control problem
through an optimization framework. In particular, they studied
the performance of different probing mechanisms in utilizing
the available bandwidth where the available bandwidth is
chosen by an adversary, with limited power. The problem was
casted as an online algorithm with an eye on the competitive
ratio, defined as the performance/penalty of an algorithm, in
comparison to the off-line version that knows the available
bandwidth in advance. The work presented here is different
in many ways. First, our model is more TCP specific, with
AIMD, slow-start and timeout mechanisms employed. We did
not consider other probing algorithms in comparison to TCP.
Moreover, we focused on studying the impact of low-rate
attacks, such as the shrew attacks [1] and RoQ attacks [2],
through the potency metrics.

We have also studied RTO randomization as a defense
mechanism, first proposed in [1] and evaluated in [6]. The
approach in [6] was an optimistic one, assuming TCP would be
able to utilize the full bandwidth before the next attack burst.
The approach we followed here is different. We studied the
behavior of a single TCP flow where bandwidth is utilized by
TCP mechanisms (slow-start and AIMD) and we concentrated
on worst-case analysis.

VI. CONCLUSION

In this paper, we have focused on studying the impact of
a larger family of low-rate attacks on a single TCP flow. We
have carried our studies through the notion of attack potency,
that describes the trade-offs between damage inflicted and the
cost involved to mount the attack. Despite that some of our
assumptions would not likely hold in a typical setting, our
results, however, tend to give upper bounds on the worst-case
impact of such attacks. We believe that recently exposed low-
rate attacks, in addition to the ones exposed here, present new
challenges for defense mechanisms in order to mitigate the
attack’s impact.

REFERENCES

[1] A. Kuzmanovic and E. Knightly, “Low-Rate TCP-Targeted Denial
of Service Attacks (The Shrew vs. the Mice and Elephants),” in
Proceedings of ACM SIGCOMM, karlsruhe, Germany, August 2003.

[2] M. Guirguis, A. Bestavros, and I. Matta, “Exploiting the Transients of
Adaptation for RoQ Attacks on Internet Resources,” in Proceedings
of ICNP’04: The 12th IEEE International Conference on Network
Protocols, Berlin, Germany, October 2004.

[3] M. Guirguis, A. Bestavros, and I. Matta, “Bandwidth Stealing via Link
Targeted RoQ Attacks,” in Proceedings of CCN’04: The 2nd IASTED
International Conference on Communication and Computer Networks,
Cambridge, MA, November 2004.

[4] M. Guirguis, A. Bestavros, I. Matta, and Y. Zhang, “Reduction of
Quality (RoQ) Attacks on Internet End-Systems,” in Proceedings of
Infocom’05: The IEEE International Conference on Computer Commu-
nication, Miami, FL, March 2005.

[5] H. Sun, J. Lui, and D. Yau, “Defending Against Low-Rate TCP Attacks:
Dynamic Detection and Protection,” in Proceedings of ICNP’04: The
12th IEEE International Conference on Network Protocols, Berlin,
Germany, October 2004.

[6] G. Yang, M. Gerla, and M. Sanadidi, “Defense against Low-rate
TCP-targeted Denial-of-Service Attacks,” in Proceedings of ISCC: The
9th IEEE Symposium on Computers and Communications, Alexandria,
Egypt, June 2004.

[7] V. Jacobson, “Congestion Avoidance and Control,” in Proceedings of
ACM SIGCOMM, Standford, CA, August 1988.

[8] D. Chiu and R. Jain, “Analysis of the Increase and Decrease Algorithms
for Congestion Avoidance in Computer Networks,” Computer Networks
and ISDN Systems, 1989.

[9] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control,”
RFC 2581, April 1999.

[10] S. Floyd and T. Henderson, “The NewReno Modification to TCP’s Fast
Recovery Algorithm,” RFC 2582, April 1999.

[11] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective
Acknowledgment Options,” RFC 2018, October 1996.

[12] S. Floyd and V. Jacobson, “Random Early Detection Gateways for
Congestion Avoidance,” Transactions on Networking, August 1993.

[13] S. Blake, D. Black, M. Carlson, E. Davies, Z.Wang, and W. Weiss, “An
Architecture for Differentiated Services,” IETF RFC 2475, December
1998.

[14] R. Karp, E. Koutsoupias, C. Papadimitriou, and S. Shenker, “Opti-
mization Problems in Congestion Control,” in Proceedings of IEEE
Symposium on Foundations of Computer Science, Redondo Beach, CA,
November 2000.

[15] S. Arora and B. Brinkman, “A Randomized Online Algorithm for
Bandwidth Utilization,” in Proceedings of the 13th Annual ACM-SIAM
Symposium on Discrete Algorithms, San Francisco, CA, January 2002.

[16] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing Router Buffers,”
in Proceedings of ACM SIGCOMM, Portland, OR, September 2004.

[17] M. Allman and V. Paxson, “On Estimating End-to-End Network Path
Properties,” in Proceedings of ACM SIGCOMM, Cambridge, MA,
August 1999.

[18] V. Paxson and M. Allman, “Computing TCP’s retransmission Timer,”
RFC 2988, November 2000.


